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Abstract

This article seeks to extend the variational iteration method (VIM) with He’s polynomials for the approximate solution
of nonlinear Newell-Whitehead-Segel equation (NWSE). Lagrange multiplier in correction functional is determined with the
help of variational theory, and then homotopy perturbation method (HPM) is employed to dissolve the nonlinear terms. Thus a
successful series is obtained with these iterations which are termed as He’s polynomials. Result shows that this method is highly
accurate and comes closer very quickly to the exact solution. We formulate three possible cases of NWSE to show the capability
and ability of the present method. The valuable outcome discloses that the proposed strategy is very convenient, straightforward
and can be utilized to linear and nonlinear problems.

Keywords: NWSE, VIM, Lagrange multiplier, HPM.

2010 MSC: 35A22, 49M27, 47J30.

c©2020 All rights reserved.

1. Introduction

In natural phenomena, nonlinear partial differential equations perform an meaningful and enhanced
role in modeling numerous physical appearances related to solid-state physics, fluid mechanics, plasma
physics, population dynamics, chemical kinetics, nonlinear optics, protein chemistry, etc.. These nonlinear
models, as well as their analytic solutions, are of enormous interest for appropriate topics. The VIM
was come forth by He [9, 19] and favorably applied to autonomous ordinary differential systems [10],
hyperbolic differential equations [6], non-homogeneous Cauchy Euler differential equations [26], Lane-
Emden problems [7], Klein-Gordon and Sine-Gordon equations [5, 25], and Bratu-type equations [4, 20,
33].

HPM [8, 14, 15] was pioneered, based on the introduction of homotopy in topology, accompanied
by the traditional perturbation method for the solution of algebraic equations. This procedure brings
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forth a summation of an infinite series with clearly computable expressions, which coincides rapidly to
the solution of the problem. HPM obtained the approximate solution not only for small parameters,
but also for very large parameters and the initial approximation can be freely selected with possible
unknown constants. In the literature, numerous authors have successfully applied HPM for various kind
of problems such as inverse problem of diffusion equation [34], linear programming problems [32], blood
flows problem [2], nonlinear oscillator problems [3, 12, 35, 38, 39], hybridization of HPM with Laplace
transform [23, 27], HPM with expanding parameter [17], HPM with auxiliary parameters [16], and a
fractional calculus [18, 22, 36, 37].

Many stripe patterns, e.g., ripples in the sand, stripes of seashells, appear in a variety of spatially
extended systems which can be specified by a set of equation called amplitude equations. One of the
most meaningful of amplitude equations is the NWSE which describes the presence of the stripe pattern
in two dimensional systems.

The NWSE is written as

∂ϑ

∂t
= κ

∂2ϑ

∂x2 +αϑ−βϑγ+1 (1.1)

with the initial condition

ϑ(x, 0) = f(x),

where α,β are real numbers and κ,γ are positive integers. In Eq. (1.1), the first term on the left hand side,
∂ϑ
∂t , expresses the variations of ϑ(x, t) with time at a fixed location, the first term on the right hand side,
∂2ϑ
∂x2 , expresses the variations of ϑ(x, t) with spatial variable x at a specific time and the remaining terms
on the right hand side, αϑ−βϑγ, takes into account the effect of the source term.

Recently, NWSE has been studied by Laplace Adomian decomposition method [31], Adomian decom-
position method [24], differential transform method [1], cubic B-spline collection method [40], VIM [30]
and HPM [21, 28, 29]. In current paper, we will study the VIM combined with HPM. Further, HPM cab be
dissolved into a number of iterations which is computable easily. These iterations are known as so called
He’s polynomials. The major advantage of this method is its capability of combining the two powerful
method to obtain exact solution for nonlinear equations. This paper is organized as follows. In Section
2, we study the basic idea of VIM. In Section 3, we present a brief review of the homotopy perturbation
with He’s polynomials. In Section 4, we developed the scheme of VIM with He’s polynomials. Section 5,
presents some numerical test examples on VIM with He’s polynomials applied to find the approximate
solutions and finally, we summarize our results and draw conclusions in last Section 6.

2. Variational iteration method

To clarify the VIM, we begin by considering a differential equation in the formal form:

Lϑ(x, t) +Nϑ(x, t) = g(x, t),

where L and N are linear and nonlinear operators respectively, and g(x, t) is a known analytical function.
The VIM allows us to write a correct functional of the following type:

ϑn+1(x, t) = ϑn(x, t) +

t∫
0

λ(s)
[
Lϑn(x, s) +Nϑ̃n(x, s) − g(x, s)

]
ds, (2.1)

where λ is a general Lagrange’s multiplier, which can be identified optimally via the variational theory
and ϑ̃n is a restricted for variation which means δϑ̃n = 0, yields the following Lagrange multipliers

λ = −1, (2.2)
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Therefore, substituting (2.2) into functional (2.1) we obtain the following iteration formula

ϑn+1(x, t) = ϑn(x, t) −

t∫
0

[
Lϑn(x, s) +Nϑ̃n(x, s) − g(x, s)

]
ds. (2.3)

Thus, Eq. (2.3) is called as a correction functional. The successive approximation ϑn+1, n > 0 of the
solution ϑ will be readily obtained upon using the determined Lagrange multiplier and any selective
function ϑ0. Consequently, the solution is given by

ϑ = lim
n→∞ ϑn.

3. Basic idea of HPM

To illustrate the basic concept of HPM, consider the following non-linear functional equation

A(ϑ) − f(r) = 0, r ∈ Ω, (3.1)

with boundary conditions

B
(
ϑ,
∂ϑ

∂n

)
= 0, r ∈ Γ ,

where A is a general functional operator, B is a boundary operator, f(r) is a known analytic function, and
Γ is the boundary of the domain Ω. The operator A can generally be divided into two operators, L and
N, where L is a linear and N being a nonlinear operator. Therefore, Eq. (3.1) can be written as follows

L(ϑ) +N(ϑ) − f(r) = 0.

Using the homotopy technique, we construct a homotopy v(r,p) : Ω× [0, 1]→ R which satisfies

H(v,p) = (1 − p)[L(v) − L(ϑ0)] + p[L(v) −N(v) − f(r)],

or

H(v,p) = L(v) − L(ϑ0) + pL(ϑ0) + p[N(v) − f(r)] = 0, (3.2)

where p ∈ [0, 1], is called homotopy parameter, and ϑ0 is an initial approximation for the solution of Eq.
(3.1), which satisfies the boundary conditions. According to HPM, we can use p as a small parameter,
and assume that the solution of Eq. (3.2) can be written as a power series in p

v = v0 + pv1 + p
2v2 + · · · . (3.3)

Considering p = 1, the approximate solution of Eq. (3.1) will be obtained as follows

ϑ = lim
p→1

v = v0 + v1 + v2 + v3 + · · · .

Substituting (3.3) into (3.2) and equating the terms with identical powers of p, we can obtain a series of
equations of the following form:

p0 : v0 − f(x) = 0, p1 : v1 −H(v0) = 0, p2 : v2 −H(v0, v1) = 0, p3 : v3 −H(v0, v1, v2) = 0, . . . , (3.4)

where H(v0, v1, v2, . . . , vj) depends upon v0, v1, v2, . . . , vj and are the so-called He’s polynomials, which
can be calculated by using the formula

H(v0, v1, v2, . . . , vj) =
1
j!
∂j

∂pj
N

( j∑
i=0

vip
i

)∣∣∣∣∣
p=0

.

It is obvious that the system of nonlinear equations in (3.4) is easy to solve, and the components vi, i > 0
of the HPM can be completely determined, and the series solutions are thus entirely determined.
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4. VIM with He’s polynomials

We consider the following equation:

Lϑ(x, t) +Nϑ(x, t) = g(x, t).

The VIM allows us to write a correct functional of the following type:

ϑn+1(x, t) = ϑn(x, t) +

t∫
0

λ(s)
[
Lϑn(x, s) +Nϑ̃n(x, s) − g(x, s)

]
ds,

where λ is a general Lagrange’s multiplier. Now, by using the HPM [11, 13], we can construct an equation
as follows:

∞∑
n=0

pnϑn(x, t) = ϑ0(x, t) + p

t∫
0

λ(s)

[
N
( ∞∑
n=0

pnϑn(x, s)
)
− g(x, s)

]
ds. (4.1)

As it is seen, the procedure is constructed by coupling of VIM and HPM methods. A comparison of like
powers of p gives solutions of various orders. By equating the terms of (4.1) with identical powers of p,
and taking the limit as p tends to 1, we obtain

ϑ(x, t) = lim
p→1

∞∑
n=0

pnϑn(x, t),= ϑ0(x, t) + ϑ1(x, t) + ϑ2(x, t) + · · · .

5. Numerical applications

5.1. Example 1
In equation (1.1), if α = 2; β = 3, κ = 1, and γ = 1, the NWSE is written as:

∂ϑ

∂t
=
∂2ϑ

∂x2 + 2ϑ− 3ϑ2 (5.1)

with initial condition

ϑ(x, 0) = 1. (5.2)

The correct functional of Eq. (5.1) is given as

ϑn+1(x, t) = ϑn(x, t) +

t∫
0

λ1(s)

[
∂ϑn

∂s
−
∂2ϑ̃n

∂x2 − 2ϑ̃n + 3ϑ̃2
n

]
. (5.3)

This yields the stationary conditions

1 + λ1(s) = 0, λ ′1(s = t) = 0.

The Lagrange multipliers can be identified as follows:

λ1(s) = −1.

Substituting these values of the Lagrange multipliers into the functionals (5.3), gives the iteration formulas

ϑn+1(x, t) = ϑn(x, t) −

t∫
0

[
∂ϑn

∂s
−
∂2ϑn

∂x2 − 2ϑn + 3ϑ2
n

]
ds. (5.4)
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Applying the HPM on (5.4), we have:

∞∑
n=0

pnϑn(x, t) = ϑ0(x, t) + p

t∫
0

[ ∞∑
n=0

pn
∂2ϑn

∂x2 + 2
∞∑
n=0

pnϑn − 3
∞∑
n=0

pnϑ2
n

]
ds.

We can select ϑ0(x, t) = 1 by using the given initial value (5.2). Accordingly, we obtain the following
successive approximations by comparing the coefficient of like powers of p,

p0 : ϑ0(x, t) = 1,

p1 : ϑ1(x, t) =

t∫
0

[
∂2ϑ0

∂x2 + 2ϑ0 − 3ϑ2
0

]
ds = −t,

p2 : ϑ2(x, t) =

t∫
0

[
∂2ϑ1

∂x2 + 2ϑ1 − 6ϑ0ϑ1

]
ds =

4
2!
t2,

p3 : ϑ3(x, t) =

t∫
0

[
∂2ϑ2

∂x2 + 2ϑ2 − 3ϑ2
1 − 6ϑ0ϑ0

]
ds = −

22
3!
t3,

p4 : ϑ4(x, t) =

t∫
0

[
∂2ϑ3

∂x2 + 2ϑ3 − 6ϑ1ϑ2 − 6ϑ0ϑ3

]
ds =

160
4!
t4,

p5 : ϑ5(x, t) =

t∫
0

[
∂2ϑ4

∂x2 + 2ϑ4 − 3ϑ2
2 − 6ϑ1ϑ3

]
ds = −

496
5!
t5,

...

The series solutions are therefore given by

ϑ(x, t) = ϑ0 + ϑ1 + ϑ2 + ϑ3 + · · · , ϑ(x, t) = 1 − t+
4
2!
t2 −

22
3!
t3 +

160
4!
t4 −

496
5!
t5 + · · · ,

and hence the exact solution becomes

ϑ(x, t) =
−2

3e
2t

1
3 − e

2t
.

5.2. Example 2
In equation (1.1), if α = β = κ = γ = 1, the NWSE is written as:

∂ϑ

∂t
=
∂2ϑ

∂x2 + ϑ− ϑ2 (5.5)

with initial condition

ϑ(x, 0) =
1

(1 + e
x√

6 )2
. (5.6)

The correct functional of Eq. (5.5) is given as

ϑn+1(x, t) = ϑn(x, t) +

t∫
0

λ1(s)

[
∂ϑn

∂s
−
∂2ϑ̃n

∂x2 − ϑ̃n + ϑ̃2
n

]
. (5.7)
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This yields the stationary conditions

1 + λ2(s) = 0, λ ′2(s = t) = 0.

The Lagrange multipliers can be identified as follows:

λ2(s) = −1.

Substituting these values of the Lagrange multipliers into the functionals (5.7), gives the iteration formulas

ϑn+1(x, t) = ϑn(x, t) −

t∫
0

[
∂ϑn

∂s
−
∂2ϑn

∂x2 − ϑn + ϑ2
n

]
ds. (5.8)

Applying the HPM on (5.8), we have:

∞∑
n=0

pnϑn(x, t) = ϑ0(x, t) + p

t∫
0

[ ∞∑
n=0

pn
∂2ϑn

∂x2 +

∞∑
n=0

pnϑn −

∞∑
n=0

pnϑ2
n

]
ds.

We can select ϑ0(x, t) = 1 by using the given initial value (5.6). Accordingly, we obtain the following
successive approximations by comparing the coefficient of like powers of p,

p0 : ϑ0(x, t) =
1(

1 + e
x√

6

)2 ,

p1 : ϑ1(x, t) =

t∫
0

[
∂2ϑ0

∂x2 + ϑ0 − ϑ
2
0

]
ds =

5e
x√

6

3
(

1 + e
x√

6

)3 t,

p2 : ϑ2(x, t) =

t∫
0

[
∂2ϑ1

∂x2 + ϑ1 − 2ϑ0ϑ1

]
ds =

25e
x√

6

(
− 1 + 2e

x√
6

)
36
(

1 + e
x√

6

)4 t2,

p3 : ϑ3(x, t) =

t∫
0

[
∂2ϑ2

∂x2 + ϑ2 − ϑ
2
1 − 2ϑ0ϑ0

]
ds =

125e
x√

6

(
1 + 4(e

x√
6 )2 − 7e

x√
6

)
648
(

1 + e
x√

6

)5 t3,

...

The series solutions are therefore given by

ϑ(x, t) = ϑ0 + ϑ1 + ϑ2 + ϑ3 + · · · ,

ϑ(x, t) =
1(

1 + e
x√

6

)2 +
5e

x√
6

3
(

1 + e
x√

6

)3 t+
25e

x√
6

(
− 1 + 2e

x√
6

)
36
(

1 + e
x√

6

)4 t2 +
125e

x√
6

(
1 + 4(e

x√
6 )2 − 7e

x√
6

)
648
(

1 + e
x√

6

)5 t3 + · · ·

and hence the exact solution becomes

ϑ(x, t) =
1(

1 + e
x√

6
− 5

6t
)2 .
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5.3. Example 3
In equation (1.1), if α = β = κ = 1 and γ = 3, the NWSE is written as:

∂ϑ

∂t
=
∂2ϑ

∂x2 + ϑ− ϑ4 (5.9)

with initial condition

ϑ(x, 0) =
1(

1 + e
3x√

10

) 2
3

. (5.10)

The correct functional for system of Eq. (5.9) is given as

ϑn+1(x, t) = ϑn(x, t) +

t∫
0

λ1(s)

[
∂ϑn

∂s
−
∂2ϑ̃n

∂x2 − ϑ̃n + ϑ̃4
n

]
. (5.11)

This yields the stationary conditions

1 + λ3(s) = 0, λ ′3(s = t) = 0.

The Lagrange multipliers can be identified as follows:

λ3(s) = −1.

Substituting these values of the Lagrange multipliers into the functionals (5.11), gives the iteration formu-
las

ϑn+1(x, t) = ϑn(x, t) −

t∫
0

[
∂ϑn

∂s
−
∂2ϑn

∂x2 − ϑn + ϑ4
n

]
ds. (5.12)

Applying the HPM on (5.12), we have:

∞∑
n=0

pnϑn(x, t) = ϑ0(x, t) + p

t∫
0

[ ∞∑
n=0

pn
∂2ϑn

∂x2 +

∞∑
n=0

pnϑn −

∞∑
n=0

pnϑ4
n

]
ds.

We can select ϑ0(x, t) = 1 by using the given initial value (5.10). Accordingly, we obtain the following
successive approximations by comparing the coefficient of like powers of p,

p0 : ϑ0(x, t) =
1(

1 + e
3x√

10

) 2
3

,

p1 : ϑ1(x, t) =

t∫
0

[
∂2ϑ0

∂x2 + ϑ0 − ϑ
4
0

]
ds =

7e
3x√

10

5
(

1 + e
3x√

10

) 5
3
t,

p2 : ϑ2(x, t) =

t∫
0

[
∂2ϑ1

∂x2 + ϑ1 − 4ϑ3
0ϑ1

]
ds =

49e
3x√

10

(
− 3 + 2e

3x√
10

)
100
(

1 + e
3x√

10

) 8
3

t2,

p3 : ϑ3(x, t) =

t∫
0

[
∂2ϑ2

∂x2 + ϑ2 − 6ϑ2
0ϑ

2
1 − 4ϑ3

0ϑ2

]
ds =

343e
3x√

10

(
9 + 4(e

3x√
10 )2 − 27e

3x√
10

)
3000

(
1 + e

3x√
10

) 11
3

t3,

...



M. Nadeem, S.-W. Yao, S. Parveen, J. Math. Computer Sci., 20 (2020), 21–29 28

The series solutions are therefore given by

ϑ(x, t) = ϑ0 + ϑ1 + ϑ2 + ϑ3 + · · · ,

ϑ(x, t) =
1(

1 + e
3x√

10

) 2
3
+

7e
3x√

10

5
(

1 + e
3x√

10

) 5
3
+

49e
3x√

10

(
− 3 + 2e

3x√
10

)
100
(

1 + e
3x√

10

) 8
3

t2 +
343e

3x√
10

(
9 + 4(e

3x√
10 )2 − 27e

3x√
10

)
3000

(
1 + e

3x√
10

) 11
3

t3 + · · ·

and hence the exact solution becomes

ϑ(x, t) =

[
1
2

tanh
{
−

3
2
√

10

(
x−

7√
10
t
)}

+
1
2

]
.

6. Conclusion

In the current work, it is elucidated that VIM with He’s polynomials was successfully employed
for the approximate solution of NWSE with initial conditions. The values of Lagrange multiplier were
investigated by using the variational theory in correction functional. This strategy is utilized in a straight
way dealing without adomain polynomials, linearization, or constrictive hypotheses and yields an exact
solution after a few iterations. We employed HPM in such a way that a small parameter, (say, p) is
considered to 1 and obtained the series of so called He’s polynomials. It is worth mentioning that VIM
with He’s polynomials is capable of reducing the computational work and such treatment is suitable for
other nonlinear problems, especially the fractal calculus or the fractional calculus. For future work, we
hope that this modification of VIM with He’s polynomials will shed more light on the variation theory.
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