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Abstract
In this article the governing equations of viscous flow over a stretching sheet are reduced to ordinary boundary value

problem by using a similarity transformation. The new analytical approach Multi-step Optimal Homotopy Asymptotic Method
(MOHAM) is formulated and used for the boundary value problem. The numerical comparison of Homotopty Perturbation
Method (HPM), exact solution, DTM, and numerical results (Runge Kutta Method) revealed that the new technique is powerful
method for solving boundary layer equations. Also the solution is plotted for various values of β.
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1. Introduction

Many engineering and industrial problems often arise due to stretching sheets. Such flows engrossed
special attention due to its application is engineering and science [2, 6, 21]. The mechanical properties
due to stretching and cold drawing rates were investigated by Sakiadis [19]. The suction/injection to
the surface which produce evaporation/condensation were considered by Gupta [7]. The axisymetric
surface of three dimensional flow is studied by Wang [26]. The closed form solution for the flow of an
incompressible stretching flow over a plate was found by Crane [5]. The HPM and non iterative solution
is used by Ariel [3] for the solution of the stretching problem. The boundary layer models can be reduced
to system of nonlinear ordinary differential equations (ODEs). For the solution of ODEs numerical and
analytical methods are used. The analytical methods have more advantage over numerical methods
such as such as rapid convergence, no assumption of initial guess, discritization or linearization. The
perturbation Methods (PMs) [4] were also used for the solution of nonlinear ODEs. The PMs involve
a small parameter and it’s in appropriate choice can affect the solution. The analytical methods were
introduced that does not require the assumption of small parameter. The HPM was first introduced by He.
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[9, 10] and Homotopy Analysis Method (HAM) introduced by Laio [12, 13]. Some analytical techniques on
the problem related to stretching sheets have been used by Rashidi et al. and Ellahi [6, 8, 14, 17, 18, 20, 27].
These two methods combined the homotopy and perturbation. These methods also required the initial
guess. We have modified the OHAM [11, 15, 22–25] for large domain.

2. Basic mathematical theory of MOHAM

Consider the following differential equation

L (f (η)) + Γ (η) + N (f (η)) = 0, B
(
f,
df

dη

)
= 0,

where L is the linear operator, Γ is a known function, N is a nonlinear differential operator and B is a
boundary operator and f is unknown function.

According to MOHAM the homotopy τ (η, r) : Θ× [0, 1]→ R satisfies

(1 − r) [L (Θ) + Γ (η)] = U (r) [L (Θ) + Γ (η) + N (Θ)] , B

(
Θ,
∂Θ

∂η

)
= 0, (2.1)

where r ∈ [0, 1] is an embedding parameter, Θ is an unknown function, Ui (r) is the auxiliary function,
when r varies from0 to 1, the solution varies from f0(η) to f (η). r = 0⇒ Θ(0) = f0 (η) and r = 1⇒ Θ(1) =
f (η).

Choose auxiliary function U (r) in the form

U (r) = rD1,j + r
2D2,j + r

3D3,j + · · ·+ rmDm,j,

where D1,j,D2,j,D3,j, . . . ,Dm,j are optimal constants. Expanding Θ (η, r,Di) by Taylor’s series we have

Θ
(
η, r,Di,j

)
= f0 (η) +

∞∑
k=1

fk
(
η,Di,j

)
rk, i, j ∈ N. (2.2)

Using Eq. (2.2) into Eq. (2.1) and equating the same powers of r, we get

L (f0(η)) + Γ(η) = 0, B
(
f0,
df0

dη

)
= 0,

L (f1(µ)) = D1,jN0 (f0(η)) , B
(
f1,
df1

dη

)
= 0 ,

L (fk(η)) − L (fk−1(η)) = Di,j N0 (f0(η)) +

k−1∑
i=1

Di,j [L (fk−i(η)) + Nk−i (f0(η), f1(η), . . . , fk−i(η))] ,

B
(
fk,
dfk
dη

)
= 0,

where Nk−i (f0(t), f1(t), . . . , fk−i(t)) is the coefficient of rk−i in the expansion series (2.2).
The approximated solution is

f̃
(
η,Di,j

)
= f0(η) +

m∑
j=1

fj
(
η,Di,j

)
.

The residual is given by
R
(
η,Di,j

)
= L f̃

(
η,Di,j

)
+ Γ(η) + N f̃

(
η,Di,j

)
.
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If R = 0 then f̃ will be exact solution of the problem and it doesn’t happen, especially in nonlinear
problems.

The method of least square is used for finding

L
(
Di,j

)
=

∫zj+h

zj

R2 (η,Di,j
)
dη,

where h is the length of subinterval and
[
zj, zj+1

]
∂L

∂Di,j
= 0, i, j = 1, 2, . . . ,m.

Therefore, the approximate analytic solution will be

Θ̃ (η) =


f̃1 (η) , z0 6 t 6 z1
f̃2 (η) , z1 6 t 6 z2,

...
...

f̃N (η) , zN−1 6 t 6 T ,

 .

The analytic solution of the problem for large interval will be obtained successfully.

3. The differential transform method

Transformation of the kth derivative of function in one variable, defined as

F(k) =
1
k!

[
dkf(t)

dtk

]
t=t0

,

is the original function and is the transformed function. Differential inverse transform of it is defined as

f(t) = Σ∞
k=0F(k)(t− t0)

k, f(t) ≈ Σ∞
k=0F(k)(t− t0)

k,

we obtain

f(t) ≈
i∑

k=0

[
dkf(t)

dtk

]
t=t0

(
t− t0

k!

)k

. (3.1)

Eq. (3.1) implies that the concept of differential transformation is derived from the Taylor series expansion.
From the definitions, it is easy to obtain the mathematical operations according to Table 1.

Table 1: Various differential transform operators.
If f(x) = g(x)± h(x) then F(k) = G(k) +H(k)
If f(x) = cg(x) then F(k) = cG(k)
If f(x) = dng(x)

dxn then F(k) = (k+n)!
k! G (k+n)

If f(x) = g(x)h(x) then F(k) =
∑k

i=0G(l) +H(K− l)

If f(x) = xn then F(k) = δ (k−n)
If f(x) =

∫
g(t)dt then F(k) = G(k−1)

k , where k>1
If f(x) = g(x)h(x)i(x) then F(k) =

∑k
s=0

∑k−s
m=0G(s)H(m)I(k− s−m)

4. Mathematical formulation of the flow problem

Consider the flow of an incompressible viscous fluid over a stretching sheet at y = 0. The governing
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equations are (
V̄ .∆V̄

)
= µ∆2V̄ , ∆.V̄ = 0,

where V̄ = (u (x, 0) , v (x, 0) , 0) is velocity field and µ is dynamic viscosity. The boundary conditions for
the flow due to stretching sheet are [27]

u (x, 0) = cxn, v (x, 0) = 0, u (x,∞) = 0.

In order to reduce the governing equation into boundary value problem using the following similarity
transformation we have [27].

u (x,y) = uxkf
′
(η) , η = y

√
c (k+ 1)

2υ
x

k−1
2 y, υ (η) = −

√
c (k+ 1)

2
x

k−1
2

[
f (η) +

(k− 1)
(k+ 1)

ηf
′
(η)

]
.

We obtain
d3f

dη3 + f
d2f

dη2 −β

(
df

dη

)2

= 0, f (0) = 0, f ′ (0) = 1, f ′ (∞) = 0, (4.1)

where β = 2n
1+n . Using the formulation mentioned in Section 3, we will obtain the zeroth, first, and second

order problems

f0
′ ′ ′

(η) = 0, f0 (0) = 0, f0
′
(0) = 1, f0

′
(∞) = 0, (4.2)

f1
′ ′ ′

(η) = f0
′ ′ ′

+C11

(
f0
′ ′ ′

−β
(
f ′0
)2

+ f0f0
′ ′
)

, f1 (0) = 0, f1
′
(0) = 0, f1

′
(∞) = 0, (4.3)

f2
′ ′ ′

(η) = (1 +C11) f1
′ ′ ′

+C11

(
f0f1

′ ′
+ f1f0

′ ′
)
− 2βC11f0

′
f1
′
+C12

(
f0f0

′ ′
−β

(
f0
′
)2
)

, (4.4)

f2 (0) = 0, f2
′
(0) = 0, f2

′
(∞) = 0,

respectively. The remaining terms can be calculated in the similar fashion.
The solutions of Eqs. (4.2)-(4.4) are respectively given as

f0 =
1
2
(
2η− η2) , (4.5)

f1 =
1

240
(
10 (1 + 2β)η2 − 20βη3 − 8 (1 − 2β)η4 + (1 − 2β)η5)C11, (4.6)

f2 =
1

40320


(
1520 (1 + 2β)η2 − 4020η3β− 680η4 (1 − 2β) + 136η5 (1 − 2β)

)
C11 (

1550 + 3072β+ 260β2
)
η2 − 4720βη3 −

(
1070 − 2000β− 240β2

)
η4

+
(
152 − 1044β+ 1000β2

)
η5 −

(
160 − 600β− 260β2

)
η6

+
(
48 − 156β+ 100β2

)
η7 −

(
5 − 16β− 10β2

)
η8

C11
2

(
2000 (1 + 2β)η2 − 6000η3β− 1600η4 (1 − 2β) + 236η5 (1 − 2β)

)
C12

 . (4.7)

Adding Eqs. (4.5)-(4.7), and using the optimal constants

C11 = −0.8832102956129863 and C12 = −0.006984790139877385

obtained by method of least square, we obtain

f̃1 = x



(1 + 0.00193467x6(−2.12321 +β)(−0.376788 +β)
−0.000193467x7(−2.82288 +β)(−0.177124 +β)
−0.00309548x5(−3.57518 +β)(−0.1748416 +β) + 0.0853305x2β

+0.0193467x4(−0.853852 +β)(0.360845 +β)
−0.0154774x2(−0.621026 +β)(2.25074 +β)
+0.00580420x(−13.3039 +β)(7.00037 +β)

 ,
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Repeating the same procedure for the next subinterval, we obtain the approximate solution for C21 =
−0.08832102956121245, C22 = −0.006984790131248976,

f̃2 = x2



0.080227xβ+ 0.0011608(−68.5132 +β)(0.263572 +β)
−0.000773869x2(−0.411559 +β)(74.7846 +β)
−0.000154774x3(−0.300028 +β)(84.8932 +β)
+x4(−0.000608 + 0.00139297β− 0.00193467β2)
+x6(−0.00011608 + 0.000386935β− 0.000193467β2)
+x5(0.00154774 − 0.00011608β+ 0.0011608β2)

 .

The resulting solution is obtained as f̃ = f̃1 + f̃2.

f̃ = x


(1 + 0.00309548x6(−1.1 +β)(−0.5 +β) − 0.000386935x7(−1.1 +β)(−0.5 +β)
−0.0108342x5(−0.844949 +β)(−0.355051 +β) + 0.165557x2β

+0.0195015x4(−0.62727 +β)(−0.80955 +β) − 0.0162513x2(−0.5 +β)(5.59368 +β)
+0.00696483x(−20.5508 +β)(5.59368 +β)

 .

Solution obtained by DTM is

(k+ 1)(k+ 2)(k+ 3)F(k+ 3)

=

k∑
r=0

(r+ 1)(k− r+ 1)F(r+ 1)F(k− r+ 1) −
k∑

r=0

(k+ 1)(k+ 2)F(k+ 2)(k− r+ 1)F(r),

F(k+ 3) =

[∑k
r=0(r+ 1)(k− r+ 1)F(r+ 1)F(k− r+ 1) −

∑k
r=0(k+ 1)(k+ 2)F(k+ 2)(k− r+ 1)F(r)

]
(k+ 1)(k+ 2)(k+ 3)

.

The obtained DRM solution is

F = x+
x3

6
−
x4

24
+
x5

80
−
x6

135
+

227x7

161280
−

1769x8

2721600
+

60449321x9

267544166400

−
310522852811x10

533310167232
+

64713747257871x11

26245956357379325952
−

168619655137059160973813155x12

24027914789071146977329512

+
659928931028296169147936080x13

29307445944190854537006142728358437
−

44325134056062133336580268651688998659814x14

56040536223027859925533945644951821302298414580

+
3154506303579566805926783475854711033875738893056x15

13874964722701777049376656644911237454241885592878106
+ · · ·.

Table 2: Comparison of OHAM, MOHAM, DTM, and absolute errors of f (η) for β = 1.
X OHAM MOHAM DTM E* E**
0 0 0 0 0.000000000 0.000000000

0.1 0.0975488 0.0978159 0.0978159 1.09282× 10−19 1.87548× 10−3

0.2 0.1924588 0.191786 0.191786 2.12458× 10−19 1.02135× 10−3

0.3 0.2845879 0.282691 0.282691 3.012548× 10−19 2.15487× 10−3

0.4 0.3721445 0.37131 0.37131 1.87548× 10−19 1.54877× 10−3

0.5 0.4545789 0.458421 0.458421 1.21458× 10−19 2.8457× 10−3

0.6 0.5445785 0.544797 0.544797 1025489× 10−19 1.45879× 10−3

0.7 0.6384785 0.631213 0.631213 1.87548× 10−20 2.1548× 10−3

0.8 0.7187954 0.718437 0.718437 1.125487× 10−20 1.24587× 10−3

0.9 0.8087958 0.807238 0.807238 1.45876× 10−20 2.15482× 10−4

1.0 0.8987962 0.898382 0.898382 2.12458× 10−21 2.15487× 10−4
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Figure 1: Comparison of solutions f (η) for β = 1. Figure 2: Variation of f (η) for different values of β.

Figure 3: Variation of f ′ (η) for different values of β. Figure 4: Plot of f (η) with respect to η for β = 0.

In case of β = 0 in Eq. (4.1), we obtain the well known Blasius equation.

Figure 5: Plot of order of approximation f (η) with respect to η for β = 1.

5. Results discussions and conclusion

Fig. 1 and Table 1 show the comparison of results of MOHAM with exact, numerical results obtained
by Runge Kutta-4 Method, OHAM, and DTM. It is found that the method presented works very well and
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provides the same values to exact solution. MOHAM provides better results than OHAM. The Fig. 2
shows the variation of the function f (η) against η for different values of β with MOHAM. It is concluded
from Figs. 2 and 3 that the boundary layer flow increases by increasing β. The Fig. 4 shows the variation
of f (η) with respect to η for the Blasius equation which is identical to results in literature [27]. The
convergence of the proposed method is given in Fig. 5. It is concluded that the accuracy of the method
increased by increasing the order of approximations. The accuracy of MOHAM is proved by comparing
with other results. We conclude that MOHAM is a powerful, simple, involves less computational work,
and fast convergent for the ODEs problems with large domain.
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