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Abstract
Based on the research of supply chain management, a complementary model of supply chain with immediate marketing

order single commodity is established. In order to give the optimal decision of the problem, a new-type algorithm is presented in
this paper to obtain the solution of the model. The rationality of the model and the effectiveness of the algorithm are illustrated
by an example.
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1. Introduction

Due to the rapid development of the economy and the improvement of people’s living standards,
the research on supply chain management has attracted extensive research from scholars at home and
abroad. Supply chain is a coordinated system composed of manufacturers, retailers, and consumer mar-
kets. In this system, under the guarantee of the interests of all aspects, they cooperate with each other and
influence each other. It’s goal is to maximize the overall interests. Therefore, the supply chain manage-
ment plays an important role in logistics and transportation. It adjusts the members of the supply chain
to maintain the stable development of the chain. In recent years, both in the application and academic
research, supply chain management has been becoming a hot topic of modern logistics research, and
so provoked strong research interest of many scholars. The research area involves the model, analysis
and computation for supply chain management, related to manufacturing, transportation, logistics, retail,
and sales [5–7]. Zhang and Dong [11] presented a new framework for supply chain, using graph theory,
optimization theory, and variational inequality theory. It develops a general network model of a supply
chain economy to study supply chain versus supply chain competition. Zhan [10] reformulates the supply

∗Corresponding authors
Email addresses: panguirong@lyu.edu.cn (Guirong Pan), 2101058556@qq.com (Haodong Chen), sunhongchun@sina.com
(Hongchun Sun)

doi: 10.22436/jmcs.020.01.06

Received: 2019-07-02 Revised: 2019-07-28 Accepted: 2019-08-01

http://dx.doi.org/10.22436/jmcs.020.01.06
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.020.01.06&domain=pdf


G. Pan, H. Chen, H. Sun, J. Math. Computer Sci., 20 (2020), 50–57 51

chain problem as a nonlinear complementarity model, give weaker conditions to guarantee the existence
and uniqueness of an equilibrium pattern. Nagurney et al. [4] developed a supply chain model in which
both physical and electronic transactions are allowed and in which supply side risk as well as demand
side risk are included in the formulation. Malitsky [3] is concerned with some new projection methods
for solving variational inequality problems with monotone and Lipschitz-continuous mapping in Hilbert
space. Zhang and Sun [12] studied a closed-loop supply chain problem in multiperiod planning horizons
with consideration of product lifetime and carbon emission constraints. Fu and Chen [1] studied multiob-
jective decision-making optimization, which focuses on equilibrium and compensation of multiobjective
problems. In this paper, according to the current problems of supply chain management, we set up an
immediate marketing single commodity supply chain model, and through a new-type algorithm, obtain
the solution of the supply chain model. The article finally uses numerical examples to demonstrate the
validity of the model through experiment and the feasibility of the algorithm.

2. The complementarity model for the supply chain

The supply chain is mainly composed of three parts: product manufacturer, retailer, and consumer
market. This paper describes the decision-making of the members of the three-tier competitive market of
the supply chain, and is shown in Figure 1 below. The complementary model of the supply chain with
immediate marketing orders single commodity is established.

Because of the research needs, let’s say m manufacturers produce homogeneous products, and these
products are supplied to n retailers. Accordingly, retailers provide products for o desired markets. Here,
“i” for the i-th manufacturer, “j” for the j-th retailer, and “k” for the k-th demand market.

Figure 1: Structure of the supply chain with immediate marketing orders single commodity.

2.1. Competition model of manufacturer

Let qij represents the volume of goods transported by manufacturer i to retailer j, and Q11 represents
mn dimension column vectors composed of all qij, namely,

Q11 = (q11, . . . ,q1n, . . . ,qm1, . . . ,qmn)T .

Let qik represents the traffic volume of manufacturer i selling products directly to the consumer
market k, and Q12 represents mo dimension vector composed of all qik, namely,

Q12 = (q11, . . . ,q1o, . . . ,qm1, . . . ,qmo)T .

For the convenience of the following expression, the manufacturer’s traffic volume is expressed as Q1 =
(Q11,Q12).
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Assuming that each manufacturer i corresponds to a production cost function fi, the entire vector of
production output can be expressed as

fi = fi(Q
1).

Let cij represents the transaction cost (including transportation cost) of a product traded between
manufacturer i and retailer j, taking into account the transaction cost between manufacturer and all
retailers and recording it as

cij = cij(qij), ∀i, j.

Let cik represents the transaction cost (including transportation cost) of a product traded between
manufacturer i and consumer market k, taking into account the transaction cost between manufacturer
and all consumer markets and recording it as

cik = cik(qik), ∀i,k.

For the convenience of the following description, all transaction costs of the manufacturer are expressed
as ci = (cij, cik). Let ρ1ij denote the price of manufacturer i sell to the vendor j, ρ1ik denote the price of
manufacturer i sell to the consumer marker k.

For manufacturers, the purpose of production is to maximize their profits in competition. Manufac-
turers usually need to make decisions on the production quantity and supply plan of products. Therefore,
the market behavior of any manufacturer i can be described by the following optimization model:

maxΣnj=1ρ1ijqij + Σ
o
k=1ρ1ikqik − fi(Q

11,Q12) − Σnj=1cij(qij) − Σ
o
k=1cik(qik),

s.t. qij > 0,qik > 0, i = 1, 2, . . . ,m; j = 1, 2, . . . ,n; k = 1, 2, . . . ,o.
(2.1)

Suppose that the competitions of manufacturers are non-cooperative, the production cost functions fi
and the transaction cost functions are ci continuously differentiable convex functions then, the optimiza-
tion problem (2.1) is a convex programming. Assume that Q1 = (Q11,Q12) is the optimal solution of (2.1),
then, Q1 is a “equilibrium solution” of manufacturer, and satisfies the following KKT condition:

∇fi(Q11,Q12) + Σnj=1∇cij(qij) + Σok=1∇cik(qik) − Σnj=1ρ1ijej − Σ
o
k=1ρ1ikek

= (λi1, . . . , λin, λi(n+1), . . . , λi(n+o))T > 0,
qij > 0,qik > 0, λijqij = 0, λikqik = 0, j = 1, 2, . . . ,n,k = 1, 2, . . . ,o,

(2.2)

where λi = (λij, λik) is Lagrange multiplier, e = (ei, ej) is unit vector, its i-th and j-th component is 1,
and the other components are 0. Formula (2.2) is equivalent to

(
∂fi(Q

11,Q12)
∂qij

+
∂cij
∂qij

− ρ1ij

)
> 0,

(
∂fi(Q

11,Q12)
∂qik

+
∂cij
∂qik

− ρ1ik

)
> 0, qij > 0,qik > 0,(

∂fi(Q
11,Q12)

∂qij
+
∂cij
∂qij

− ρ1ij

)
qij +

(
∂fi(Q

11,Q12)
∂qik

+
∂cij
∂qik

− ρ1ik

)
qik = 0,

j = 1, 2, . . . ,n,k = 1, 2, . . . ,o.

(2.3)

For the convenience of the following description, the (2.3) is abbreviated as

f(w1) > 0, w1 > 0, wT1 f(w1) = 0, (2.4)

where

f(w1) =



∂fi(Q
11,Q12)

∂qij
+
∂cij
∂qij

− ρ1ij
∂fi(Q

11,Q12)
∂qik

+
∂cij
∂qik

− ρ1ik

i = 1, 2, . . . ,m
j = 1, 2, . . . ,n
k = 1, 2, . . . ,o

 , w1 =


qij
qik

i = 1, 2, . . . ,m
j = 1, 2, . . . ,n
k = 1, 2, . . . ,o

 .
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2.2. Competition model of retailers
Retailers trade with manufacturers because they want to get their products from them to meet inven-

tory needs. At the same time, they have to trade with the customers who want the market, because their
final products have to be sold to the consumers. The network structure diagram of its j retailer trading
products with manufacturers and demand markets is shown in Figure 2.

Figure 2: The trade network structure of the J retailer.

Retailer j has to face the management cost in the network, for example, it may include the cost of
product exhibition and storage, etc., cj is the management cost of the j tradesman, and the simplest form
is to think of cj as a function of

∑m
i=1 qij. However, in order to improve the competitiveness of the model,

the management cost of retailer j also depends on the purchase quantity of other retailers in general.
Therefore, cj can be expressed as

cj = cj(Q
11), ∀j,

ρjk represents the price that retailer j sells to demand market k. Then the optimization problem of retailer
j can be described as follows:

maxΣok=1ρjkqij − cj(Q
11) − Σmi=1ρ1ijqij, s.t. qij > 0, i = 1, 2, . . . ,m. (2.5)

The optimization problem (2.5) is a convex programming, according to optimization theory, and (2.5)
satisfies the following KKT condition:{

∇cj(Q11) + Σmi=1∇ρ1ij(qij) − Σ
o
k=1ρjkek = (λi1, . . . , λio)T > 0,

qij > 0, λikqij = 0, k = 1, 2, . . . ,o,
(2.6)

where λik is Lagrange multiplier, ek is unit vector, its k-th component is 1, and the other components are
0. Formula (2.6) is equivalent to

∂cj(Q
11)

∂qj
+
∂ρ1ij(qij)
∂qij

− ρjk > 0, qij > 0, j = 1, 2, . . . ,n,(
∂cj(Q

11)
∂qj

+
∂ρ1ij(qij)
∂qij

− ρjk

)
qij = 0, j = 1, 2, . . . ,n.

(2.7)

For the convenience of the following description, the (2.7) is abbreviated as

g(w2) > 0, w2 > 0, wT2 g(w2) = 0, (2.8)

where

g(w2) =
∂cj(Q

11)

∂qj
+
∂ρ1ij(qij)

∂qij
− ρjk, w2 = qij.

Based on the above (2.4) and (2.8), it can be concluded that the network equilibrium model with
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immediate marketing single commodity is:

x > 0, F(x) > 0, xTF(x) = 0, (2.9)

where x =

(
w1
w2

)
, F(x) =

(
f(w1)
g(w2)

)
. We use X∗ to denote the solution set of (2.9), and assume that X∗

is not empty.

3. Algorithm

In this section, we would give a new-type method solving (2.9), we first need some relate properties.

Definition 3.1 ([2]). A mapping F : Rn → Rn is called monotone on the set C if for any x,y ∈ C, one has
〈F(x) − F(y), x− y〉 > 0 holds.

We also give the definition of projection operator and some related properties ([2, 8, 9]).

Definition 3.2. For a nonempty closed convex set Ω ∈ Rn and vector x ∈ Rn, the orthogonal projection
of x onto Ω, i.e., argmin{‖y− x‖|y ∈ Ω}, is denoted by PΩ(x).

Lemma 3.3. Suppose that Ω be a closed convex subset of Rn. Then we have the following statements hold

(i) z = PΩ(x)⇔ z ∈ Ω and 〈z− x,y− z〉 > 0, ∀y ∈ Ω;
(ii) ‖PΩ(x) − PΩ(y)‖ 6 ‖x− y‖, ∀x,y ∈ Rn;

(iii) ‖PΩ(x) − x‖2 6 ‖x− y‖2 − ‖PΩ(x) − y‖2, ∀x ∈ Rn, ∀y ∈ Ω.

For (2.9), we define the projection residue e(x, λ) := min{x, λF(x)} and r(x, λ) := ‖e(x, λ)‖, where λ > 0.

Lemma 3.4 ([8]). x is a solution of (2.9) if and only if r(x, λ) = 0, λ > 0.

Algorithm 3.5.

Step 1: Select the initial point x0 ∈ Rn, and λ > 0. Let k = 0.

Step 2: Compute
yk = max{0, xk − λF(xk)}.

If r(xk, λ) = 0, stop; otherwise, go to Step 3.

Step 3: Compute
xk+1 = PTk(x

k − λd(xk, λ)),

where Tk :=
{
w ∈ Rn|〈xk − λF(xk) − yk, w− yk〉 6 0

}
, d(xk, λ) := 1

λ(x
k − yk) − (F(xk) − F(yk)) is a new

direction.

Step 4: Let k := k+ 1, go to step 2.

Remark 3.6. We can obtain that Rn+ ⊆ Tk. In fact, for any ξ ∈ Rn+\Tk, using Lemma 3.3 (i) with x :=
xk − λF(xk), yk = PRn+(x

k − λF(xk)), one has

〈xk − λF(xk) − yk, ξ− yk〉 6 0.

Thus, we obtain ξ ∈ Tk. In addition X∗ ⊆ Rn+ ⊆ Tk.

In the following, we discuss the convergence of Algorithm 3.5. To this end, we present the following
assumption, which will be needed in the sequel.

Assumption 3.7.

(1) F is Lipschitz continuous with constant L > 0;
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(2) F is monotone on the set Rn+.

Lemma 3.8. Suppose that Assumption 3.7 hold, and Algorithm 3.5 generates an infinite sequence {xk}. Then, one
has

r(xk, λ)2 6 (1 − λ2L2)−1 {‖xk − x∗‖2 − ‖xk+1 − x∗‖2} , ∀x∗ ∈ X∗.

Proof. Applying Assumption 3.7 (2) and (2.9), one has

〈F(z), z− x∗〉T > 0, ∀z > 0, ∀x∗ ∈ X∗. (3.1)

Assume y = PRn+(x− λF(x)), by Lemma 3.3 (i), we obtain

〈x− λF(x) − y,y− x∗〉 > 0, ∀x∗ > 0, ∀x ∈ Rn. (3.2)

Since y > 0 and X∗ ⊂ Tk. Substituting z in (3.1) with y, combining this with (3.2), we get

〈1
λ
(x− y) − (F(x) − F(y)),y− x∗〉 > 0, ∀λ > 0, ∀x∗ > 0. (3.3)

Since X∗ ⊆ Rn+ ⊆ Tk, we obtain

‖xk+1 − x∗‖ = ‖PTk(x
k − λd(xk, λ)) − x∗‖2

6 ‖xk − λd(xk, λ) − x∗‖2 − ‖xk+1 − (xk − λd(xk, λ))‖2

= ‖xk − x∗‖2 − 2λ〈xk − x∗,d(xk, λ)〉+ λ2‖d(xk, λ)‖2

−
(
‖xk − xk+1‖2 − 2λ〈xk − xk+1,d(xk, λ)〉+ λ2‖d(xk, λ)‖2)

= ‖xk − x∗‖2 − 2λ〈xk+1 − x∗,d(xk, λ)〉− ‖xk − xk+1‖2

= ‖xk − x∗‖2 − 2λ〈xk+1 − yk,d(xk, λ)〉− 2λ〈yk − x∗,d(xk, λ)〉− ‖xk − xk+1‖2

= ‖xk − x∗‖2 − 2λ〈xk+1 − yk,d(xk, λ)〉− 2λ〈yk − x∗, 1
λ
(xk − yk) − (F(xk) − F(yk))〉

− ‖xk − xk+1‖2

6 ‖xk − x∗‖2 − 2λ〈xk+1 − yk,d(xk, λ)〉− ‖xk − xk+1‖2

= ‖xk − x∗‖2 − ‖xk − yk + yk − xk+1‖2 − 2λ〈xk+1 − yk,
1
λ
(xk − yk) − (F(xk) − F(yk))〉

= ‖xk − x∗‖2 − ‖xk − yk‖2 − ‖yk − xk+1‖2 − 2〈xk − yk,yk − xk+1〉
− 2〈xk+1 − yk, xk − yk〉+ 2λ〈xk+1 − yk, (F(xk) − F(yk))〉

= ‖xk − x∗‖2 − ‖xk − yk‖2 + ‖λ(F(xk) − F(yk))‖2

− ‖yk − xk+1‖2 + 2〈xk+1 − yk, λ(F(xk) − F(yk))〉− ‖λ(F(xk) − F(yk))‖2

= ‖xk − x∗‖2 − ‖xk − yk‖2 + λ2‖(F(xk) − F(yk))‖2 − ‖yk − xk+1 + λ(F(xk) − F(yk))‖2

6 ‖xk − x∗‖2 − ‖xk − yk‖2 + λ2‖(F(xk) − F(yk))‖2

6 ‖xk − x∗‖2 − (1 − λ2L)‖xk − yk‖2,

where the first equality is by the definition of xk+1, the first inequality follows from Lemma 3.3 (iii), the
fifth equality is by (3.3), and the last inequality follows from Assumption 3.7 (2), then the desired result
follows.

Theorem 3.9. Suppose that Assumption 3.7 holds, and 0 < λ < 1
L , {xk} be an infinite sequence generated by

Algorithm 3.5. Then, the sequence {xk} converges to a solution of (2.9).

Proof. Let x∗ ∈ X∗. From Lemma 3.8, one has ‖xk+1 − x∗‖ 6 ‖xk − x∗‖, i.e., the sequence {‖xk − x∗‖} is
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non-increasing and bounded. Thus, it converges, and one has

(1 − λ2L2)Σ∞k=0r(x
k, λ)2 6 ‖x0 − x∗‖2.

Thus, we obtain
lim
k→∞ r(xk, λ) = 0.

Simultaneously, we also obtain that the sequence {xk} is bounded. Therefore, there exists a convergent
subsequence {xki} of {xk}, denote its limit by x̄, and x̄ > 0, by Step 2 of Algorithm 3.5, one has

lim
i→∞yki = x̄.

Since F(·) and max(·) are continuous, we have

x̄ = lim
i→∞yki = lim

i→∞max{0, xki − λF(xki)} = max{0, x̄− λF(x̄)}.

Applying Lemma 3.4, one has x̄ ∈ X∗. We can take x∗ = x̄ in the preceding arguments of Lemma 3.8.
Thus the sequence {‖xk − x̄‖} converges. Since x̄ is limit point of the subsequence {xki}, it easily follows
that {‖xki − x̄‖} converges to zero, we have {‖xk − x̄‖} converges to zero, i.e., xk converges to x̄. Thus, the
global convergence can be obtained.

4. Numerical example

In order to obtain the network equilibrium conditions of direct selling single commodity flow supply
chain, we verify the effectiveness of the algorithm and the reliability of the model, this section gives an
example and analyzes the example in detail.

Example 4.1. Currently, there are 2 manufacturers, 1 retailer and 1 demand market direct selling single
commodity flow supply chain network, and the production cost function of the manufacturer is:

f1(q) = 2q2
1 + q1q2 + 2q1, f2(q) = 2q2

2 + q1q2 + 2q2.

The transaction cost function of manufacturer and corresponding retailer is:

c11(q11) = q
2
11 + 3q11, c21(q21) = q

2
21 + 3q21.

The transaction cost function between the manufacturer and the demand market is:

c11(q̂11) = q̂
2
11 + 2q̂11, c21(q̂21) = q̂

2
21 + 3q̂21.

The retailer’s management cost is:
c(Q) = 0.5(q11 + q21)

2.

Let’s start at X0 = (X0
1, . . . ,X0

7). The results obtained by solving the equation with gradient projection
algorithm are shown in the following Table 1.

Table 1: Model solution results.
The output

of
manufacturer

1

The output
of

manufacturer
2

Product
traffic from

manufacturer
1 to retailer

Product
traffic from

manufacturer
2 to retailer

Volume
flow from

manufacturer
1 to demand

market

Volume
flow from

manufacturer
2 to demand

market

Volume
flow from
retailers

to demand
markets

61.3311 62.8166 17.2626 15.7771 9.7948 9.6091 9.7787
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