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Abstract

In this paper, we revisit the stability property of the boundary equilibrium of a May cooperative system with strong and
weak cooperative partners. Our result essentially improves the corresponding result of Zhao et al. [L. Zhao, B. Qin, F. D. Chen,
Adv. Difference Equ., 2018 (2018), 13 pages].
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1. Introduction

During the last decade, many scholars ([2–14, 16–25]) investigated the dynamic behaviors of the mutu-
alism and commensalism model. Some substantial progress has been made on the stability, permanence
and extinction of the mutualism model. For example, under some very simple assumptions, Xie et al.
[16] showed that unique positive equilibrium of a cooperative system incorporating harvesting is globally
attractive; Xie et al. [17] showed that the unique positive equilibrium of an integrodifferential model of
mutualism is globally attractive. Recently, stimulated by the idea of Mohammadi and Mahzoon [15], Zhao
et al. [25] proposed the following May cooperative system with strong and weak cooperative partners
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where ri,ai,bi, ci,d, i = 1, 2 are positive constants. We will consider system (1.1) together with the initial
condition Hi(0) > 0, i = 1, 2,P(0) > 0 in system (1.1). Obviously, any solution of system (1.1) remains
positive for all t > 0. One could refer to [25] for more detail about the construction of the model.

The system (1.1) always admits a boundary equilibrium E2(0,H2∗,P∗) (see Theorem 3.2 in [25]), indeed,

by simple computation, one could see that H2∗ =
d

e
,P∗ =

a2

1 + a2c2
. Concerned with the stability property

of this equilibrium, by constructing some suitable Lyapunv function, the authors obtained the following
results (see Theorem 4.2 in [25] for more details).

Theorem 1.1. If the assumption (B3) and (B5) hold, where

(B3) M = 1 −
αd

r1e
< 0;

(B5) α
2 < r1c1e,

then the equilibrium point E2(0,H2∗,P∗) system is globally asymptotically stable.

Now let’s consider the following example.

Example 1.2.
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(1.2)

Here, corresponding to system (1.1), we take r1 = 3,a1 = 2,b1 = 2, c1 = 1,α = 3.5, r1 = 3, d = 2, e =
2, r2 = 2,a2 = 2,b2 = 0.8, c2 = 1.5. By simple computation, one could easily see that

M = 1 −
αd

r1e
= −

0.5
3

= −
1
6
< 0 and α2 = 12.25 > 6 = r1c1e.

That is, the coefficients of the system (1.2) satisfy the condition (B3), however, they do not satisfy the
condition (B5), however, numeric simulations (Figs 1–3) show that in this case, the boundary equilibrium
(0, 1, 2

3) is globally attractive.

Figure 1: Numeric simulations of the first compo-
nent system (1.2), the initial conditions (x(0),y(0)) =
(1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1) and (0.1, 0.1, 2), respec-
tively.

Figure 2: Numeric simulations of the second compo-
nent system (1.2), the initial conditions (x(0),y(0)) =
(1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1) and (0.1, 0.1, 2), respec-
tively.
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Figure 3: Numeric simulations of the third component system (1.2), the initial conditions
(x(0),y(0)) = (1, 2, 0.7), (1.5, 1, 0.3), (0.5, 0.2, 0.1) and (0.1, 0.1, 2), respectively.

Above numeric simulations show that there still have room to improve the main result ([25, Theo-
rem 4.2]). The aim of this paper is try to obtain a new set of sufficient conditions to ensure the global
attractivity of the positive equilibrium, more precisely, we will obtain the following result.

Theorem 1.3. If the assumption (B3) holds, where

(B3) M = 1 −
αd

r1e
< 0,

then the equilibrium point E2(0,H2∗,P∗) system is globally attractive.

Remark 1.4. Compared with Theorem 1.1 and Theorem 1.3, One could easily see that condition (B5) is
redundantly and unnecessary.

We will prove Theorem 1.3 in the next section and end this paper by a briefly discussion.

2. Proof of the main result

We need the following lemma to prove the main result.

Lemma 2.1 ([1]). Let a > 0,b > 0.

(I) If dxdt > x(b− ax), then lim inf
t→+∞ x(t) > b

a for t > 0 and x(0) > 0;

(II) If dxdt 6 x(b− ax), then lim sup
t→+∞ x(t) 6 b

a for t > 0 and x(0) > 0.

Now we are in the position of proving the Theorem 1.3, we mention here that Zhao et al. [25] had
already proved part of the results of Theorem 1.3, however, for the sake of completeness, here we give the
detail proof of the Theorem 1.3.

Proof of Theorem 1.3. From the second equation of system (1.1), one has

dH2

dt
> H2

(
d− eH2

)
, (2.1)

applying Lemma 2.1 to (2.1) leads to

lim inf
t→+∞ H2(t) >

d

e
. (2.2)
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Condition (B3) implies that there exists a enough small ε > 0 such that

1 −
α

r1

(d
e
− ε

)
< 0. (2.3)

Indeed, for all ε which satisfies 0 < ε <
αd
r1e

− 1
α
r1

, inequality (2.3) holds. For this ε, from (2.2) there exists

an enough large T1 such that

H2(t) >
d

e
− ε for all t > T1. (2.4)

From (2.4) and the first equation of system (1.1), for t > T1, one has

dH1

dt
< r1H1

(
1 −

H1

a1 + b1P
− c1H1 −

α

r1

(d
e
− ε

))
< r1H1

(
1 −

α

r1

(d
e
− ε

))
.

Thus
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.

It then follows from (2.3) that

lim
t→+∞H1(t) = 0. (2.5)

For any ε1 > 0 enough small, from (2.5), there exists an enough large T2 > T1 such that

H1(t) < ε1 for all t > T2. (2.6)

For t > T2, from the second equation of system (1.1) and (2.6), it follows that

dH2

dt
< H2

(
αε1 + d− eH2

)
. (2.7)

By applying Lemma 2.1 to (2.7), it immediately follows that

lim sup
t→+∞ H2(t) <

αε1 + d

e
. (2.8)

Since ε1 is any enough small positive constant, setting ε1 → 0 in (2.8) leads to

lim sup
t→+∞ H2(t) 6

d

e
. (2.9)

(2.2) together with (2.9) shows that

d

e
6 lim inf
t→+∞ H2(t) 6 lim sup

t→+∞ H2(t) 6
d

e
.

Hence

lim
t→+∞H2(t) =

d

e
. (2.10)
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For t > T2, from the third equation of system (1.1) and (2.6), it follows that

dP

dt
< r2P

(
1 −

P

a2 + b2ε1
− c2P

)
. (2.11)

By applying Lemma 2.1 to (2.11), it immediately follows that

lim sup
t→+∞ P(t) <

1
1

a2 + b2ε1
+ c2

.
(2.12)

Since ε1 is any enough small positive constant, setting ε1 → 0 in (2.12) leads to

lim sup
t→+∞ P(t) 6

1
1
a2

+ c2

=
a2

1 + a2c2
.

(2.13)

On the other hand, from the third equation of system (1.1), we also have

dP

dt
> r2P

(
1 −

P

a2
− c2P

)
. (2.14)

By applying Lemma 2.1 to (2.14), it immediately follows that

lim inf
t→+∞ P(t) > 1

1
a2

+ c2

=
a2

1 + a2c2
.

(2.15)

(2.13) together with (2.15) shows that

a2

1 + a2c2
6 lim inf
t→+∞ P(t) 6 lim sup

t→+∞ P(t) 6
a2

1 + a2c2
.

Hence

lim
t→+∞P(t) = a2

1 + a2c2
. (2.16)

(2.5), (2.10), and (2.16) show that the equilibrium point E2(0,H2∗,P∗) is globally attractive. This ends the
proof of Theorem 1.3.

3. Discussion

In [25], Zhao et al. proposed the system (1.1), by constructing some suitable Lyapunov function, they
obtained a set of sufficient conditions which ensure the global asymptotically stable of the boundary
equilibrium E2(0,H2∗,P∗), by carefully checking the conditions, we found that (B3) requires α enough
large, that is, the translate rate of strong partners to weak partners is enough large, however, condition
(B5) requires α enough small, that is, conditions (B3) and (B5) seem to contradict to each other, this
motivated us to revisit the globally attractivity of the boundary equilibrium E2, with the aim of finding
some set of conditions which may seems no contract. By applying the theory of differential inequality, we
finally show that condition (B5) is not needed and could be dropped. Our result (Theorem 1.3) essentially
improve one of the main results of [25] (Theorem 4.2).
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