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Abstract
Another form of an explicit formula for translated r-Dowling numbers is derived using Faa di Bruno’s formula and certain

identity of Bell polynomials of the second kind. This formula is expressed in terms of the translated r-Whitney numbers of the
second kind and the ordinary Lah numbers, which is analogous to Qi formula. As a consequence, a relation between translated
r-Dowling numbers and the sums of row entries of the product of two matrices containing the translated r-Whitney numbers of
the second kind and the ordinary Lah numbers is established.

Keywords: Qi formula, Translated r-Dowling numbers, Bell polynomials, Lah numbers, translated r-Whitney numbers, Faa di
Bruno’s formula, r-Whitney-Lah numbers.

2010 MSC: 05A15, 11B65, 11B73.

c©2020 All rights reserved.

1. Introduction

The Bell numbers, denoted by Bn, were defined in [8] as the sum of Stirling numbers of the second
kind

Bn :=

n∑
k=0

S(n,k).

Several properties and application were obtained for these numbers including generating functions, re-
cursive formulas, explicit formula, and expression in terms of a moment of the Poisson random variable.
Recently, Feng Qi [22] established a different form of explicit formula for the ordinary Bell numbers,
which is expressed in terms of the classical Stirling numbers of the second kind and ordinary Lah num-
bers. This formula was known as Qi formula, and was derived in two ways: one by using the inverse
relation for the classical Stirling numbers and the other one by using Faa di Bruno’s formula and certain
identity for Bell polynomials of the second kind. This formula would possibly help the researchers in
giving another way to describe the structure of Bell numbers. This attracted the attention of the present
authors to investigate the explicit formula for some generalizations of Bell numbers.
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Motivated by the work of Broder [5], Belbachir and Bousbaa [2] defined combinatorially certain gener-
alization of Stirling and Whitney numbers by introducing new parameter α. These numbers were called

the translated r-Whitney numbers of the first and second kind and were denoted by
[
n

k

](α)
r

and
{
n

k

}(α)

r

,

respectively. More precisely, these numbers were defined by[
n

k

](α)
r

:= number of permutations of n elements with k cycles such that the first r elements are n

distinct cycles and the elements of each cycle can mutate in α ways, except the dominant one;{
n

k

}(α)

r

:= number of partitions of n elements with k parts such that the first r elements are in

distinct parts and the elements of each part can mutate in α ways, except the dominant one.

In the same paper, the translated r-Whitney-Lah numbers were defined by⌊
n

k

⌋(α)
r

:= number of ways to distribute the set {1, 2, . . . ,n} into k ordered lists such that the first r

elements are in distinct lists and the elements of each list can mutate in α ways, except the dominant
one.

These numbers are certain variation of r-Whitney numbers and r-Whitney-Lah numbers in [7, 13, 20].
Belbachir and Bousbaa [2] obtained some properties of these numbers using combinatorial argument.
These include:

1. triangular recurrence relation[
n

k

](α)
r

=

[
n− 1
k− 1

](α)
r

+α(n− 1)
[
n− 1
k

](α)
r

,{
n

k

}(α)

r

=

{
n− 1
k− 1

}(α)

r

+αk

{
n− 1
k

}(α)

r

, (1.1)⌊
n

k

⌋(α)
r

=

⌊
n− 1
k− 1

⌋(α)
r

+α(n− 1 + k)

⌊
n− 1
k

⌋(α)
r

;

2. expression of translated r-Whitney-Lah numbers in terms of translated r-Whitney numbers of the first and
second kind ⌊

n

k

⌋(α)
r

=

n∑
j=k

[
n

j

](α)
r

{
j

k

}(α)

r

; (1.2)

3. horizontal generating function

(x+ r|α)n =

n∑
k=0

[
n

k

](α)
r

(x+ r)k, (1.3)

(x+ r)n =

n∑
k=0

{
n

k

}(α)

r

(x− r|−α)k, (1.4)

(x+ r|α)n =

n∑
k=0

⌊
n

k

⌋(α)
r

(x− r|−α)k, (1.5)

where (x|α)n = x(x+α)(x+ 2α) . . . (x+(n− 1)α), the rising factorial of x of degree nwith increment
α.
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However, among the properties established by Belbachir and Bousbaa, there was no mention about
the numbers parallel to Bell numbers, particularly, a formula analogous to Qi formula. Now, if we define
the translated r-Dowling numbers, denoted by Dn(r,α), to be the sum of translated r-Whitney numbers
of the second kind

Dn(r,α) =
n∑
k=0

{
n

k

}(α)

r

,

then Dn(r,α) may be interpreted as the total number of ways to partition n elements such that the first
r elements are in distinct partitions and the elements of each partition can mutate in α ways, except the
dominant one. These numbers can be considered as a generalization and variation of Bell numbers and
other Bell-type numbers [7, 12, 21]. It would then be interesting to derive another form of explicit formula
for Dn(r,α) so one can provide another way to describe the structure of these numbers.

This study aimed to establish an explicit formula analogous to Qi formula, for the translated r-Dowling
numbers using the methods of Qi [22]. This formula was derived by obtaining first the orthogonality and
inverse relations of the translated r-Whitney numbers of the first and second kind and the exponential
generating functions of the translated r-Whitney numbers of the second kind.

2. Orthogonality and inverse relations

In this section, some properties of translated r-Whitney and translated r-Whitney-Lah numbers, which
are necessary for the derivation of Qi formula, will be established. Throughout this paper, the notation
〈x|α〉n will be used to represent the falling factorial of x of degree n with increment α defined by

〈x|α〉n = x(x−α)(x− 2α) · · · (x− (n− 1)α).

Belbachir and Bousbaa [2] did not mention the proof of the horizontal generating functions in (1.3)-
(1.5). One can easily observe that if the recurrence relation in (1.1) is true, then the horizontal generating
function in (1.4) must be

(x− r)n =

n∑
k=0

{
n

k

}(α)

r

(x− r|−α)k. (2.1)

We can prove this by induction on n. That is, for n = 0, we have

(x− r)0 = 1 =

{
0
0

}(α)

r

(x− r|−α)0 =

0∑
k=0

{
n

k

}(α)

r

(x− r|−α)k.

Assume that the horizontal generating function in (2.1) is true for some n > 0. Then, using (1.1), we have

(x− r)n+1 =

n∑
k=0

{
n

k

}(α)

r

(x− r|−α)k

=

n∑
k=0

(x− r−αk+αk)

{
n

k

}(α)

r

(x− r|−α)k

=

n+1∑
k=0

{
n

k− 1

}(α)

r

(x− r|−α)k +

n+1∑
k=0

+αk

{
n

k

}(α)

r

(x− r|−α)k

=

n+1∑
k=0

{{
n

k− 1

}(α)

r

+αk

{
n

k

}(α)

r

}
(x− r|−α)k

=

n+1∑
k=0

{
n+ 1
k

}(α)

r

(x− r|−α)k.



R. B. Corcinio, C. B. Corcino, J. T. Malusay, J. Math. Computer Sci., 20 (2020), 88–100 91

This proves the horizontal generating function in (2.1). Note that equations (1.3) and (2.1) can be written
as

(x− r)n =

n∑
k=0

{
n

k

}(α)

r

〈x− r|α〉k, (−x+ r|α)n =
∑ [

n

k

](α)
r

(−x+ r)k.

Since

(−x+ r|α)n = (−x+ r)(−x+ r+α)(−x+ r+ 2α) · · · (−x+ r+ (n− 1)
= (−1)n(x− r)(x− r−α)(x− r− 2α) · · · (x− r− (n− 1)α) = (−1)n〈x− r|α〉n,

we have

〈x− r|α〉n =

n∑
k=0

(−1)n−k
[
n

k

](α)
r

(x− r)k.

With

(x− r)k =

k∑
j=0

{
k

j

}(α)

r

〈x− r|α〉j,

we obtain

〈x− r|α〉n =

n∑
k=0

(−1)n−k
[
n

k

](α)
r

k∑
j=0

{
k

j

}(α)

r

〈x− r|α〉j

=

n∑
k=0

n∑
j=0

(−1)n−k
[
n

k

](α)
r

{
k

j

}(α)

r

〈x− r|α〉j =
n∑
j=0

 n∑
k=j

(−1)n−k
[
n

k

](α)
r

{
k

j

}
r

 〈x− r|α〉j.
It follows that

n∑
k=j

(−1)n−k
[
n

k

](α)
r

{
k

j

}
r

=

{
0, j 6= n
1, j = n

= δn,j. (2.2)

Similarly, we can easily derive

n∑
k=j

(−1)k−j
{
n

k

}(α)

r

[
k

j

](α)
r

=

{
0, n 6= j
1, j = n

= δn,j. (2.3)

Equations (2.2) and (2.3) are called the orthogonality relations for translated r-Whitney numbers of the
first and second kind. These imply the following inverse relations

fn =

n∑
k=0

(−1)n−k
[
n

k

](α)
r

gk ⇐⇒ gh =

n∑
k=0

{
n

k

}(α)

r

fk, (2.4)

fk =

∞∑
n=k

(−1)n−k
[
n

k

](α)
r

gn ⇐⇒ gk =

∞∑
n=k

{
n

k

}(α)

r

fn.

To derive the orthogonality relation for translated r-Whitney-Lah numbers, we rewrite first equation
(1.5) as

(−x+ r|α)n =
∑⌊

n

k

⌋(α)
r

(−x− r|−α)k,

〈x− r|α〉n =

n∑
k=0

(−1)n
⌊
n

k

⌋(α)
r

〈−x− r|α〉k,
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〈−x− r|α〉n =

n∑
k=0

(−1)n
⌊
n

k

⌋(α)
r

〈x− r|α〉k.

Using the notation
⌊̃
n

k

⌋(α)
r

= (−1)n
⌊
n

k

⌋(α)
r

, we have

〈−x− r|α〉n =

n∑
k=0

⌊̃
n

k

⌋(α)
r

〈x− r|α〉k =

n∑
k=0

⌊̃
n

k

⌋(α)
r

k∑
j=0

⌊̃
k

j

⌋(α)
r

〈−x− r|α〉j

=

n∑
k=0

k∑
j=0

⌊̃
n

k

⌋(α)
r

⌊̃
k

j

⌋(α)
r

〈−x− r|α〉j

=

n∑
j=0

 n∑
k=j

⌊̃
n

k

⌋(α)
r

⌊̃
k

j

⌋(α)
r

 〈−x− r|α〉j.
Therefore

n∑
k=j

⌊̃
n

k

⌋(α)
r

⌊
k

j

⌋(α)
r

=

{
0, j 6= n
1, j = n

= δn,j.

This is the orthogonality relation for translated r-Whitney-Lah numbers.

3. Qi Formula for Dn(r,α): first form

In this section, a new explicit formula for translated r-Dowling numbers expressed in terms of trans-
lated r-Whitney-Lah numbers and translated r-Whitney numbers of the second kind is established. As a
consequence, a relation in terms of matrices involving the translated r-Dowling numbers, the translated
r-Whitney-Lah numbers, and the translated r-Whitney numbers of the second kind is obtained.

Note that equation (1.2) can be rewritten as follows

(−1)n
⌊
n

k

⌋(α)
r

=

n∑
j=k

(−1)n−j
[
n

j

](α)
r

(−1)j
{
j

k

}(α)

r

. (3.1)

Using the inverse relation of translated r-Whitney numbers in (2.4) with

fn =

⌊
n

k

⌋(α)
r

and gj = (−1)j
{
j

k

}(α)

r

,

equation (3.1) yields

(−1)n
{
n

k

}(α)

r

=

n∑
j=0

{
n

j

}(α)

r

(−1)j
⌊
j

k

⌋(α)
r

,

that is {
n

k

}(α)

r

=

n∑
j=0

(−1)n−j
{
n

j

}(α)

r

⌊
j

k

⌋(α)
r

.

Summing up both sides over k from 0 to n, gives the following theorem.

Theorem 3.1. The explicit formula for translated r-Dowling numbers is given by

Dn(r,α) =
n∑
j=0

(−1)n−j
{

j∑
k=0

⌊
j

k

⌋(α)
r

}{
n

j

}(α)

r

. (3.2)
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Now, we can rewrite the sum in (3.2) as

Dn(r,α) = S0 + S1 + S2 + · · ·+ Sn,

where Sj =
n∑
j=0

(−1)n−j
{
n

j

}(α)

r

⌊
j

k

⌋(α)
r

. As a consequence, we have the following theorem.

Theorem 3.2. For n ∈N, the translated r-Dowling numbers Di(r,α) are equal to the sum of the entries of the ith

row of the product of two matrices[
(−1)i−j

{
i

j

}(α)

r

]
n+1×n+1

[⌊
j

k

⌋(α)
r

]
n+1×n+1

,

whose entries are respectively the translated r-Whitney numbers of the second kind and the translated r-Whitney
Lah numbers.

As a direct consequence the above theorem, we have the following corollary.

Corollary 3.3. For 0 6 i, l 6 n, the translated r-Whitney numbers of the second kind satisfy the following explicit
formula {

i

l

}(α)

r

=

i∑
j=0

(−1)i−j
{
i

j

}(α)

r

⌊
j

l

⌋(α)
r

,

that is [{
i

j

}(α)

r

]
n+1×n+1

=

[
(−1)i−j

{
i

j

}(α)

r

]
n+1×n+1

[⌊
i

j

⌋(α)
r

]
n+1×n+1

.

It can easily be shown that

n∑
j=i

(−1)n−j
[
n

j

](α)
r

{
j

i

}(α)

r

=

n∑
j=i

{
n

j

}(α)

r

(−1)j−i
{
j

i

}(α)

r

= δni,

where δni is the Kronecker delta. This relation implies that[{
i

j

}(α)

r

]−1

n+1×n+1

=

[
(−1)i−j

[
i

j

](α)
r

]
n+1×n+1

.

Thus, we have[
(−1)i−j

[
i

j

](α)
r

]
n+1×n+1

[
(−1)i−j

{
i

j

}(α)

r

]
n+1×n+1

[⌊
i

j

⌋(α)
r

]
n+1×n+1

= In+1.

4. Qi Formula for Dn(r,α): second form

In this section, another form of explicit formula for computing the translated r-Dowling numbers
Dn(r,α) is derived using Faa di Bruno’s formula and certain identity of Bell polynomials of the second
kind. Before we derive the formula, let us consider first the exponential generating of the translated
r-Whitney numbers of the second kind and that of the translated r-Dowling numbers.

Theorem 4.1. The exponential generating function for translated r-Whitney numbers of the second kind is given
by ∞∑

n=0

{
n

k

}(α)

r

tn

n!
=

(
eαt − 1

)k
αkk!

.
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Proof. Using (2.1), we have

∞∑
k=0

{ ∞∑
n=k

{
n

k

}(α)

r

tn

n!

}
(x− r|−α)k

=

∞∑
n=0

{
n∑
k=0

{
n

k

}(α)

r

(x− r|−α)k

}
tn

n!

=

∞∑
n=0

[(x− r)t]n

n!
= e(x−r)t =

(
1 +

(
eαt − 1

) x−r
α

)
=

∞∑
k=0

(
eαt − 1

)k
αkk!

(x− r|−α)k.

Comparing the coefficients of (x− r|−α)k proves the theorem.

This exponential generating function can be used to derive the explicit formula for
{
n

k

}(α)

r

as follows:

∞∑
n=0

{
n

k

}(α)

r

tn

n!
=

(
eαt − 1

)k
αkk!

=
1

αkk!

k∑
j=0

(
k

j

)
(−1)k−jejαt

=
1

αkk!

k∑
j=0

(
k

j

)
(−1)k−j

∑
n>0

(jαt)n

n!
=
∑
n>0

αn−kk!

k∑
j=0

(
k

j

)
(−1)k−jjn

 tnn!
.

Comparing coefficients yields{
n

k

}(α)

r

= αn−k
1
k!

k∑
j=0

(
k

j

)
(−1)k−jjn = αn−kS(n,k). (4.1)

Now, let us derive the exponential generating function for Dn(r,α).

∞∑
n=0

Dn(r,α)
tn

n!
=

∞∑
n=0

n∑
k=0

{
n

k

}(α)

r

tn

n!
=

∞∑
k=0

{ ∞∑
n=k

{
n

k

}(α)

r

tn

n!

}
=

∞∑
k=0

(
eαt−1
α

)k
k!

= e
eαt−1
α .

Theorem 4.2. The exponential generating function for translated r-Dowling numbers is given by

∞∑
n=0

Dn(r,α)
tn

n!
= e

eαt−1
α .

Theorem 4.3. For n ∈N, the translated r-Dowling numbers Dn(r,α) are equal to

Dn(r,α) =
n∑
j=0

(−1)n−j
{

j∑
i=0

αj−iL(j, i)

}{
n

j

}(α)

r

. (4.2)

Proof. Let us recall the following identity from [4, 9, 25] on the nth derivative of the exponential function
e±1/t expressed in terms of the Lah numbers(

e±1/t
)(n)

= (−1)ne±1/t
n∑
k=1

(±1)kL(n,k)
1

tn+k
, (4.3)

the identity from [8] on Bell polynomials of the second kind

Bn,k(abx1,ab2x2, . . . ,abn−k+1xn−k+1) = a
kbnBn,k(x1, x2, . . . , xn−k+1),
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and the famous identity from [8] on Faá di Bruno formula described in terms of the Bell polynomials of
the second kind

dn

dtn
f ◦ h(t) =

n∑
k=0

f(k)(h(t))Bn,k(h
′(t),h ′′(t), . . . ,h(n−k+1)(t)). (4.4)

Replacing t by −t in the generating function for the translated r-Dowling numbers Dn(r,α) in Theorem
4.2, yields

e1/α
∑
n>0

Dn(r,α)
(−t)n

n!
= e1/αeαt ;

equivalently

e1/α
∑
n>0

(−1)nDn(r,α)
tn

n!
= e1/αeαt . (4.5)

Then taking kth derivative both sides of (4.5) with respect to t yields

e1/α
∞∑
n=k

(−1)nDn(r,α)
tn−k

(n− k)!
=
dk

dtk

(
e1/αeαt). (4.6)

Taking f(u) = e1/u and h(t) = αeαt in (4.4) and making use of (4.3) gives

dk
(
e1/αeαt

)
dtk

=
dk
(
f ◦ h(t)

)
dtk

=

k∑
j=1

dj(e1/u)

duj
Bk,j(α(αe

αt),α2(αeαt), . . . ,αk−j+1(αeαt))

=

k∑
j=1

(−1)je1/u
j∑
i=1

L(j, i) · 1
uj+i

Bk,j(α(αe
αt),α2(αeαt), . . . ,αk−j+1(αeαt))

=

k∑
j=1

(−1)j
j∑
i=1

L(j, i) · e
1

αeαt

(αeαt)j+i
Bk,j(α(αe

αt),α2(αeαt), . . . ,αk−j+1(αeαt)),

where u(t) = αeαt. Further by virtue of

Bk,j(abx1,ab2x2, . . . ,abk−j+1xk−j+1) = a
jbkBk,j(x1, x2, . . . , xk−j+1)

and

Bk,j(

k−j+1︷ ︸︸ ︷
1, 1, . . . , 1) = S(k, j)

listed in [8, p.135], where a and b are complex numbers, we obtain

dk
(
e1/αeαt

)
dtk

= e1/αeαt
k∑
j=1

(−1)j
j∑
i=1

L(j, i) · 1
(αeαt)j+i

· (αeαt)jαkBk,j(

k−j+1︷ ︸︸ ︷
1, 1, . . . , 1)

= e1/αeαt
k∑
j=1

(−1)j
j∑
i=1

L(j, i) · α
k−i

(eαt)i
S(k, j).

Thus, replacing k by n and evaluating at t = 0 in equation (4.6) gives

e1/α(−1)nDn(r,α) =
n∑
j=1

(−1)je1/α
j∑
i=1

L(j, i) ·αn−iS(n, j).
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Rearranging the above sum and using the fact that L(0, i) = 0 for all positive integers i, we get

Dn(r,α) =
n∑
j=0

(−1)n−j
j∑
i=0

αn−jS(n, j)αj−iL(j, i).

Using the explicit formula in (4.1), we obtain (4.2).

The following corollary is a direct consequence of Theorem 4.3.

Corollary 4.4. For n ∈ N, the translated r-Dowling numbers Dn(r,α) are equal to the sum of the entries of the
ith row of the product of two matrices[

(−1)i−j
{
i

j

}(α)

r

]
n×n

[
αj−iL(i, j)

]
n×n ,

whose entries are respectively r-Whitney numbers of the second kind and the Lah numbers.

Proof. We can rewrite the formula in Theorem 4.3 as

Di(r,α) =
i∑
l=0

Til, i = 0, 1, 2, . . . ,n,

where

Til =

i∑
j=0

(−1)i−j
{
i

j

}(α)

r

αj−lL(j, l), l = 0, 1, 2, . . . i.

Clearly, Til is the (i, l)-entry of the following product of two matrices[
(−1)i−j

{
i

j

}(α)

r

]
n×n

[
αj−iL(i, j)

]
n×n ,

containing the translated r-Whitney numbers of the second kind and Lah numbers, respectively.

5. Modified translated r-Dowling numbers

The right-hand side of Qi formula in Theorem 4.3 and the explicit formula in (4.1) are not dependent
on the parameter r. This means that the parameter r has no bearing on the process of computing the

values of Dn(r,α) and
{
n

k

}(α)

r

. To address this weakness, we can modify the definition of translated

r-Whitney numbers of the first and second kind as follows:

(x+ r|α)n =

n∑
k=0

〈
n

k

〉(α)

r,1
(x− r)k,

(x+ r)n =

n∑
k=0

〈
n

k

〉(α)

r,2
(x− r|−α)k. (5.1)

These horizontal generating functions will imply the following recurrence relation:〈
n+ 1
k

〉(α)

r,1
=

〈
n

k− 1

〉(α)

r,1
+ (αn+ 2r)

〈
n

k

〉(α)

r,1
,〈

n+ 1
k

〉(α)

r,2
=

〈
n

k− 1

〉(α)

r,2
+ (αk+ 2r)

〈
n

k

〉(α)

r,2
.
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Theorem 5.1. The exponential generating function for the modified translated r-Whitney numbers of the second
kind is given by ∞∑

n=0

〈
n

k

〉(α)

r,2

tn

n!
=

(
eαt − 1

)k
e2rt

αkk!
.

Proof. Using (5.1), we have
∞∑
k=0

{ ∞∑
n=k

〈
n

k

〉(α)

r,2

tn

n!

}
(x− r|−α)k

=

∞∑
n=0

{
n∑
k=0

〈
n

k

〉(α)

r,2
(x− r|−α)k

}
tn

n!

=

∞∑
n=0

[(x+ r)t]n

n!
= e(x−r)te2rt =

(
1 +

(
eαt − 1

) x−r
α

)
e2rt =

∞∑
k=0

(
eαt − 1

)k
e2rt

αkk!
(x− r|−α)k.

Comparing the coefficients of (x− r|−α)k proves the theorem.

This exponential generating function can be used to derive the explicit formula for
〈
n

k

〉(α)

r,2
as follows:

∞∑
n=0

〈
n

k

〉(α)

r,2

tn

n!
=

(
eαt − 1

)k
e2rt

αkk!
=

1
αkk!

k∑
j=0

(
k

j

)
(−1)k−je(jα+2r)t

=
1

αkk!

k∑
j=0

(
k

j

)
(−1)k−j

∑
n>0

((jα+ 2r)t)n

n!

=
∑
n>0

 1
αkk!

k∑
j=0

(
k

j

)
(−1)k−j(jα+ 2r)n

 tnn!

Comparing coefficients yields〈
n

k

〉(α)

r,2
= αn−k

1
k!

k∑
j=0

(
k

j

)
(−1)k−j(j+

2r
α
)n = αn−k

{
n+ r

k+ r

}
2r
α

,

where
{
n+ r

k+ r

}
2r
α

is the r-Stirling numbers of the second kind [5]. This can also be written as

〈
n

k

〉(α)

r,2
= αn−k

n∑
j=0

(
n

j

)
S(j,k)

(
2r
α

)n−j
=

n∑
j=0

(
n

j

)
αj−k(2r)n−jS(j,k). (5.2)

Now, let us define the modified translated r-Dowling numbers, denoted by D̂n(r,α), as follows:

D̂n(r,α) =
n∑
k=0

〈
n

k

〉(α)

r,2
.

Then

∞∑
n=0

D̂n(r,α)
tn

n!
=

∞∑
n=0

n∑
k=0

〈
n

k

〉(α)

r,2

tn

n!
=

∞∑
k=0

{ ∞∑
n=k

〈
n

k

〉(α)

r,2

tn

n!

}
=

∞∑
k=0

(
eαt−1
α

)k
e2rt

k!
= e2rte

eαt−1
α .

This result is formally stated in the following theorem.
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Theorem 5.2. The exponential generating function for the modified translated r-Dowling numbers is given by

∞∑
n=0

D̂n(r,α)
tn

n!
= e

eαt−1
α +2rt.

Theorem 5.3. For n ∈N, the modified translated r-Dowling numbers D̂n(r,α) are equal to

D̂n(r,α) =
n∑
i=0

(−1)n−j
i∑
j=0

〈
n

j

〉(α)

−2r
αj−iL(j, i). (5.3)

Proof. Replacing t by −t in the generating function for the modified translated (r-Dowling numbers
D̂n(r,α) in Theorem 5.2 yields ∑

n>0

D̂n(r,α)
(−t)n

n!
=
e−2rt · e1/αeαt

e1/α ;

equivalently

e1/α
∑
n>0

(−1)nD̂n(r,α)
tn

n!
= e1/αeαt · e−2rt. (5.4)

Then taking kth derivative on both sides of (5.4) with respect to t yields

e1/α
∞∑
n=k

(−1)kD̂n(r,α)
tn−k

(n− k)!
=
dk

dtk

(
e1/αeαt · e−2rt). (5.5)

Taking f(u) = e1/u and h(t) = αeαt in (4.4) and making use of (4.3) gives

dk
(
e1/αeαt

)
dtk

=
dk
(
f ◦ h(t)

)
dtk

=

k∑
j=1

dj(e1/u)

duj
Bk,j(α(αe

αt),α2(αeαt), . . . ,αk−j+1(αeαt))

=

k∑
j=1

(−1)je1/u
j∑
i=1

L(j, i) · 1
uj+i

Bk,j(α(αe
αt),α2(αeαt), . . . ,αk−j+1(αeαt))

=

k∑
j=1

(−1)j
j∑
i=1

L(j, i) · e
1/αeαt

(αeαt)j+i
Bk,j(α(αe

αt),α2(αeαt), . . . ,αk−j+1(αeαt)),

where u(t) = αeαt. Further by virtue of

Bk,j(abx1,ab2x2, . . . ,abk−j+1xk−j+1) = a
jbkBk,j(x1, x2, . . . , xk−j+1)

and

Bk,j(

k−j+1︷ ︸︸ ︷
1, 1, . . . , 1) = S(k, j)

listed in [8, p.135], where a and b are complex numbers, we obtain

dk
(
e1/αeαt

)
dtk

= e1/αeαt
k∑
j=1

(−1)j
j∑
i=1

L(j, i)
1

(αeαt)j+i
(αeαt)jαkBk,j(

k−j+1︷ ︸︸ ︷
1, 1, . . . , 1)



R. B. Corcinio, C. B. Corcino, J. T. Malusay, J. Math. Computer Sci., 20 (2020), 88–100 99

= e1/αeαt
k∑
j=1

(−1)j
j∑
i=1

L(j, i)
αk−i

(eαt)i
S(k, j).

Hence, using Leibniz formula

dn

dzn

(
e1/αeαte−2rt) = n∑

k=0

(
n

k

)
dk

dtk
e1/αeαt d

n−k

dtn−k
e−2rt

=

n∑
k=0

(
n

k

)e1/αeαt
k∑
j=1

(−1)j
j∑
i=1

L(j, i)
αk−i

(eαt)i
S(k, j)

 (−2r)n−ke−2rt.

Thus, replacing k by n and evaluating at t = 0 in equation (5.5) gives

e1/α(−1)nD̂n(r,α) =
n∑
k=0

(
n

k

) k∑
j=1

(−1)je1/α
j∑
i=1

L(j, i)αk−iS(k, j)(−2r)n−k.

Rearranging the above sum and using the fact that L(0, i) = 0 for all positive integers i, we get

D̂n(r,α) =
n∑
i=0

(−1)n−j
i∑
j=0

{ n∑
k=j

(
n

k

)
αk−j(−2r)n−kS(k, j)

}
αj−iL(j, i).

Applying the property of modified translated r-Whitney numbers of the second kind in equation (5.2)
yields

D̂n(r,α) =
n∑
i=0

(−1)n−j
i∑
j=0

〈
n

j

〉(α)

−2r
αj−iL(j, i).

This is exactly the formula in (5.3).
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