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Abstract
The resolution of a system for modeling the competition between opponents in a chemostat when one of these can produce

a toxin has been studied. We propose a novel method to overcome the analytical difficulties of standard mathematical methods.
The method is based on the variational iteration method and combined with the Gauss-Seidel technique for increasing the
convergence rate. Numerical examples are considered to demonstrate the practicality and improve the convergence of the
proposed method.
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Nomenclature

S concentrations of nutrient
X concentrations of the toxin sensitive microorganism
P concentrations of toxin present
Y concentrations of toxin producing organism

1. Introduction

Following Hsu and Waltman in [11], a system for modeling the competition between opponents in a
chemostat when one of these can produce a toxin is given by

d

dt
S = (S0 − S)D−

m1 S

γ1(a1 + S)
X−

m2 S

γ2(a2 + S)
Y,

∗Corresponding author
Email addresses: aaldramy@kku.edu.sa (Aisha Abdullah Alderremy), chamekhmourad1@gmail.com &
mourad.chamekh@enit.utm.tn (Mourad Chamekh), fadheldj@yahoo.com (Fadhel Jeday)

doi: 10.22436/jmcs.020.02.07

Received: 2019-04-09 Revised: 2019-06-21 Accepted: 2019-07-30

http://dx.doi.org/10.22436/jmcs.020.02.07
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.020.02.07&domain=pdf


A. A. Alderremy, M. Chamekh, F. Jeday, J. Math. Computer Sci., 20 (2020), 155–160 156

d

dt
X =

[
m1 S

(a1 + S)
−D− γP

]
X, (1.1)

d

dt
Y =

[
(1 −K)m2 S

(a2 + S)
−D

]
Y,

d

dt
P =

Km2 S

(a2 + S)
Y −DP,

with the variables S, X, and P represent at time t, the concentrations of nutrient in the vessel, of the
toxin sensitive microorganism and of toxin present, respectively, and Y, the toxin producing organism.
The parameter S0 is the input nutrient concentration, D is the washout rate, m1,2 is the maximal growth
rate, a1,2 is the Michaelis-Menten constant, and γ1,2 is the yield constant. The parameter k represents the
fraction of potential growth devoted to producing the toxin. For more information on the mathematical
modeling and analysis of subject, we can see for example the works of El Hajji et al. [5–7].

Using a procedure of normalization including an operation of reduction of variables of problem (1.2)
can lead to the reduced form [11]

ds

dt
= 1 − s−

m1 s

a1 + s
x−

m2 s

a2 + s
y,

dx

dt
=

[
m1 s

(a1 + s)
− 1 −

kγ

1 − k
y

]
x,

dy

dt
=

[
(1 − k)m2 s

(a2 + s)
− 1

]
y.

(1.2)

A lot of semi-analytical methods have recently developed to solving nonlinear physical problems. Among
those are, for example, the variation iteration method (VIM) [10], the Elzaki transform [8, 9], novel itera-
tion method [1–4, 13] etc.. Although these methods have presented attracted great interest, this field may
need further improvement.

In what follows in this paper, we shall propose some semi-analytical solutions for problem (1.2).

2. Solution by variational iteration method

The VIM is a real method invented by He [10] since 1999. Since then, this method has been intensively
used in the literature of semi-analytical methods because of its broad applicability and efficiency for some
difficult physical problems.

The principle of the method used is as follows.
We consider system (1.2) in the following integrals form:

un+1(y) = un(y) +

∫t
0
λ(ξ)

(
ũ ′(ξ) −Lũ(ξ) −Nũ(ξ) − g(ξ)

)
dξ,

with u = (s,y, x), λ = (λ1, λ2, λ3) being a vector containing the Lagrangian multipliers, and L and N are
the linear and the nonlinear parts of system (1.2), respectively. Therefore,

sn+1(t) = sn(t) +

∫t
0
λ1(ξ)

(
(sn) ′ − 1 + sn +

m1 s̃
n

a1 + s̃n
x̃n +

m2 s̃
n

a2 + s̃n
ỹn

)
dξ,

yn+1(t) = yn(t) +

∫t
0
λ2(ξ)

[
(yn) ′ −

((1 − k)m2 s̃
n+1

(a2 + s̃n+1)

)
ỹn − yn

]
dξ, (2.1a)

xn+1(t) = xn(t) +

∫t
0
λ3(ξ)

[
(xn) ′ −

( m1 s̃
n+1

(a1 + s̃n+1)
−

kγ

1 − k
ỹn+1)x̃n − xn

]
dξ. (2.1b)

This proposed algorithm is exceptionally based on the Gauss-Seidel technique developed by Friedrich
Gauss and Philipp Ludwig von Seidel. Compared with the classical VIM, where the solution obtained in
the n-th iteration remains fixed until the entire n+1-th iteration has been realized. As in (2.1a) and (2.1b),
we used the new values as soon as they are known.
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Using δũ(ξ) = 0, we obtain the following optimal value of the Lagrangian multipliers

λ = −(eξ−t, eξ−t, eξ−t).

The modified variational iterations algorithm is given by:

s0 = s(0), y0 = y(0), and x0 = x(0),

sn+1(t) = sn(t) −

∫t
0
eξ−t

[
(sn) ′ − 1 + sn +

m1 s
n

a1 + sn
xn +

m2 s
n

a2 + sn
yn

]
dξ,

yn+1(t) = yn(t) −

∫t
0
eξ−t

[
(yn) ′ −

( (1 − k)m2 s
n+1

(a2 + sn+1)
− 1

)
yn

]
dξ,

xn+1(t) = xn(t) −

∫t
0
eξ−t

[
(xn) ′ −

( m1 s
n+1

(a1 + sn+1)
−

kγ

1 − k
yn+1 − 1

)
xn

]
dξ,

(2.2)

with s(0), y(0), and x(0) represent the initial conditions of problem. However, we note that the classical
VIM leads to the following algorithm

s0 = s(0), y0 = y(0), and x0 = x(0),

sn+1(t) = sn(t) −

∫t
0
eξ−t

[
(sn) ′ − 1 + sn +

m1 s
n

a1 + sn
xn +

m2 s
n

a2 + sn
yn

]
dξ,

yn+1(t) = yn(t) −

∫t
0
eξ−t

[
(yn) ′ −

( (1 − k)m2 s
n

(a2 + sn)
− 1

)
yn

]
dξ,

xn+1(t) = xn(t) −

∫t
0
eξ−t

[
(xn) ′ −

( m1 s
n

(a1 + sn)
−

kγ

1 − k
yn − 1

)
xn

]
dξ.

(2.3)

3. Numerical examples

In this first example we have chosen the following parameter values

a1 = 0.2, a2 = 3, m1 = 1, m2 = 5, K = 0.3, and G = 1.

According to the results of [11, 12], we have an equilibrium point E0 = (1, 0, 0) always exists and it
is globally asymptotically stable if

m1

(a1 + 1)
< 1 and

m2

(a2 + 1)
< (1 − k)−1. Thanks to these conditions,

we have indeed a globally asymptotically stability, since
m1

(a1 + 1)
= 0.8333 and

m2

(a2 + 1)
= 1.2500 and

(1 − k)−1 = 1.4286.
Basing of the classical VIM (2.3), the semi-analytical solutions of S, Y, and X are given by

S0 = S(0) = 1, Y0 = Y(0) =
3
10

, X0 = X(0) =
7

10
,

S1 =
1
24

(e−t + 1), Y1 =
1

80
(3e−t + 21), X1 =

1
150

(31e−t + 74),

S2 = −e−t
[

1142
553

t+
181
125

log(115e−t + 29) +
475

2131
log

(23e−t + 73
96

)
−

362
125

log(12) −
897
1000

et −
103
1000

]
,

Y2 = e−t
[

181
630

t+
615

3941
log

(
(23 ∗ e−t + 73)/96

)
+

147
11680

et +
797

2773

]
,

X2 =
124

1250
+

[
513
769

+
181
125

log
(115

144
e−t +

29
144

)
+

677
417

t

]
e−t + 33.10−4 e−2t.

However, these solutions can be achieved with using the modified VIM (2.2),

S0 = S(0) = 1, Y0 = Y(0) =
3

10
, X0 = X(0) =

7
10

,
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S1 =
1

24
(e−t + 1),

Y1 = e−t
[

803t
2461

− 45.10−4 log
(
23e−t + 73

)
+

483
1460

log
(23e−t + 73

96
)
+

21et

1460
+

271
7078

]
,

X1 =
1

150
(31e−t + 74).

4. Results and discussions

In order to evaluate the VIM approximation, we have proposed to compare the solutions of this
method with theirs obtained by fourth-order Runge-Kutta procedures (RK4). This choice is justified by
the fact that it is not easy to calculate a closed form solution but also that the RK4 method is very efficient
and precise. For this reason, we have used RK4 solutions as exact solutions, we have therefore calculated
the relative errors on this basis.

When t ∈ [0 1], we have a relative maximum error does not exceed 4× 10−3 for the all approximate
solutions of S, Y and X. The obtained solutions give an interesting view of the efficiency of the VIM used.
With just past two iterations we can remark that the error is negligible, shown in Fig. 3 and explained in
Table 1. Fig. 2 shows the comparison between traditional and modified VIM solutions in one hand and
Range Kutta (RK4) numerical solutions in the other hand in a relatively wide time span. We noted that
the branches of the solution begin to be improved especially with the X solution, Fig. 2.

Figure 1: The relative errors of modified VIM solutions.

Table 1: Summarized of relative errors.
t VIM relative error
0 0

0.1048 8× 10−6

0.2096 5× 10−5

0.2721 9× 10−5

0.3971 1.5× 10−4

0.4596 1.5× 10−4

0.5846 3× 10−5

0.7096 6.2× 10−4

0.8346 1.8× 10−3

0.9596 3.9× 10−3
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Figure 2: We present the comparison between the classical VIM solutions and the numerical Range Kutta (RK4) solutions within
a relatively broad time interval (left figure). In the right, we compare the modified VIM solutions with RK4 solutions (right
figure).

Figure 3: Comparison between the relative error of modified VIM and VIM solutions.

5. Conclusion

We have proposed a modified VIM solution for a system of competition with production a toxin in
a chemostat. In conjunction with other methods, VIM adapts rapidly and flexibly to the Gauss-Seidel
technique. Thanks to this combining, we have highlighted the efficiency of this modification to improve
the convergence of solutions.
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