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Abstract 
This paper investigates the first order linear fuzzy time-delay dynamical systems. We use a 
complex number representation of the 𝛼-level sets of the fuzzy time-delay system, and 
obtain the solution by applying a Runge-Kutta method. Several examples are considered to 
show the convergence and accuracy of the proposed method. We finally present some 
conclusions and new directions for further research in this area. 
 

Keywords:Time-delay dynamical systems, fuzzy differential equations,  fuzzy matrices, 
Runge-Kutta methods. 
 
 

1. Introduction 
 

The dynamics of many control systems  may be expressed by time-delay differential 
equations. The delays may appear because of physical properties of equipment used in the 
system, signal transmission or measurement of system variables. For example, actuators, 
sensors and field networks which are involved in feedback loops may exhibit delays. Time-delay 
systems are also used to model several different mechanisms in the dynamics of epidemics. 
Many problems such as incubation periods, mechanics, viscoelasticity, physics, physiology, 
population dynamics, communication, information technologies and stability of networked 
controlled, maturation times, age structure, blood transfusions and interactions across spatial 
distances or through complicated paths have been modelled by the introduction of time-delay 
systems [10]. In recent decades, optimal control problems with delays and obtaining their 
approximate solutions are very important issues  in control theory and have attracted much 
attention of many researchers and investigators. Let us briefly review some papers concerning 
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different classes of control problems. Kharatishvili [9] was first to provide a maximum principle 
for optimal control problems with a constant state delay. In [8], he gave similar results for 
control problems with pure control delays. Bader [1] used collocation methods to solve the 
boundary value problem for the retarded state variable and advanced adjoint variable. He 
successfully solved several academic examples, but his method did  not give accurate results for 
the more difficult CSTR reactor problem described in Soliman and Ray [16, 17]. A similar CSTR 
reactor problem was considered in Oh and Luus [11] and Dadebo and Luus [4], who used the 
differential dynamic programming method with a moderate number of stages. Optimal control 
problems with constant delays in state and control variables and mixed control-state inequality 
constraints (based on the use of Pontryagin-type minimum (maximum) principle) were 
considered by Göllmann et al [7]. Farahi and Barati [6] obtained extremely significantly superior 
results by applying a measure theory approach. Since the concept of fuzzy set and the 
corresponding fuzzy operations was introduced by Zadeh [20], an enormous effort has been 
dedicated to the development of various aspects of the theory and applications of fuzzy systems, 
in particular to the theory of differential equations with uncertainty. The usage of fuzzy 
differential equations has been a natural way to model dynamical systems under possibility 
uncertainty. The fuzzy dynamical systems based on fuzzy differential equations are also widely 
applied to fuzzy control systems and many other fields (see [19] and its references). The 
organization of this paper is as follows. In Section 2, the basic notations of fuzzy numbers, fuzzy 
derivative and fuzzy functions are briefly presented. In Section 3, linear fuzzy time-delay 
differential equations with fuzzy matrices are introduced, and then a complex number 
representation of the 𝛼-level sets is offered to relate the fuzzy dynamics and the original 
nonfuzzy linear system. In Section 4, the proposed new method (based on the use of a Runge-
Kutta method) is described. In Section 5, the applicability of the method is illustrated by several 
examples. Finally, Section 6 presents concluding remarks. 

 
 

2. Preliminaries 
 
Definition 2.1. (see[18]). A fuzzy number 𝑢 is completely determined by any pair 𝑢 = (𝑢, 𝑢) of 

functions  𝑢 𝛼 , 𝑢 𝛼 :  0, 1 ⟶ 𝑅, satisfying the three conditions: 
 𝑖  𝑢(𝛼)is a bounded, monotonic, increasing (nondecreasing) left-continuous function for all 

𝛼 ∈ (0, 1] and right-continuous for 𝛼 = 0. 
(𝑖𝑖) 𝑢(𝛼)is a bounded, monotonic, decreasing (nonincreasing) left-continuous function for all 
𝛼 ∈ (0, 1] and right-continuous for 𝛼 = 0. 
 𝑖𝑖𝑖  For all 𝛼 ∈  0, 1  we have:  𝑢 𝛼 ≤ 𝑢 𝛼 . 

For every  𝑢= 𝑢, 𝑢 , 𝑣 =  𝑣, 𝑣  and 𝑘 > 0, 

(𝑢 + 𝑣) 𝛼 = 𝑢 𝛼 + 𝑣 𝛼 ,                                                                                                                    (1) 

 𝑢 + 𝑣  𝛼 = 𝑢 𝛼 + 𝑣(𝛼),         (2) 

 𝑘𝑢  𝛼 = 𝑘𝑢 𝛼 ,    𝑘𝑢  𝛼 = 𝑘𝑢 𝛼 .   (3) 

The collection of all fuzzy numbers with addition and multiplication as defined by  1 − (3) is 
denoted by 𝐸1 . For  0 < 𝛼 ≤ 1, we define the 𝛼-level of fuzzy number 𝑢 with [𝑢]𝛼 = { 𝑥 ∈

𝑅|𝑢(𝑥) ≥ 𝛼  and for 𝛼 = 0, the support of 𝑢 is defined as [𝑢]0 = { 𝑥 ∈ 𝑅|𝑢(𝑥) > 0 . 
 

Definition 2.2. The distance between two arbitrary fuzzy numbers 𝑢 =  𝑢, 𝑢   and 𝑣 = (𝑣, 𝑣) is 

defined as follows: 

𝑑 𝑢, 𝑣 = sup
𝛼∈[0,1]

 𝑚𝑎𝑥  𝑢 𝛼 − 𝑣 𝛼  ,  𝑢 𝛼 − 𝑣 𝛼    . 

It is shown [14]  that (𝐸1 , 𝑑) is a complete metric space. 
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Definition 2.3. The function 𝑓:ℝ ⟶ 𝐸1 is called a fuzzy function. Now if, for an arbitrary fixed 
𝑡 ∈ 𝑅1 𝑎𝑛𝑑 𝜀 > 0 there exists a  δ>0 such that: 

 𝑡 − 𝑡  < 𝛿 ⟶ 𝑑 𝑓 𝑡 , 𝑓 𝑡   < 𝜀, 
then 𝑓 is said to be continuous. Note that 𝑑 is the metric which is defined in Definition 2.2 (In 
this article we simply replace ℝ by [𝑡0  ,T]). 
 
Definition 2.4. Let 𝑢, 𝑣 ∈ 𝐸1 . If there exists 𝑤 ∈ 𝐸1 such that 𝑢 = 𝑣 + 𝑤 then 𝑤 is called the H-
difference of 𝑢, 𝑣 and it is denoted by  𝑢 − 𝑣. 
 
Definition 2.5. A function  𝑓: (𝑎, 𝑏) ⟶ 𝐸1 is called H-differentiable at 𝑡 ∈ (𝑎, 𝑏) if, for 𝑕 > 0 
sufficiently small, there exist the H-differences  𝑓 𝑡 + 𝑕 − 𝑓(𝑡 ), 𝑓 𝑡  − 𝑓 𝑡 − 𝑕 , and an element 
𝑓 ′(𝑡 ) ∈ 𝐸1  such that: 
 

0 = lim
𝑕→0+

𝑑  
𝑓 𝑡 + 𝑕 − 𝑓(𝑡 )

h
, 𝑓 ′(𝑡 ) = lim

𝑕⟶0+
𝑑  

𝑓 𝑡  − 𝑓 𝑡 − 𝑕 

𝑕
, 𝑓 ′(𝑡 ) . 

Then  𝑓 ′(𝑡 ) is called the fuzzy derivative of 𝑓 at 𝑡 , (see [5]). 

3. Fuzzy time-delay initial value problem 
 
Consider the first-order fuzzy time-delay initial value differential equation given by 
 

 
𝑥  𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑥 𝑡 − 𝑟 ,             𝑡 ∈ 𝐼 =  𝑡0 , 𝑇  ,   

   𝑥 𝑡 = 𝑥0 ,                                         𝑡 ∈  𝑡0 − 𝑟, 𝑡0 ,        
                                                   (4) 

 
 where  𝑥 𝑡  and 𝑥 𝑡 − 𝑟 ∈  𝑥 𝜏 : 𝜏 < 𝑡  are n-dimensional fuzzy functions of 𝑡, every element of 
matrices 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑛  ,  𝑎𝑖𝑗 ∈ 𝐹(ℝ) and 𝐵 = [𝑏𝑖𝑗 ]𝑛×𝑛  ,  𝑏𝑖𝑗 ∈ 𝐹(ℝ) are supposed to be fuzzy 

numbers where 𝐹(ℝ) represents the fuzzy sets defined on ℝ. The function 𝑥 (𝑡) is the fuzzy 
derivative of 𝑥(𝑡) at 𝑡 ∈ 𝐼 and 𝑥0  is a fuzzy number and the time-delay 𝑟 is a known positive 
rational number. The 𝛼-level sets of 𝑥(𝑡) and 𝑥(𝑡 − 𝑟) for 𝑡 ∈ [𝑡0 , 𝑇] are as follows: 
 

                 𝑥𝛼
𝑘 𝑡 =  𝑥𝛼

𝑘 𝑡 , 𝑥𝛼
𝑘
 𝑡  ,                     𝑘 = 1, 2,⋯ , 𝑛 ,                            (5)                                       

      𝑥𝛼
𝑘 𝑡 − 𝑟 =  𝑥𝛼

𝑘 𝑡 − 𝑟 , 𝑥𝛼
𝑘
 𝑡 − 𝑟  ,  𝑘 = 1,2,⋯ , 𝑛 . 

 
Considering the elements of matrices 𝐴 𝑎𝑛𝑑 𝐵 as the crisp numbers the 𝛼-level equations of 
fuzzy time-delay initial value differential equation (4) using from (5) are defined as follows: 

 
  
 

  
 𝑥 𝛼

𝑘 𝑡 = 𝑚𝑖𝑛   𝐴𝑢 𝑘 +  𝐵𝑢𝑡 
𝑘 :   𝑢𝑗 ∈  𝑥𝛼

𝑗  𝑡 , 𝑥𝛼
𝑗
 𝑡  , 𝑢𝑡

𝑗
∈  𝑥𝛼

𝑗  𝑡 − 𝑟 , 𝑥𝛼
𝑗
 𝑡 − 𝑟   ,                                         

𝑥 𝛼
𝑘
 𝑡 = 𝑚𝑎𝑥   𝐴𝑢 𝑘 +  𝐵𝑢𝑡 

𝑘 :  𝑢𝑗 ∈  𝑥𝛼
𝑗  𝑡 , 𝑥𝛼

𝑗
 𝑡  , 𝑢𝑡

𝑗
∈  𝑥𝛼

𝑗  𝑡 − 𝑟 , 𝑥𝛼
𝑗
 𝑡 − 𝑟   ,                        (6)             

𝑥𝛼 𝑡 = 𝑥𝛼0 ,                                                                                            𝑡 ∈  𝑡0 − 𝑟, 𝑡0  ,                                                     

𝑥𝛼 𝑡 = 𝑥𝛼0 ,                                                                                             𝑡 ∈  𝑡0 − 𝑟, 𝑡0  ,                                                    

  

where (𝐴𝑢)𝑘 ≔  𝑎𝑘𝑗
𝑛
𝑗=1 𝑢𝑗 ,  𝐵𝑢𝑡 

𝑘 ≔  𝑏𝑘𝑗 𝑢𝑡
𝑗𝑛

𝑗=1  are the kth rows of 𝐴𝑢 and 𝐵𝑢𝑡  respectively. 

Since the equation  in (4) is linear, the following rules can be used in (6): 

𝑥 𝛼
𝑘 𝑡 =  𝑎𝑘𝑗

𝑛

𝑗=1

𝑢𝑗 +  𝑏𝑘𝑗

𝑛

𝑗=1

𝑢𝑡
𝑗
 , 

where 

  
𝑢𝑗 = 𝑥𝛼

𝑗  𝑡 ,      𝑎𝑘𝑗 ≥ 0 ,

𝑢𝑗 = 𝑥𝛼
𝑗
 𝑡 ,       𝑎𝑘𝑗 < 0  ,
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and 

  
𝑢𝑡
𝑗

= 𝑥𝛼
𝑗  𝑡 − 𝑟 ,            𝑏𝑘𝑗 ≥ 0 ,

𝑢𝑡
𝑗

= 𝑥𝛼
𝑗
 𝑡 − 𝑟 ,            𝑏𝑘𝑗 < 0,   

  

also 
 

𝑥 𝛼
𝑘
 𝑡 =  𝑎𝑘𝑗

𝑛

𝑗=1

𝑣𝑗 +  𝑏𝑘𝑗

𝑛

𝑗=1

𝑣𝑡
𝑗
, 

 
where 

 
𝑣𝑗 = 𝑥𝛼

𝑗
 𝑡 ,      𝑎𝑘𝑗 ≥ 0 ,

𝑣𝑗 = 𝑥𝛼
𝑗  𝑡 ,       𝑎𝑘𝑗 < 0  ,

  

and 

  
𝑣𝑡
𝑗

= 𝑥𝛼
𝑗
 𝑡 − 𝑟 ,            𝑏𝑘𝑗 ≥ 0 ,

𝑣𝑡
𝑗

= 𝑥𝛼
𝑗  𝑡 − 𝑟 ,            𝑏𝑘𝑗 < 0.   

  

As indicated in [13], the same  relations  can be used  in a more compact way by moving to the 
field of complex numbers. 
Define new complex variables as follows:  

                𝑥𝛼
𝑘 ≔ 𝑥𝛼

𝑘 𝑡 + 𝑖𝑥𝛼
𝑘
 𝑡                  𝑘 = 1,2,⋯ , 𝑛 , 

 𝑥𝑡𝛼
𝑘 ≔ 𝑥𝛼

𝑘 𝑡 − 𝑟 + 𝑖𝑥𝛼
𝑘
 𝑡 − 𝑟       𝑘 = 1,2,⋯ , 𝑛 , 

where 𝑖 ≔  −1. Let 𝑥𝛼 𝑡 = 𝑥𝛼 𝑡 + 𝑖𝑥𝛼(𝑡) be the solution of the fuzzy time-delay dynamical 

system (4), in which the elements of matrices 𝐴 and 𝐵 are fuzzy numbers, then (4) can be 
rewritten with  𝑥𝛼 𝑡 = 𝑥𝛼 𝑡 + 𝑖𝑥𝛼 𝑡   as its solution is in the following form:   

 
𝑥 𝛼 𝑡 + 𝑖𝑥 𝛼 𝑡 = 𝐴𝛼  𝑥𝛼 𝑡 + 𝑖𝑥𝛼 𝑡  + 𝐵𝛼  𝑥𝛼 𝑡 − 𝑟 + 𝑖𝑥𝛼 𝑡 − 𝑟  ,             

𝑥𝛼 𝑡 = 𝑥𝛼0 + 𝑖𝑥𝛼0 ,                                                     𝑡 ∈  𝑡0 − 𝑟, 𝑡0 ,       0 ≤ 𝛼 ≤ 1.
                                        (7)        

 

Let (𝑎𝑖𝑗 )𝛼 =  (𝑎𝑖𝑗 )𝛼
−, (𝑎𝑖𝑗 )𝛼

+ ,  𝐴𝛼 =  𝐴𝛼
−, 𝐴𝛼

+ , where 𝐴𝛼
− = [(𝑎𝑖𝑗 )𝛼

−]𝑛×𝑛 ,  𝐴𝛼
+ = [(𝑎𝑖𝑗 )𝛼

+]𝑛×𝑛  and 

(𝑏𝑖𝑗 )𝛼 =  (𝑏𝑖𝑗 )𝛼
−, (𝑏𝑖𝑗 )𝛼

+ ,  𝐵𝛼 =  𝐵𝛼
−, 𝐵𝛼

+ , where  𝐵𝛼
− = [(𝑏𝑖𝑗 )𝛼

−]𝑛×𝑛 ,  𝐵𝛼
+ = [(𝑏𝑖𝑗 )𝛼

+]𝑛×𝑛 . 

Then we have the following theorem: 
 
Theorem 3.1. Let 𝐴 𝜇, 𝛼 = [𝑎𝑖𝑗  𝜇, 𝛼 ]𝑛×𝑛 =  1 − 𝜇 𝐴𝛼

− + 𝜇𝐴𝛼
+, 𝐵 𝜇, 𝛼 = [𝑏𝑖𝑗  𝜇, 𝛼 ]𝑛×𝑛 =

 1 − 𝜇 𝐵𝛼
− + 𝜇𝐵𝛼

+,  in which 𝜇 ∈ [0,1]. Then 𝑥𝛼 𝑡 + 𝑖𝑥𝛼(𝑡) is the solution of problem (7), if and 

only if  𝑥𝛼 𝑡 + 𝑖𝑥𝛼(𝑡) is also the solution of the following problem  

 
 

 
𝑥 𝛼 𝑡 + 𝑖𝑥 𝛼 𝑡 =  𝐶(𝜇, 𝛼)

1

𝜇=0

 𝑥𝛼 𝑡 + 𝑖𝑥𝛼 𝑡  +  𝐷(𝜇, 𝛼)

1

𝜇=0

 𝑥𝛼 𝑡 − 𝑟 + 𝑖𝑥𝛼 𝑡 − 𝑟  ,               

𝑥𝛼 𝑡 = 𝑥𝛼0 + 𝑖𝑥𝛼0 ,                                                                                      𝑡 ∈  𝑡0 − 𝑟, 𝑡0 ,       0 ≤ 𝛼 ≤ 1,

      (8)                 

where the elements of the matrices 𝐶 and 𝐷 are determined from those of 𝐴(𝜇, 𝛼) and 𝐵(𝜇, 𝛼) as 
follows: 

 𝑐𝑖𝑗 =  
𝑒𝑎𝑖𝑗  𝜇, 𝛼 ,         𝑎𝑖𝑗 (𝜇, 𝛼) ≥ 0

𝑔𝑎𝑖𝑗  𝜇, 𝛼 ,         𝑎𝑖𝑗 (𝜇, 𝛼) < 0
   

and 

 𝑑𝑖𝑗 =  
𝑒𝑏𝑖𝑗  𝜇, 𝛼 ,         𝑏𝑖𝑗 (𝜇, 𝛼) ≥ 0

𝑔𝑏𝑖𝑗  𝜇, 𝛼 ,         𝑏𝑖𝑗 (𝜇, 𝛼) < 0
  

in which 𝑒 is just the identity operation and 𝑔 corresponds to a flip about the diagonal in the 
complex plane. i. e. , ∀ 𝑧 + 𝑤𝑖 ∈ ℂ, 
  𝑒: 𝑧 + 𝑖𝑤 ⟶ 𝑧 + 𝑖𝑤, 
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  𝑔: 𝑧 + 𝑖𝑤 ⟶ 𝑤 + 𝑖𝑧. 
Proof. See [2]. 
 
 

4. A Runge-Kutta Method 
 
Substituting all the fuzzy numbers of the matrices 𝐴 and 𝐵 in Section 3 by crisp numbers, the 
new system which contains 2𝑛 crisp delay differential equations is in the following form: 
 

 
𝑋  𝑡 = 𝐸𝑋 𝑡 + 𝐹𝑋 𝑡 − 𝑟 ,         𝑡 ∈ 𝐼 =  𝑡0 , 𝑇  ,   

𝑋 𝑡 = 𝑋0 ,                                        𝑡 ∈  𝑡0 − 𝑟, 𝑡0 ,    
                                        (9) 

 
where for each 𝑡 ∈ 𝐼,  2𝑛-dimensional nonfuzzy functions 𝑋 𝑡 , 𝑋 𝑡 − 𝑟 , 𝑋 (𝑡) are defined as 

𝑋 𝑡 = 𝑋 = [𝑥𝛼
1 ,  𝑥𝛼

1
 , ⋯ 𝑥𝛼

𝑛 ,  𝑥𝛼
𝑛

]𝑇 , 𝑋 𝑡 − 𝑟 = 𝑋𝑡 = [𝑥𝑡𝛼
1 ,  𝑥𝑡𝛼

1
 , ⋯ 𝑥𝑡𝛼

𝑛 ,  𝑥𝑡𝛼
𝑛

]𝑇 , 𝑋  𝑡 = 𝑋 =

[𝑥 𝛼
1 , 𝑥 𝛼

1
, ⋯ , 𝑥 𝛼

𝑛 , 𝑥 𝛼
𝑛

]𝑇 , respectively.  

Also  𝑋0 = [𝑥𝛼0
1 ,  𝑥𝛼0

1
 , ⋯ 𝑥𝛼0

𝑛 ,  𝑥𝛼0
𝑛

]𝑇 ∈ ℝ2𝑛 , 𝐸 = [𝑒𝑖𝑗 ]2𝑛×2𝑛  ,  𝑒𝑖𝑗 ∈ ℝ and  𝐹 = [𝑓𝑖𝑗 ]2𝑛×2𝑛  ,  𝑓𝑖𝑗 ∈ ℝ 

are crisp matrices which are obtained from fuzzy matrices 𝐴 and 𝐵 in Section 3, respectively. 
We replace the interval [𝑡0 , 𝑇] by a set of discrete equally spaced grid points 

𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 = 𝑇,      𝑕 =
𝑇 − 𝑡0

𝑁
,        𝑡𝑖 = 𝑡0 + 𝑖𝑕,        𝑖 = 1,2, … , 𝑁. 

 
Thus the classical 4-step Runge-Kutta method (𝑅𝐾4) for solving the system of time-delay 
differential equations (9) is summarized as follows: 
 

𝐾0 = 𝑕  𝐸𝑋𝑖 + 𝐹𝑋
𝑖−

𝑁𝑟

𝑇−𝑡0

 , 

𝐾1 = 𝑕 𝐸(𝑋𝑖 +
𝐾0

2
) + 𝐹(𝑋

𝑖−
𝑁𝑟

𝑇−𝑡0

+
𝐾0

2
) , 

𝐾2 = 𝑕 𝐸(𝑋𝑖 +
𝐾1

2
) + 𝐹(𝑋

𝑖−
𝑁𝑟

𝑇−𝑡0

+
𝐾1

2
) , 

𝐾3 = 𝑕 𝐸(𝑋𝑖 + 𝐾2) + 𝐹(𝑋
𝑖−

𝑁𝑟

𝑇−𝑡0

+ 𝐾2) , 

𝑋𝑖+1 ≈ 𝑋𝑖 +
1

6
 𝐾0 + 2𝐾1 + 2𝐾2 + 𝐾3 ,         𝑖 = 0, 1, … , 𝑁 − 1, 

with value  𝑋 𝑡 = 𝑋0 for all 𝑡 ≤ 𝑡0 . 
For the convergence of the proposed method see [12]. 
 

Remark 4.1. In this method we select 𝑁 such that  
𝑁𝑟

𝑇−𝑡0
 to be a natural number. 

 
 

5. Numerical Examples 
 
To show the behavior and  properties of this new method, two examples will be considered in 
this section. 
 
Example 5.1. Consider a model of the El Niño Southern Oscillation (ENSO) phenomenon. The 
differential equation corresponding to this climate modeling is: 
 



M. H. Farahi, S. Barati/ TJMCS Vol .2 No.1 (2011) 44-53 

49 

 

 
𝑥  𝑡 = 𝛽1𝑥 𝑡 + 𝛽2𝑥 𝑡 − 1 ,      𝑡 ∈ 𝐼 =  0,2  ,   

𝑥 𝑡 = 𝑥0 ,                                             𝑡 ∈  −1,0  ,       
  

where  𝛽1 , 𝛽2 , 𝑥0  are fuzzy numbers about 1, about −1  and about 1 respectively. Suppose they 
can be defined as follows: 
  

𝛽1(𝑠) =  

0 ,                                          𝑠 < 0,

− 𝑠 − 1 2 + 1 ,           0 ≤ 𝑠 ≤ 2,
0 ,                                        𝑠 > 2,

  

  
and 

𝛽2(𝑠) =  

0 ,                                            𝑠 < −2,

− 𝑠 + 1 2 + 1,         − 2 ≤ 𝑠 ≤ 0,
0 ,                                          𝑠 > 0,

  

and 
 

𝑥0(𝑠) =  

0 ,                                          𝑠 < 0,

− 𝑠 − 1 2 + 1 ,           0 ≤ 𝑠 ≤ 2,
0 ,                                        𝑠 > 2.

  

Thus 
 

  [𝛽1]𝛼 =  1 −  1 − 𝛼,  1 +  1 − 𝛼 ,          

 

  [𝛽2]𝛼 = [−1 −  1 − 𝛼, − 1 +  1 − 𝛼], 
 

  [𝑥0]𝛼 = [1 −  1 − 𝛼, 1 +  1 − 𝛼]. 
 

Let   𝑎1 =  1 − 𝜇  1 −  1 − 𝛼 + 𝜇 1 +  1 − 𝛼 , 𝑎2 =  1 − 𝜇  −1 −  1 − 𝛼 + 𝜇 −1 +

 1 − 𝛼 , where  𝜇 ∈ [0, 1]. By using the complex number representation of the 𝛼-level sets we 
have 

𝑥 𝛼 + 𝑖𝑥 𝛼 = 𝑒(𝑎1) 𝑥𝛼 + 𝑖𝑥𝛼 + 𝑔 𝑎2  𝑥𝑡𝛼 + 𝑖𝑥𝑡𝛼  . 

Now we can state (9) as follows 
 

 
𝑥 𝛼

𝑥 𝛼
 =  

𝑎1 0
0 𝑎1

  
𝑥𝛼
𝑥𝛼
 +  

0 𝑎2

𝑎2 0
  
𝑥𝑡𝛼
𝑥𝑡𝛼

 , 

with values  

 
𝑥𝛼
𝑥𝛼
 =  

𝑥𝛼0

𝑥𝛼0
 =  1 −  1 − 𝛼  

1 +  1 − 𝛼
 , 

 
for all  𝑡 ≤ 0  over the time interval  𝐼 =  0, 2 . 
Figure 1 depicts the solution of Example 5.1  for 𝛼 = 0.9, 𝑁 = 10000. The crisp shape of this 
example has originally been studied in [3]. 
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Figure 1. Lower and upper bound solutions of Example 5.1 for 𝝁 = 𝟎, 𝟏 using the proposed method. 

 
Example 5.2. Consider the fuzzy time-delay initial value problem 
 
 

 

𝑥 1 𝑡 = 𝜆𝑥1 𝑡 − 1  ,                                    

𝑥 2 𝑡 = 𝜆𝑥1 𝑡 − 1 + 𝜆𝑥2 𝑡 − 1 ,           

𝑥 3 𝑡 = 𝜆𝑥2 𝑡  ,                                           

  

 
with values 𝑥𝑖 𝑡 = 𝑥0 , 𝑖 = 1, 2, 3 for all  𝑡 ≤ 0 over the time interval 𝐼 =  0, 5 . So in comparison 
with  4  we have 

𝐴 =  
0 0 0
0 0 0
0 𝜆 0

 , 𝐵 =  
𝜆 0 0
𝜆 𝜆 0
0 0 0

 . 

  
Let  𝜆, 𝑥0   both to be fuzzy numbers about 1 and they can be done by setting, for example,  
 

𝜆(𝑠) =  

0 ,                        𝑠 < 0,

2𝑠 − 𝑠2 ,     0 ≤ 𝑠 ≤ 2,
0 ,                      𝑠 > 2,

  

and 
 

𝑥0(𝑠) =  

0 ,                                          𝑠 < 0,

− 𝑠 − 1 2 + 1 ,           0 ≤ 𝑠 ≤ 2,
0 ,                                        𝑠 > 2.

  

 
Thus 
  

[𝜆]𝛼 = [1 −  1 − 𝛼, 1 +  1 − 𝛼], 
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[𝑥0]𝛼 = [1 −  1 − 𝛼, 1 +  1 − 𝛼]. 
 

 

Let  𝑎 =  1 − 𝜇  1 −  1 − 𝛼 + 𝜇 1 +  1 − 𝛼 , where 𝜇 ∈  0, 1 . By using the complex number 

representation of the 𝛼-level sets we have 
 

 
 
 
 
 𝑥 𝛼

1 + 𝑖𝑥 𝛼
1

𝑥 𝛼
2 + 𝑖𝑥 𝛼

2

𝑥 𝛼
3 + 𝑖𝑥 𝛼

3
 
 
 
 
 

=  
0 0 0
0 0 0
0 𝑒(𝑎) 0

  

𝑥𝛼
1 + 𝑖𝑥𝛼

1

𝑥𝛼
2 + 𝑖𝑥𝛼

2

𝑥𝛼
3 + 𝑖𝑥𝛼

3

 +  
𝑒(𝑎) 0 0
𝑒(𝑎) 𝑒(𝑎) 0

0 0 0

  

𝑥𝑡𝛼
1 + 𝑖𝑥𝑡𝛼

1

𝑥𝑡𝛼
2 + 𝑖𝑥𝑡𝛼

2

𝑥𝑡𝛼
3 + 𝑖𝑥𝑡𝛼

3

 . 

 
Now we can state (9) as follows 

 
 
 
 
 
 
 
 
𝑥 𝛼

1

𝑥 𝛼
1

𝑥 𝛼
2

𝑥 𝛼
2

𝑥 𝛼
3

𝑥 𝛼
3
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
0 0 0
0 0 0
0
0
0
0

0
0
0
0

0
0
𝑎
0

   

0 0 0
0 0 0
0
0
0
𝑎

0
0
0
0

0
0
0
0 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑥𝛼

1

𝑥𝛼
1

𝑥𝛼
2

𝑥𝛼
2

𝑥𝛼
3

𝑥𝛼
3
 
 
 
 
 
 
 
 

+

 
 
 
 
 
 
𝑎 0 0
0 𝑎 0
𝑎
0
0
0

0
𝑎
0
0

𝑎
0
0
0

   

0 0 0
0 0 0
0
𝑎
0
0

0
0
0
0

0
0
0
0 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑥𝑡𝛼

1

𝑥𝑡𝛼
1

𝑥𝑡𝛼
2

𝑥𝑡𝛼
2

𝑥𝑡𝛼
3

𝑥𝑡𝛼
3
 
 
 
 
 
 
 
 

, 

with values  

 
 
 
 
 
 
 
 
𝑥𝛼

1

𝑥𝛼
1

𝑥𝛼
2

𝑥𝛼
2

𝑥𝛼
3

𝑥𝛼
3
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 
 
𝑥𝛼0

1

 𝑥𝛼0
1

𝑥𝛼0
2

 𝑥𝛼0
2

𝑥𝛼0
3

 𝑥𝛼0
3
 
 
 
 
 
 
 
 

=

 
 
 
 
 
 
 1 −  1 − 𝛼

1 +  1 − 𝛼

1 −  1 − 𝛼

1 +  1 − 𝛼

1 −  1 − 𝛼

1 +  1 − 𝛼 
 
 
 
 
 
 

, 

 
for all 𝑡 ≤ 0. Figure 2 depicts the solution of Example 5.2  for 𝛼 = 0.9, 𝑁 = 10000. The crisp 
shape of this example has originally been studied in [15]. 
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Figure 2. Lower and upper bound solutions of Example 5.2 for 𝝁 = 𝟎, 𝟏 using the proposed method. 

 
 

 
6. Conclusion 
  
Using a new representation of the 𝛼-level sets of the fuzzy time-delay system, we successfully 
studied the first order linear time-delay dynamical systems with fuzzy matrices. Since this 
representation is perfectly adapted to the combination of the fuzzy time-delay differential 
equations, the solution of the linear fuzzy time-delay equation can be easily inherited from the 
solution of the classical time-delay differential equations. For further research, we will 
investigate the properties of the fuzzy time-delay dynamical systems. Several issues for fuzzy 
time-delay dynamical systems, which could not adequately be addressed in this paper,  require 
further work. Fuzzy time-delay dynamical systems with multiple time lags should be studied in 
more details. Also further research is in progress to apply and extend this new approach to solve 
𝑛-order fuzzy time-delay differential equations. This issue is subject to current research. 
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