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Abstract
In this paper, we study the generalized Hyers-Ulam stability of the quartic functional equation

f(x+ 3y) − 5f(x+ 2y) + 10f(x+ y) − 10f(x) + 5f(x− y) − f(x− 2y) = 0,

by applying the fixed point method.
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1. Introduction

The stability problem of the functional equations stems from Ulam’s well known question about the
stability of group homomorphisms (see [16]):

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0, does there exist
an δ > 0 such that if a function h : G1 → G2 satisfies the inequality d(h(xy),h(x)h(y)) < δ for all
x,y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

In 1941, Hyers [9] affirmatively answered the Ulam’s question for the additive functional equation
under the assumption that G1 and G2 are Banach spaces. Indeed, Hyers proved that each solution of
inequality ‖f(x+ y) − f(x) − f(y)‖ 6 ε, can be approximated by an exact solution (an additive function).
In this case, we say that the Cauchy additive functional equation, f(x + y) = f(x) + f(y), satisfies the
Hyers-Ulam stability or it is stable in the sense of Hyers and Ulam.

Since then, the stability of various functional equations has been extensively studied by a number of
mathematicians (e.g., see [1–3, 8, 10–12, 15] and the references therein).
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Every solution of the Cauchy additive functional equation

f(x+ y) − f(x) − f(y) = 0,

is called an additive mapping, and each solution of the quadratic functional equation

f(x+ y) + f(x− y) − 2f(x) − 2f(y) = 0,

is called a quadratic mapping.
In this paper, we will deal with a special type of quartic functional equation

Df(x,y) = 0, (1.1)

where we define

Df(x,y) := f(x+ 3y) − 5f(x+ 2y) + 10f(x+ y) − 10f(x) + 5f(x− y) − f(x− 2y),

for all (x,y) in the domain of f. It is not difficult to verify that the mapping f(x) = ax4 +bx3 + cx2 +dx+ e
is a solution to this equation when a,b, c,d, e are real constants. We remind that a mapping f is called a
quartic mapping provided that there exist real numbers a,b, c,d, e so that f(x) = ax4 + bx3 + cx2 +dx+ e.
For the case of a = 1 and b = −1, Lee [14] proved the stability of (1.1) for restricted domains in Banach
spaces.

In this paper, we will prove that every solution of functional equation (1.1) with f(0) = 0 is a quartic
mapping and we will introduce a strictly contractive mapping which allows us to use the fixed point
theory in the sense of Cădariu and Radu [4–6]. And then we will adopt the fixed point method for
proving the stability of the functional equation (1.1). The key point is that starting from the mapping
f satisfying (1.1) approximately, we construct the exact solution F of (1.1) explicitly by using either the
formula

F(x) = lim
n→∞

(
n∑

i=0
nCi

(−1)n−i30i

81n
fo(32n−ix) +

n∑
i=0

nCi
(−1)n−i90i

729n
fe(32n−ix)

)
,

or

F(x) = lim
n→∞

n∑
i=0

nCi

(
30i(−81)n−ifo

(
x

32n−i

)
+ 90i(−729)n−ife

(
x

32n−i

))
.

In the last step we will approximate f with F.

2. Main results

We will use Margolis and Diaz’s theorem in fixed point theory. Recently, this theorem has been widely
used to prove the stability of various functional equations.

Theorem 2.1 ([7]). Assume that (S,d) is a complete generalized metric space which means that the metric d may
assume infinite values. Moreover, assume that J : S → S is a strictly contractive mapping with the Lipschitz
constant 0 < L < 1. Then, for each given element x ∈ S, either

d
(
Jnx, Jn+1x

)
=∞, ∀ n ∈N∪ {0},

or there exists a k ∈N∪ {0} such that

(1) d(Jnx, Jn+1x) <∞, for all n > k;

(2) the sequence {Jnx} is convergent to a fixed point y∗ of J;

(3) y∗ is the unique fixed point of J in T := {y ∈ S |d(Jkx,y) <∞};
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(4) d(y,y∗) 6 1
1−Ld(y, Jy), for all y ∈ T .

Throughout this paper, let V and W be real vector spaces and let Y be a real Banach space. For a given
mapping f : V →W, we use the following abbreviations

fe(x) :=
1
2
(
f(x) + f(−x)

)
and fo(x) :=

1
2
(
f(x) − f(−x)

)
,

for all x ∈ V .
In the following theorem, we prove the generalized Hyers-Ulam stability of the functional equation

(1.1) by using the fixed point method (Theorem 2.1).

Theorem 2.2. Assume that a mapping ϕ : V × V → [0,∞) satisfies the condition

ϕ(3x, 3y) 6
(√

306 − 15
)
Lϕ(x,y), (2.1)

for all x,y ∈ V and for some constant 0 < L < 1 and let

Φ(x) =
1

729
(
10ϕe(0, 3x) + 42ϕe(0, 2x) + 480ϕe(0, x) + 180ϕe(x, x)

)
,

where
ϕe(x,y) =

1
2
(
ϕ(x,y) +ϕ(−x,−y)

)
.

If a mapping f : V → Y with f(0) = 0 satisfies the inequality

‖Df(x,y)‖ 6 ϕ(x,y), (2.2)

for all x,y ∈ V , then there exists a unique solution F : V → Y of (1.1) such that

‖f(x) − F(x)‖ 6 1
1 − L

Φ(x), (2.3)

for all x ∈ V . In particular, F is represented by

F(x) = lim
n→∞

n∑
i=0

nCi

(
(−1)n−i30i

81n
fo(32n−ix) +

(−1)n−i90i

729n
fe(32n−ix)

)
, (2.4)

for all x ∈ V .

Proof. Let S be the set of all functions g : V → Y with g(0) = 0. We introduce the generalized metric d in
S defined by

d(g,h) = inf
{
K > 0 | ‖g(x) − h(x)‖ 6 KΦ(x), for all x ∈ V

}
.

It is easy to verify that (S,d) is a complete generalized metric space (see [6, Theorem 2.5] or the proof of
[13, Theorem 3.1]).

Now we consider the mapping J : S→ S, which is defined by

Jg(x) =
180
729

g(3x) −
90
729

g(−3x) −
5

729
g(9x) +

4
729

g(−9x), (2.5)

for all x ∈ V . Applying mathematical induction, we can prove the equality

Jng(x) =

n∑
i=0

nCi

(
(−1)n−i30i

81n
go
(
32n−ix

)
+

(−1)n−i90i

729n
ge
(
32n−ix

))
, (2.6)

for all n ∈N∪ {0} and x ∈ V .
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Indeed it follows from (2.6) that

J0g(x) = g(x) = go(x) + ge(x),

and using the oddness and the evenness of go and ge of (2.6) we get

Jn+1g(x) = J
(
Jng(x)

)
=

135
729

Jng(3x) −
135
729

Jng(−3x) +
45
729

Jng(3x) +
45

729
Jng(−3x)

−
9

1458
Jng(9x) +

9
1458

Jng(−9x) −
1

1458
Jng(9x) −

1
1458

Jng(−9x)

=
270
729

n∑
i=0

nCi
(−1)n−i30i

81n
go
(
32n+1−ix

)
+

90
729

n∑
i=0

nCi
(−1)n−i90i

729n
ge
(
32n+1−ix

)
−

9
729

n∑
i=0

nCi
(−1)n−i30i

81n
go
(
32n+2−ix

)
−

1
729

n∑
i=0

nCi
(−1)n−i90i

729n
ge
(
32n+2−ix

)
=

270
729

n+1∑
i=1

nCi−1
(−1)n+1−i30i−1

81n
go
(
32n+2−ix

)
+

90
729

n+1∑
i=1

nCi−1
(−1)n+1−i90i−1

729n
ge
(
32n+2−ix

)
−

9
729

n∑
i=0

nCi
(−1)n−i30i

81n
go
(
32n+2−ix

)
−

1
729

n∑
i=0

nCi
(−1)n−i90i

729n
ge
(
32n+2−ix

)
.

Furthermore, by using the well known formula nCi−1 + nCi = n+1Ci, we obtain

Jn+1g(x) =

n+1∑
i=1

nCi−1
(−1)n+1−i30i

81n+1 go
(
32n+2−ix

)
+

n+1∑
i=1

nCi−1
(−1)n+1−i90i

729n+1 ge
(
32n+2−ix

)
−

n∑
i=0

nCi
(−1)n−i30i

81n+1 go
(
32n+2−ix

)
−

n∑
i=0

nCi
(−1)n−i90i

729n+1 ge
(
32n+2−ix

)
=

n+1∑
i=0

n+1Ci

(
(−1)n+1−i30i

81n+1 go
(
32n+2−ix

)
+

(−1)n+1−i90i

729n+1 ge
(
32n+2−ix

))
,

which implies the validity of (2.6) for all n ∈N∪ {0}.
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Assume g,h ∈ S and suppose K ∈ [0,∞] is an arbitrary constant satisfying d(g,h) 6 K. From the
definitions of d and Φ and by (2.1), we note that Φ(−x) = Φ(x) and Φ(3x) 6 (

√
306 − 15)LΦ(x) for all

x ∈ V . Hence, we further get

‖Jg(x) − Jh(x)‖ 6 5
729
‖g(9x) − h(9x)‖+ 4

729
‖g(−9x) − h(−9x)‖

+
180
729
‖g(3x) − h(3x)‖+ 90

729
‖g(−3x) − h(−3x)‖

6 K

(
9

729
Φ(9x) +

270
729

Φ(3x)
)

6 K

(√
306 − 15

81
LΦ(3x) +

30
81
Φ(3x)

)

6 K

(√
306 − 15

)2
+ 30

(√
306 − 15

)
81

LΦ(x)

6 LKΦ(x),

for all x ∈ V , which implies that
d(Jg, Jh) 6 Ld(g,h),

for any g,h ∈ S. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L.
Moreover, it follows from (1.1) that

Dfe(x,y) =
1
2
f(x+ 3y) +

1
2
f(−x− 3y) −

5
2
f(x+ 2y) −

5
2
f(−x− 2y)

+ 5f(x+ y) + 5f(−x− y) − 5f(x) − 5f(−x)

+
5
2
f(x− y) +

5
2
f(−x+ y) −

1
2
f(x− 2y) −

1
2
f(−x+ 2y),

(2.7)

and

Dfo(x,y) =
1
2
f(x+ 3y) −

1
2
f(−x− 3y) −

5
2
f(x+ 2y) +

5
2
f(−x− 2y)

+ 5f(x+ y) − 5f(−x− y) − 5f(x) + 5f(−x)

+
5
2
f(x− y) −

5
2
f(−x+ y) −

1
2
f(x− 2y) +

1
2
f(−x+ 2y),

(2.8)

for all x,y ∈ V . On account of (2.5), and by a long and tedious calculation, we obtain

1
729

(
Dfe(0, 3x) + 6Dfe(0, 2x) + 75Dfe(0, x) + 36Dfe(x, x)

)
+

1
81
(
Dfo(0, 3x) + 4Dfo(0, 2x) + 45Dfo(0, x) + 16Dfo(x, x)

)
= f(x) − Jf(x).

(2.9)

Hence, by (2.2) and since ‖Dfo(x,y)‖ 6 ϕe(x,y) and ‖Dfe(x,y)‖ 6 ϕe(x,y), we see that

‖f(x) − Jf(x)‖ = 1
729
‖Dfe(0, 3x) + 6Dfe(0, 2x) + 75Dfe(0, x) + 36Dfe(x, x)‖

+
1
81
‖Dfo(0, 3x) + 4Dfo(0, 2x) + 45Dfo(0, x) + 16Dfo(x, x)‖

6
10ϕe(0, 3x) + 42ϕe(0, 2x) + 480ϕe(0, x) + 180ϕe(x, x)

729
=Φ(x),
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for all x ∈ V . It implies that d(f, Jf) 6 1 <∞ from the definition of d.
Therefore, according to Theorem 2.1, the sequence {Jnf} converges to the unique fixed point F : V → Y

of J in the set T = {g ∈ S |d(f,g) <∞}, which is represented by (2.4) for all x ∈ V . Further, it follows from
Theorem 2.1 (4) that

d(f, F) 6
1

1 − L
d(f, Jf) 6

1
1 − L

,

and this inequality implies the validity of (2.3). By the definition of F, together with (2.1), (2.2), and (2.6),
we have

‖DF(x,y)‖ = lim
n→∞ ‖DJnf(x,y)‖

= lim
n→∞

∥∥∥∥∥
n∑

i=0
nCi

(−1)n−i30i

81n
Dfo(32n−ix, 32n−iy)

+

n∑
i=0

nCi
(−1)n−i90i

729n
Dfe(32n−ix, 32n−iy)

∥∥∥∥∥
6 lim

n→∞
n∑

i=0
nCi

(
30i

81n
+

90i

729n

)
ϕe(32n−ix, 32n−iy)

62 lim
n→∞

n∑
i=0

nCi
30i

81n
ϕe(32n−ix, 32n−iy)

62 lim
n→∞

n∑
i=0

nCi
30i(
√

306 − 15)n−iLn−i

81n
ϕe(3nx, 3ny)

=2 lim
n→∞ (30 + (

√
306 − 15)L)n

81n
ϕe(3nx, 3ny)

62 lim
n→∞ (30 + (

√
306 − 15))n

81n
ϕe(3nx, 3ny)

62 lim
n→∞ (

√
306 + 15)n(

√
306 − 15)nLn

81n
ϕe(x,y)

6 lim
n→∞ 2Lnϕe(x,y)

=0,

(2.10)

for all x,y ∈ V , i.e., F is a solution of the functional equation (1.1).
Finally, in view of (2.9) and (2.10), if F is a solution of the functional equation (1.1), then the equality

F(x) − JF(x) =
1

729
(
DFe(0, 3x) + 6DFe(0, 2x) + 75DFe(0, x) + 36DFe(x, x)

)
+

1
81
(
DFo(0, 3x) + 4DFo(0, 2x) + 45DFo(0, x) + 16DFo(x, x)

)
=0,

implies that F is a fixed point of J.

Roughly speaking, the previous theorem dealt with the generalized Hyers-Ulam stability of the quartic
functional equation (1.1) for the case of ϕ(3x, 3y) < 3ϕ(x,y).

In the following theorem, we now deal with one of cases for ϕ(3x, 3y) > 3ϕ(x,y).

Theorem 2.3. For a given mapping f : V → Y with f(0) = 0, suppose there exists a mapping ϕ : V2 → [0,∞)
such that inequality (2.2) holds for all x,y ∈ V . If there exists a constant 0 < L < 1 such that

Lϕ(3x, 3y) >
10√

261 − 16
ϕ(x,y), (2.11)
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for all x,y ∈ V , then there exists a unique solution F : V → Y of (1.1), for which the inequality

‖f(x) − F(x)‖ 6 1
1 − L

Ψ(x), (2.12)

holds for all x ∈ V , where

Ψ(x) = 2ϕe

(
0,
x

3

)
+ 10ϕe

(
0,

2x
9

)
+ 120ϕe

(
0,
x

9

)
+ 52ϕe

(
x

9
,
x

9

)
.

In particular, F is represented by

F(x) = lim
n→∞

n∑
i=0

nCi

(
30n−i(−81)ifo

(
x

32n−i

)
+ 90n−i(−729)ife

(
x

32n−i

))
, (2.13)

for all x ∈ V .

Proof. Let S be the set given in the proof of Theorem 2.2. Similarly as in the proof of Theorem 2.2, we
define a generalized metric d in S by

d(g,h) = inf
{
K > 0 | ‖g(x) − h(x)‖ 6 KΨ(x), for all x ∈ V

}
.

It is not difficult to verify that (S,d) is a complete generalized metric space (or see the proof of [13,
Theorem 3.1]).

Now we consider the mapping J : S→ S defined by

Jg(x) = 60g
(
x

3

)
+ 30g

(
−x

3

)
− 405g

(
x

9

)
− 324g

(
−x

9

)
,

for all x ∈ V .
As we did in (2.6), applying mathematical induction, we can prove the following equality

Jng(x) =

n∑
i=0

nCi

(
30i(−81)n−igo

(
x

32n−i

)
+ 90i(−729)n−ige

(
x

32n−i

))
,

for all n ∈N∪ {0} and x ∈ V .
Assume g,h ∈ S and suppose K ∈ [0,∞] is an arbitrary constant satisfying d(g,h) 6 K. From the

definition of d, we have

‖Jg(x) − Jh(x)‖ 660
∥∥∥∥g(x3

)
− h

(
x

3

)∥∥∥∥+ 30
∥∥∥∥g(−x

3

)
− h

(
−x

3

)∥∥∥∥
+ 405

∥∥∥∥g(x9
)
− h

(
x

9

)∥∥∥∥+ 324
∥∥∥∥g(−x

9

)
− h

(
−x

9

)∥∥∥∥
6729KΨ

(
x

9

)
+ 90KΨ

(
x

3

)
6L2 (

√
2753 − 45)2

729
KΨ(x) + 90

√
2753 − 45

729
LKΨ(x)

6LKΨ(x),

for all x ∈ V , which implies that
d(Jg, Jh) 6 Ld(g,h),

for any g,h ∈ S. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L.
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Moreover, as we did in the proof of Theorem 2.2, it follows from (1.1), (2.2), (2.7), and (2.8) that

‖f(x) − Jf(x)‖ =
∥∥∥∥Dfe(0,

x

3

)
+ 6Dfe

(
0,

2x
9

)
+ 75Dfe

(
0,
x

9

)
+ 36Dfe

(
x

9
,
x

9

)
+Dfo

(
0,
x

3

)
+ 4Dfo

(
0,

2x
9

)
+ 45Dfo

(
0,
x

9

)
+ 16Dfo

(
x

9
,
x

9

)∥∥∥∥
6 2ϕe

(
0,
x

3

)
+ 10ϕe

(
0,

2x
9

)
+ 120ϕe

(
0,
x

9

)
+ 52ϕe

(
x

9
,
x

9

)
= Ψ(x),

for all x ∈ V . It means that d(f, Jf) 6 1 <∞ from the definition of d.
Therefore, according to Theorem 2.1, the sequence {Jnf} converges to the unique fixed point F : V → Y

of J in the set T = {g ∈ S | d(f,g) <∞}, which is represented by (2.13) for all x ∈ V . Notice that

d(f, F) 6
1

1 − L
d(f, Jf) 6

1
1 − L

,

and this inequality implies (2.12). By the definition of F, together with (2.2) and (2.11), we get

‖DF(x,y)‖ = lim
n→∞ ‖DJnf(x,y)‖

= lim
n→∞

∥∥∥∥∥
n∑

i=0
nCi30i(−81)n−ifo

(
x

32n−i
,
y

32n−i

)

+

n∑
i=0

nCi90i(−729)n−ife

(
x

32n−i
,
y

32n−i

)∥∥∥∥∥
6 lim

n→∞
n∑

i=0
nCi(30i81n−i + 90n−i729i)ϕe

(
x

32n−i
,
y

32n−i

)

6 2 lim
n→∞

n∑
i=0

nCi90i729n−iϕe

(
x

32n−i
,
y

32n−i

)

6 2 lim
n→∞

n∑
i=0

nCi90i(
√

2753 − 45)n−iLn−iϕe

(
x

3n
,
y

3n

)
6 2 lim

n→∞(90 + (
√

2753 − 45)L)nϕe

(
x

3n
,
y

3n

)
6 2 lim

n→∞ (
√

2753 + 45)n(
√

2753 − 45)n

729n
Lnϕe(x,y)

= 2 lim
n→∞Lnϕe(x,y)

= 0,

for all x,y ∈ V , i.e., F is a solution of functional equation (1.1).
Finally, we notice that if F is a solution of functional equation (1.1), then it follows from the equality

F(x) − JF(x) =DFe

(
0,
x

3

)
+ 6DFe

(
0,

2x
9

)
+ 75DFe

(
0,
x

9

)
+ 36DFe

(
x

9
,
x

9

)
+DFo

(
0,
x

3

)
+ 4DFo

(
0,

2x
9

)
+ 45DFo

(
0,
x

9

)
+ 16DFo

(
x

9
,
x

9

)
,

that F is a fixed point of J.
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