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Abstract

In this paper, we define some new sequence spaces cI0(H), c
I(H), `I∞(H), and `∞(H) as a domain of triangle Hilbert matrix

and study some topological and algebraic properties of these spaces. Further, we study some inclusion relations concerning
these spaces.

Keywords: Hilbert matrix, Hilbert I-convergence, Hilbert I-Cauchy, Hilbert I-bounded.

2010 MSC: 40A35, 40C05, 47B37.

c©2020 All rights reserved.

1. Introduction

Let N and R, denote the sets of all natural and real numbers, respectively. Byω, we denotes the vector
space of all real or complex valued sequences. Any vector subspace of ω is called a sequence space. A
family of sets I ⊂ P(X) (where P(X) is the power set of a non–empty set X) of subsets of X is said to be
ideal in X if and only if (i) ∅ ∈ I, (ii) for each A,B ∈ I we have A ∪ B ∈ I, (iii) for each A ∈ I and B ⊂ A
we have B ∈ I and I is called an admissible in X if and only if I 6= X and it contains all singletons. A filter
on X is a non-empty family of sets F ⊂ P(X) satisfying (i) ∅ /∈ F, (ii) for each A,B ∈ F we have A∩B ∈ F,
(iii) for each A ∈ F and B ⊃ A we have B ∈ F. For each ideal I there is a filter F(I) corresponding to
I, that is, F(I) = {K ⊆ X : Kc ∈ I}, where Kc = X\K. Depending on the structure of ideals of subsets of
N, Kostyrko et al. [18] defined the notion of I-convergence as a generalization of statistical convergence
introduced by Fast [6] and Steinhaus [25]. Later, the notion of I-convergence was further investigated
from the sequence space point of view and linked with the summability theory by Šalát et al. [23, 24],
Khan and Nazneen [15], Khan et al. [17], Filipów and Tryba [7] and many other authors. For further
details on ideal convergence, we refer to [10–13, 16, 26–28].
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Throughout the paper, by `∞, c, and c0 we denote the spaces of all bounded, convergent, and null
sequences, respectively. Let A = (ank) be an infinite matrix of real or complex numbers ank, where
n,k ∈N and let x = (xk) ∈ ω. Consider the new sequence

An(x) =

∞∑
k=0

ankxk, for each n ∈N, (1.1)

that is, the sequence obtained on transforming the sequence x by the matrix A. Assume that the series on
the right hand side of (1.1) converges for each n ∈N. Then the transformation A applies to the sequence
x, and the sequence An(x) is called the A-transform of x. The necessary and sufficient conditions for
those matrices A that maps convergent sequence into another convergent sequence were given by well
known Kojima-Schur Theorem 4.1,I (see, [4], p. 63) as follows:

(i)
∑∞
k=1 |ank| 6M for every n > n0;

(ii) limn→∞ ank = αk for every fixed k;
(iii)

∑∞
k=1 ank = An → α as n→∞.

An infinite matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all n ∈ N. Also a
triangle matrix A = (ank) uniquely has an inverse A−1 which is a triangle matrix. Let λ be an arbitrary
sequence space. Then for every sequence x = (xk) ∈ λ, the matrix domain of an infinite matrix A in a
sequence space λ is a sequence space defined by

λA := {x = (xk) ∈ ω : Ax ∈ λ}. (1.2)

Motivated by various properties of matrix domains of triangles such as, if A is a triangle and λ is a BK-
space, then λA is also a BK-space with the norm given by ‖x‖λA = ‖Ax‖λ for all x ∈ λA (see [2, Theorem
8.1.4]), the study of such matrices attracted the attention of many researchers to dig deeper in this area,
for instance [1, 3, 19–21], and the references therein.

Recall in [9] the Hilbert matrix is an infinite matrix H = (ank) whose entries are ank = (n+ k− 1)−1

for n,k ∈ N. The Hilbert matrix H was used in the theory of sequence spaces and considered as a
bounded linear operator on the spaces of all p-summable sequences `p with norm ‖H‖p = π

sin(π/p) for
1 < p <∞ (see, [8]). Also, the Hilbert matrix can be viewed as an operator on spaces of analytic functions
by its action on Taylor coefficients in [5]. Recently, by using the square Hilbert matrix H of order n,
Polat [22] has introduced some new sequence spaces h∞, hc and h0 as the sets of all sequences whose
H-transforms of the sequence x = (xk) ∈ ω are in the spaces `∞, c and c0, respectively, that is

λH =

{
x = (xk) ∈ ω :

(
m∑
k=1

xk
n+ k− 1

)
∈ λ

}
for λ ∈ {c0, c, `∞}.

Throughout the paper cI0, cI and `I∞, denote the spaces of all I-null, I-convergent, and I-bounded
sequences, respectively. In this paper, by using the triangle Hilbert matrix H = (ank) defined by

ank =

{
1

n+k−1 , if 1 6 k 6 n,
0, if k > n

for all n,k ∈ N, one can easily check that the conditions (i), (ii), and (iii) hold for the triangle Hilbert
matrix H, and the notion of ideal convergence we define new sequence spaces cI0(H), c

I(H), `I∞(H) and
`∞(H) as the sets of all sequences whose H-transforms are in the spaces cI0, cI, `I∞ and `∞, respectively.
We define the sequence Hn(x) that will be frequently used, as H-transform of the sequence x = (xk) ∈ ω,
as follows:

Hn(x) =

n∑
k=1

xk
n+ k− 1

for n,k ∈N. (1.3)

Further, we study some topological and algebraic properties and present some inclusion relations on these
results.
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Now, we recall some definitions and lemmas which will be used throughout the paper.

Definition 1.1 ([25]). If K = {k ∈ K : k 6 n} is a subset of N, then the natural density of the set K is given
by

d(K) = lim
n→∞ 1

n
|K|

whenever the limit exists, here |B| denotes the cardinality of the set B.

Definition 1.2 ([6]). A sequence x = (xk) ∈ ω is said to be statistically convergent to a number ` ∈ R if,
for every ε > 0, d({k ∈N : |xk− `| > ε}) = 0. And we write st– lim xk = `. In case, ` = 0 then x = (xk) ∈ ω
is said to be st-null.

Definition 1.3 ([23]). A sequence x = (xk) ∈ ω is said to be I-Cauchy if, for every ε > 0, there exists a
number N = N(ε) ∈N such that {k ∈N : |xk − xN| > ε} ∈ I.

Definition 1.4 ([18]). A sequence x = (xk) ∈ ω is said to be I-convergent to a number ` ∈ R if, for every
ε > 0, {k ∈ N : |xk − `| > ε} ∈ I. And we write I– lim xk = `. In case, ` = 0 then (xk) ∈ ω is said to be
I-null.

Definition 1.5 ([14]). A sequence x = (xk) ∈ ω is said to be I-bounded if there exists K > 0, such that
{k ∈N : |xk| > K} ∈ I.

Definition 1.6 ([23]). Let x = (xk) and z = (zk) be two sequences. We say that xk = zk for almost all k
relative to I (in short a.a.k.r.I) if {k ∈N : xk 6= zk} ∈ I.

Definition 1.7 ([23]). A sequence space E is said to be solid or normal, if (αkxk) ∈ E whenever (xk) ∈ E
and for any sequence of scalars (αk) ∈ ω with |αk| < 1, for every k ∈N.

Definition 1.8 ([23]). Let K = {ki ∈N : k1 < k2 < · · · } ⊆N and E be a sequence space. A K-step space of
E is a sequence space

λEK = {(xki) ∈ ω : (xk) ∈ E}.

A canonical pre-image of a sequence (xki) ∈ λEK is a sequence (yk) ∈ ω defined as follows:

yk =

{
xk, if k ∈ K,
0, otherwise.

A canonical pre-image of a step space λEK is a set of canonical pre-images of all elements in λEK, i.e., y is in
canonical pre-image of λEK iff y is canonical pre-image of some element x ∈ λEK.

Definition 1.9 ([23]). A sequence space E is said to be monotone, if it contains the canonical pre-images
of its step space.

Lemma 1.10 ([23]). Every solid space is monotone.

Lemma 1.11 ([24]). Let K ∈ F(I) and M ⊆N. If M /∈ I, then M∩K /∈ I.

2. Main results

In this section, we define new sequence spaces cI0(H), c
I(H), `I∞(H), and `∞(H) as the sets of all

sequences whose H-transforms are in the spaces cI0, cI, `I∞, and `∞, respectively. Further, we study some
topological and algebraic properties and present some inclusion relations on these resulting. Throughout
the paper, we suppose that the sequence x = (xk) ∈ ω and Hn(x) are connected with the relation (1.3)
and I is an admissible ideal of subset of N.

cI0(H) := {x = (xk) ∈ ω : {n ∈N : |Hn(x)| > ε} ∈ I} ,
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cI(H) := {x = (xk) ∈ ω : {n ∈N : |Hn(x) − `| > ε, for some ` ∈ R} ∈ I} ,

`I∞(H) := {x = (xk) ∈ ω : ∃K > 0 s.t {n ∈N : |Hn(x)| > K} ∈ I} ,
`∞(H) := {x = (xk) ∈ ω : sup

n

|Hn(x)| <∞}.

We write

mI0(H) := c
I
0(H)∩ `∞(H), and mI(H) := cI(H)∩ `∞(H).

With the notation of (1.2), the sequence spaces cI0(H), c
I(H), `I∞(H), mI(H), and mI0(H) can be redefined

as follows:

cI0(H) = (cI0)H, cI(H) = (cI)H, `I∞(H) = (`I∞)H, mI(H) = (mI)H, and mI0(H) = (mI0)H.

Definition 2.1. Let I is an admissible ideal of subset of N. If for each ε > 0 there exists a number
N = N(ε) ∈N such that {n ∈N : |Hn(x) −HN(x)| > ε} ∈ I then a sequence x = (xk) ∈ ω is called Hilbert
I-Cauchy.

Example 2.1. Define If = {A ⊆N : A is finite}. If is an admissible ideal in N and cIf(H) = hc.

Example 2.2. Define a non-trivial ideal as Id = {A ⊆ N : d(A) = 0}, where d(A) is the natural density
of the set A. In this case cId(H) = S(H). Where we define S(H) as the space of all Hilbert statistically
convergent sequences as follows:

S(H) :=
{
x = (xk) ∈ ω : d

(
{n ∈N : |Hn(x) − `| > ε}

)
= 0, for some ` ∈ R

}
.

Remark 2.2. Hilbert convergent sequence is obviously Hilbert statistically convergent since all finite subsets
of the natural numbers have density zero. However, the converse is not true. For example, define the
sequence x = (xk) ∈ ω such that

Hn(x) =

{
1, if n is a square,
0, otherwise,

that is, Hn(x) = {1, 0, 0, 1, 0, 0, 0, 0, 1, 0, . . . } and let ` = 0. Then,

{n ∈N : |Hn(x) − `| > ε} ⊂ {1, 4, 9, 16, . . . , i2, . . . }.

Since the set of squares of natural numbers has natural density zero, we have

d({n ∈N : |Hn(x) − `| > ε}) = 0.

This implies that the sequence (xk) ∈ S(H), but (xk) /∈ hc.

Theorem 2.3. The sequence spaces cI(H), cI0(H), `
I∞(H), mI0(H), and mI(H) are linear over R.

Proof. Let x = (xk), y = (yk) be two arbitrary elements of the space cI(H) and α, β are scalars. Now, since
x,y ∈ cI(H), then for given ε > 0, there exist `1, `2 ∈ R, such that{

n ∈N : |Hn(x) − `1| >
ε

2

}
∈ I and

{
n ∈N : |Hn(y) − `2| >

ε

2

}
∈ I.

Now, let

A1 =

{
n ∈N : |Hn(x) − `1| <

ε

2|α|

}
∈ F(I), A2 =

{
n ∈N : |Hn(y) − `2| <

ε

2|β|

}
∈ F(I),
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be such that Ac1 ,Ac2 ∈ I. Then

A3 = {n ∈N : |Hn(αx+βy) − (α`1 +β`2)| < ε}

⊇
{{
n ∈N : |Hn(x) − `1| <

ε

2|α|

}
∩
{
n ∈N : |Hn(y) − `2| <

ε

2|β|

}}
.

(2.1)

Thus, the sets on right hand-side of equation (2.1) belong to F(I). By definition of filter associated with
ideal, the complement of the set on left-hand side of (2.1) belongs to I. This implies that (αx+βy) ∈ cI(H).
Hence, cI(H) is linear space. The proof of the remaining results is similar.

Theorem 2.4. The spaces X(H) are normed spaces with the norm

‖x‖X(H) = sup
n

|Hn(x)|, where X ∈
{
cI, cI0, `I∞, `∞}. (2.2)

Proof. The proof of the result is easy in view of existing techniques and hence omitted.

Theorem 2.5. A sequence x = (xk) ∈ ω is Hilbert I-convergent if and only if for every ε > 0, there exists
N = N(ε) ∈N, such that

{n ∈N : |Hn(x) −HN(x)| < ε} ∈ F(I). (2.3)

Proof. Suppose that the sequence x = (xk) ∈ ω is Hilbert I-convergent to some number ` ∈ R, then for a
given ε > 0, we have

Aε =
{
n ∈N : |Hn(x) − `| <

ε

2

}
∈ F(I).

Fix an integer N = N(ε) ∈ Aε. Then, we have

|Hn(x) −HN(x)| 6 |Hn(x) − `|+ |`−HN(x)| <
ε

2
+
ε

2
= ε

for all n ∈ Aε. Hence, (2.3) holds.
Conversely, suppose that (2.3) holds for all ε > 0. Then,

Bε = {n ∈N : Hn(x) ∈ [Hn(x) − ε,Hn(x) + ε]} ∈ F(I), for all ε > 0.

Let Jε = [Hn(x) − ε,Hn(x) + ε]. Fixing ε > 0, we have Bε ∈ F(I) and Bε
2
∈ F(I). Hence, Bε ∩ Bε2 ∈ F(I).

This implies that
J = Jε ∩ Jε2 6= ∅,

that is,
{n ∈N : Hn(x) ∈ J} ∈ F(I)

and thus
diam (J) 6

1
2

diam (Jε),

where the diam of J denotes the length of an interval J. Proceeding in this way, by induction we get a
sequence of closed intervals Jε = I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ · · · such that

diam (In) 6
1
2

diam (In−1), for n = (2, 3, . . . )

and
{n ∈N : Hn(x) ∈ In} ∈ F(I).

Then, there exists a number ` ∈
⋂
n∈N In and it is a routine work to verify that ` = I– limHn(x) showing

that x = (xk) ∈ ω is Hilbert I-convergent. Hence the result.
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Theorem 2.6. The inclusions cI0(H) ⊂ cI(H) ⊂ `I∞(H) are strict.

Proof. The inclusion cI0(H) ⊂ cI(H) is obvious. Now, to show its strictness, consider the sequence x =
(xk) ∈ ω such that Hn(x) = 2. It easy to see that the sequence Hn(x) ∈ cI but Hn(x) /∈ cI0, that is,
x ∈ cI(H)\cI0(H). Next, let x = (xk) ∈ cI(H). Then there exists ` ∈ R such that I– limHn(x) = `, that is,

{n ∈N : |Hn(x) − `| > ε} ∈ I.

We have
|Hn(x)| = |Hn(x) − `+ `| 6 |Hn(x) − `|+ |`| .

From this it easily follows that the sequence (xk) must belongs to `I∞(H). Further, we show the strictness
of the inclusion cI(H) ⊂ `I∞(H) by constructing the following example.

Example 2.3. Consider the sequence x = (xk) ∈ ω such that

Hn(x) =


√
n, if n is square,

1, if n is odd non-square,
0, if n is even non-square.

Then, the sequence Hn(x) ∈ `I∞, but Hn(x) /∈ cI which implies that the sequence x ∈ `I∞(H)\cI(H).
Thus, the inclusions cI0(H) ⊂ cI(H) ⊂ `I∞(H) is strict.

Remark 2.7. Hilbert bounded sequence is obviously Hilbert I-bounded as the empty set belongs to the
ideal I. However, the converse is not true. For example, consider the sequence x = (xk) ∈ ω such that

Hn(x) =

{
n2

n+1 , if n is prime,
0, otherwise.

Clearly Hn(x) is not a bounded sequence. However, {n ∈ N : |Hn(x)| > 1} ∈ I. Hence, (xk) is Hilbert
I-bounded.

Theorem 2.8. The sequence spaces:

(i) cI(H) and `∞(H), overlap but neither one contains the other;
(ii) cI0(H) and `∞(H), overlap but neither one contains the other.

Proof.

(i) We prove that cI(H) and `∞(H) are not disjoint. Consider the sequence x = (xk) ∈ ω such that
Hn(x) =

1
n for n ∈N. Then, x ∈ cI(H) but x ∈ `∞(H). Next, define the sequence x = (xk) ∈ ω such that

Hn(x) =

{√
n, if n is square,

0, otherwise.

Thus, x ∈ cI(H) but x /∈ `∞(H). Next, choose the sequence x = (xk) ∈ ω such that

Hn(x) =

{
n, if is even,
0, otherwise.

Then (x) ∈ `∞(H) but x /∈ cI(H).
(ii) The proof is similar to the proof of part one.

Theorem 2.9. The spaces mI(H) and mI0(H) are closed subspace of `∞(H).
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Proof. Let (x(i)k ) be a Cauchy sequence in mI(H) ⊂ `∞(H). Then, (x(i)k ) converges in `∞(H) and we have
limi→∞H(i)

n (x) = Hn(x). Let I− limH
(i)
n (x) = `i for each i ∈N. Then, we have to show that

(i) (`i) is convergent say to `;
(ii) I− limHn(x) = `.

(i) Since (x
(i)
k ) is a Cauchy sequence, for each ε > 0 there exists n0 ∈N such that∣∣∣H(i)

n (x) −H
(j)
n (x)

∣∣∣ < ε

3
, for all i, j > n0. (2.4)

Now let Ai and Aj be the following sets in I:

Ai =
{
n ∈N : |H

(i)
n (x) − `i| >

ε

3

}
(2.5)

and
Aj =

{
n ∈N : |H

(j)
n (x) − `j| >

ε

3

}
. (2.6)

Consider i, j > n0 and n /∈ Ai ∩Aj. Then we have

|`i − `j| 6 |H
(i)
n (x) − `i|+ |H

(j)
n (x) − `j|+ |H

(i)
n (x) −H

(j)
n (x)| < ε

by (2.4), (2.5), and (2.6). Thus, (`i) is a Cauchy sequence in R and thus convergent say to `, that is,
limi→∞ `i = `.
(ii) Let δ > 0 be given, then we can find m0 such that

|`i − `| <
δ

3
, for each i > m0. (2.7)

We have (x
(i)
k )→ xk as i→∞. Thus

|H
(i)
n (x) −Hn(x)| <

δ

3
, for each i > m0. (2.8)

Since (H
(j)
n (x)) is I-convergent to `j, there exists D ∈ I such that for each n /∈ D, we have

|H
(j)
n (x) − `j| <

δ

3
. (2.9)

Without loss of generality, let j > m0 then for all n /∈ D, we have by (2.7), (2.8), and (2.9) that

|Hn(x) − `| 6 |Hn(x) −H
(j)
n (x)|+ |H

(j)
n (x) − `j|+ |`j − `| < δ.

Hence (xk) is Hilbert I-convergent to `. Thus mI(H) is a closed subspace of `∞(H). Similarly the other
cases can be established.

Theorem 2.10. The sequence spaces cI(H), cI0(H), and `I∞(H) are BK-spaces according to their norms defined by
(2.2).

Proof. We know that the sequence spaces cI, cI0, and `I∞ are BK-spaces with their sup-norm. Furthermore,
(1.2) holds and the Hilbert matrix is a triangle matrix. By taking into account these three facts and
Theorem of Wilansky [29], we conclude that the sequence spaces are BK-spaces. This completes the proof
of the theorem.

Since the spaces mI(H) ⊂ `∞(H) and mI0(H) ⊂ `∞(H) are strict, in view of Theorem 2.9, we have the
following result.
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Theorem 2.11. The spaces mI(H) and mI0(H) are nowhere dense subset of `∞(H).
Theorem 2.12. The spaces cI0(H) and mI0(H) are solid and monotone.

Proof. We will prove the result for cI0(H) and for mI0(H) the result can be established similarly. Let
x = (xk) ∈ cI0(H). For ε > 0, the set

{n ∈N : |Hn(x)| > ε} (2.10)

belongs to I. Let α = (αk) be a sequence of scalars with |α| 6 1 for all k ∈N. Then,

|Hn(αx)| = |αHn(x)| 6 |α| |Hn(x)| 6 |Hn(x)| , for all n ∈N.

From this inequality and from (2.10) we have

{n ∈N : |Hn(αx)| > ε} ⊆ {n ∈N : |Hn(x)| > ε} ∈ I

implies that
{n ∈N : |Hn(αx)| > ε} ∈ I.

Therefore, (αxk) ∈ cI0(H). Hence, the space cI0(H) is solid, and hence by Lemma 1.10 the space cI0(H) is
monotone.

Theorem 2.13. If I is neither maximal nor I = If, then the spaces cI(H) and mI(H) are neither monotone nor
solid.

Proof. We prove this result with the help of the following example.

Example 2.4. Let I = If. Let K = {n ∈N : n is odd }. Consider the K-step space EK of E defined as:

EK = {(xk) ∈ ω : (xk) ∈ E}.

Define the sequence (yk) ∈ EK such that

Hn(y) =

{
Hn(x), if n ∈ K,
0, otherwise.

Consider the sequence (xk) such that Hn(x) = 3, for all n ∈ N. Then, (xk) ∈ E(H), but its K-step space
pre–image does not belongs to E(H), where E = cI and mI. Thus, E(H) are not monotone. Hence, by
Lemma 1.10 the spaces E(H) are not solid.

Theorem 2.14. Let x = (xk) ∈ ω and let I be a non-trivial admissible ideal in N. If there is a sequence
y = (yk) ∈ cI(H) such that Hn(x) = Hn(y) for almost all n relative to I, then x ∈ cI(H).

Proof. Suppose that Hn(x) = Hn(y) for almost all n relative to I, that is

{n ∈N : Hn(x) 6= Hn(y)} ∈ I.

And let (yk) be a sequence which is Hilbert I-convergent to `. Then, for every ε > 0, we have

{n ∈N : |Hn(y) − `| > ε} ∈ I.

Since I is an admissible ideal, then the result follows from the following inclusion

{n ∈N : |Hn(x) − `| > ε} ⊆ {n ∈N : Hn(x) 6= Hn(y)}∪ {n ∈N : |Hn(y) − `| > ε}.
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[1] F. Başar, B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55
(2003), 136–147. 1

[2] J. Boos, F. Cass, Classical and modern methods in summability, Oxford University Press, Oxford, (2000). 1
[3] M. Candan, Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Difference

Equ., 2014 (2014), 18 pages. 1
[4] R. G. Cooke, Infinite matrices and sequence spaces, Dover, New York, (2014). 1
[5] E. Diamantopoulos, A. G. Siskakis, Composition operators and the Hilbert matrix, Studia Math., 140 (2000), 191–198.

1
[6] H. Fast, Sur la convergence statistique, (French) Colloq. Math., 2 (1951), 241–244. 1, 1.2
[7] R. Filipów, J. Tryba, Ideal convergence versus matrix summability, Stud. Math., 245 (2019), 101–127. 1
[8] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, (1934). 1
[9] D. Hilbert, Ein beitrag zur theorie des legendre’schen polynoms, (German) Acta Math., 18 (1894), 155–159. 1

[10] M. Jeyaram Bharathi, S. Velmurugan, N. Subramanian, R. Srikanth, On Triple sequence space of Bernstein operator of
rough Iλ-statistical convergence of weighted g(A), J. Intel. Fuzzy Syst., 36 (2019), 13–27. 1

[11] M. Kemal Ozdemir, A. Esi, N. Subramanian, Rough convergence of Bernstein fuzzy I-convergent of χ3FI
f and χ3FI

f spaces
defined by Orlicz function, J. Fuzzy Math., 27 (2019), 707–721.

[12] V. A. Khan, K. M. A. S. Alshlool, S. A. A. Abdullah, Spaces of ideal convergent sequences of bounded linear operators,
Numer. Funct. Anal. Optim., 39 (2018), 1278–1290.

[13] V. A. Khan, K. M. A. S. Alshlool, S. A. A. Abdullah, R. K. A. Rababah, A. Ahmad, Some new classes of paranorm
ideal convergent double sequences of σ-bounded variation over n-normed spaces, Cogent Math. Stat., 5 (2018), 13 pages.
1

[14] V. A. Khan, K. Ebadullah, I-convergent difference sequence spaces defined by a sequence of moduli, J. Math. Comput.
Sci., 2 (2012), 265–273. 1.5

[15] V. A. Khan, N. Khan, On Zweier I-convergent double sequence spaces, Filomat, 30 (2016), 3361–3369. 1
[16] V. A. Khan, A. A. H. Makharesh, K. M. A. S. Alshlool, S. A. A. Abdullah, H. Fatima, On fuzzy valued lacunary ideal

convergent sequence spaces defined by a compact operator, J. Intel. Fuzzy Syst., 35 (2018), 4849–4855. 1
[17] V. A. Khan, R. K. A. Rababah, K. M. A. S. Alshlool, S. A. A. Abdullah, A. Ahmad, On Ideal convergence Fibonacci

difference sequence spaces, Adv. Difference Equ., 2018 (2018), 14 pages. 1
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