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Abstract
In the article, we consider the initial boundary value problem for the Gamma equation, which can be derived by trans-

forming the nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative
of the option price. We develop unconditionally monotone finite-difference schemes of second-order of local approximation on
uniform grids for the initial boundary value problem for the Gamma equation. Two-side estimates of the solution of the scheme
are established. By means of regularization principle, the previous results are generalized for construction of unconditionally
monotone finite-difference scheme (the maximum principle is satisfied without constraints on relations between the coefficients
and grid parameters) of the second-order of approximation on uniform grids for this equation. With the help of difference
maximum principle, the two-side estimates for difference solution are obtained at the arbitrary non-sign-constant input data of
the problem. A priori estimate in the maximum norm C is proved. It is interesting to note that the proven two-side estimates
for difference solution are fully consistent with the differential problem, and the maximal and minimal values of the difference
solution do not depend on the diffusion and convection coefficients. Computational experiments, confirming the theoretical
conclusions, are given.
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1. Introduction

Over the last decades, not only financial engineers but also mathematicians have paid special attention
to the valuation of derivative financial instruments. Indeed, since being introduced by Fischer Black and
Myron Scholes in 1973, the Black-Scholes model based on partial differential equation has been widely
employed in modern mathematical finance and become a common-sense approach for pricing options
as well as many other financial securities [8]. This mathematical model was derived from the principle
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that yielding profits from making portfolios of both short and long positions in options as well as their
underlying stocks should not be possible, if option prices are rightly priced in the market [2]. These
scholars indicated that a European options value on a stock, whose price or the log return of underlying
price is supposed to follow a geometric Brownian motion with constant volatility and drift, is determined
by a second-order parabolic equation concerning time and stock price.

A variety of numerical methods were used in previous papers for studying properties of typical non-
linear BlackScholes equations, see, for instance [1, 3, 4] and references there in.

Not only in mathematical physics, but also in economics, there is a need to solve partial differential
equations containing lower derivatives. For example, in financial mathematics, it is of interest to study
the Gamma equation obtained by transforming the nonlinear Black-Scholes equation into a quasilinear
parabolic equation [10, 11]. The approximate solution of the Gamma equation is the main goal of this
study.

In the theory of difference schemes [9, 14, 16, 18], the maximum principle is of great interest. In
particular, it is used to study the stability and convergence of a difference solution on a uniform norm.
Computational methods that satisfy the maximum principle are called monotone. Monotone schemes
play an important role in computational practice, since the corresponding discrete problems are well-
posed [7]. Moreover they provide numerical solution without oscillations even in the case of non-smooth
solutions [17].

It is non-less important that one can obtain lower estimates of the solutions to differential difference
problems, or in the general case, two-sided estimates for the solution of the problems. This is especially
important for investigation of theoretical properties of the computational methods approximating prob-
lems with unbounded nonlinearities, where it is necessary to prove that discrete solution belongs to a
neighborhood of the exact solution. As an example we investigate the Gamma equation modeling pricing
of options in financial mathematics. In this context, it is interesting to note the paper [5], in which two-
sided estimates for solution of difference schemes approximating Dirichlet problem for linear parabolic
equation are obtained in the discrete and continuous cases.

In the present paper, the Gamma equation is considered, on the basis of the technique from [12], two-
sided estimates are obtained for its exact solution. The obtained results are generalized to the construction
of unconditionally monotone finite-difference schemes of second-order of local approximation on uniform
grids for a given equation. The construction of such schemes is based on the appropriate choice of
the perturbed coefficient, similarly to [18]. Using the difference maximum principle, two-sided and a
priori estimates are obtained in the C-norm for the difference solution. It is interesting to note that the
proved two-sided estimates of the difference solution are completely consistent with the estimates of exact
solution of differential problem.

2. Auxiliary results

Assume thatΩh is a finite set of nodes (grid) in some bounded domain of the n-dimensional Euclidean
space, and x ∈ Ωh is a point of the grid Ωh. Consider the equation

A (x)y (x) =
∑

ξ∈M ′(x)

B (x, ξ)y (ξ) + F (x) , x ∈ Ωh, (2.1)

which is called the canonical form of the finite-difference scheme [18, p. 226]. Here M ′ (x) = M (x) \x,
and M (x) is the grid stencil. Since any finite-difference scheme can be written as (2.1), monotonicity is
understood as the following conditions saying that the coefficients of Eq. (2.1) are positive

A (x) > 0, B (x, ξ) > 0 for all ξ ∈M ′ (x) , (2.2)

D (x) = A (x) −
∑

ξ∈M ′(x)

B (x, ξ) > 0. (2.3)
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To obtain a two-sided estimate of the solution of a finite-difference scheme, it is most convenient to
use the following lemma.

Lemma 2.1 ([13, 15]). Assume that positivity conditions for coefficients (2.2)-(2.3) are satisfied. Then the maximum
and minimum values of the solution of the finite-difference scheme (2.1) belong to the range of the input data

min
x∈Ωh

F (x)

D (x)
6 y (x) 6 max

x∈Ωh

F (x)

D (x)
, x ∈ Ωh. (2.4)

Corollary 2.2 ([18, p. 231]). Assume that conditions of the lemma are satisfied. Then in the grid analog of the
C-norm, the solution of finite-difference problem (2.1) satisfies the estimate

‖y‖C = max
x∈Ωh

|y (x)| 6

∥∥∥∥ FD
∥∥∥∥
C

.

3. Statement of the problem and two-sided estimate of the exact solution

In a rectangle Q̄T = {(x, t) : l1 6 x 6 l2, 0 6 t 6 T } we consider the following initial boundary value
problem for a quasilinear parabolic equation, which is called the Gamma equation [11]

∂u

∂t
=
∂2β (u)

∂x2 +
∂β (u)

∂x
+ c

∂u

∂x
, u = u (x, t) , c = const, (3.1)

with homogeneous boundary conditions

u (l1, t) = u (l2, t) = 0, t > 0, (3.2)

and initial conditions
u (x, 0) = u0 (x) , l1 6 x 6 l2. (3.3)

Equation (3.1) can be written as
∂u

∂t
=
∂

∂x

(
k (u)

∂u

∂x

)
+ r (u)

∂u

∂x
, (3.4)

with coefficients
k (u) = β ′(u), r (u) = k (u) + c. (3.5)

We assume that parabolicity condition of equation (3.4) on the solution [6] is satisfied

0 < k1 6 k (u) 6 k2, ∀u ∈ D̄u, k1,k2 = const, (3.6)

where
D̄u =

{
u (x, t) : m1 6 u (x, t) 6 m2, (x, t) ∈ Q̄T

}
.

We assume in what follows that there exists a unique solution of problem (3.1)-(3.3) and all coefficients
in Eq. (3.4) and the desired function have continuous bounded derivatives of order that is required as the
presentation proceeds.

Using the technique from [12], we prove two-sided estimates for the exact solution of problem (3.1)-
(3.3).

Theorem 3.1. Let condition (3.6) be satisfied. Then for solution u(x, t) of problem (3.1)-(3.3) the following two-
sided estimates are true:

m1 = min
{

0, min
l16x6l2

u0 (x)

}
6 u (x, t) 6 max

{
0, max
l16x6l2

u0 (x)

}
= m2. (3.7)
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Proof. To prove (3.7), we make the transformation of the function u(x, t) to the new function v(x, t) asso-
ciated with it by the equality

u (x, t) = v (x, t) eλt,

where λ is an arbitrary number. The function v(x, t) satisfies the equation

∂v

∂t
+ λv− k

(
veλt

) ∂2v

∂x2 −
∂k
(
veλt

)
∂x

∂v

∂x
− r
(
veλt

) ∂v
∂x

= 0, (3.8)

with initial and boundary conditions

v (x, 0) = u0 (x) , l1 6 x 6 l2, (3.9)
v (l1, t) = v (l2, t) = 0, t > 0. (3.10)

Let the maximum of the solution v(x, t) of problem (3.8)-(3.10) be reached at some point (x0, t0) ∈ (l1, l2)×
(0, T ]

max
(x,t)∈Q̄T

v (x, t) = v (x0, t0) ,

moreover, at the point (x0, t0) equation (3.8) and the following relations are satisfied

∂v (x0, t0)

∂t
=
∂v (x0, t0)

∂x
= 0,

∂2v (x0, t0)

∂x2 = lim
∆x→0

v (x0 −∆x, t0) − 2v (x0, t0) + v (x0 +∆x, t0)

∆x2 6 0.

Therefore from equation (3.8) and condition (3.6) it follows that

v (x, t) 6 v (x0, t0) =
1
λ
k
(
v (x0, t0) e

λt0
) ∂2v (x0, t0)

∂x2 6 0, λ > 0. (3.11)

If the maximal in Q̄T value v(x, t) is taken at the boundary {l1, l2}× (0, T ]∪ [l1, l2]× {0}, then we get

v (x, t) 6 max
(x,t)∈Q̄T

v (x, t) = max
{

0, max
l16x6l2

u0 (x)

}
. (3.12)

Thus, in all cases (3.11)-(3.12) the following estimate is valid

v (x, t) 6 max
{

0, max
l16x6l2

u0 (x)

}
,

from which it follows

u (x, t) 6 eλT max
{

0, max
l16x6l2

u0 (x)

}
, λ > 0.

When λ −→ 0 we get the right-hand side of inequalities (3.7). The case of the minimum of the solution
u(x, t) is proved similarly. The theorem is proved.

4. Unconditionally monotone finite-difference scheme of second order approximation on uniform
grids for the Gamma equation

Using the principle of regularization [18] on a regular uniform grid in space and time ω̄ = ω̄h × ω̄τ,
where

ω̄h =
{
xi = l1 + ih, i = 0, 1, 2, . . . ,N = 0,N, hN = l2 − l1

}
, ω̄h = ωh ∪ {x0 = l1, xN = l2} ,

ω̄τ =
{
tn = nτ, n = 0,N0, τN0 = T

}
, ω̄τ = ωτ ∪ {tN0 = T } ,
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we approximate equation (3.4) with a difference scheme of the form

yn+1
i − yni
τ

=
κni (y)

h

(
ani+1 (y)

yn+1
i+1 − yn+1

i

h
− ani (y)

yn+1
i − yn+1

i−1

h

)

+ b+i (y)ani+1 (y)
yn+1
i+1 − yn+1

i

h
+ b−i (y)ani (y)

yn+1
i − yn+1

i−1

h
,

y0
i = u0 (xi) , yn+1

0 = yn+1
N = 0,

(4.1)

where

κni (y) = (1 + Rni (y))−1, Rni (y) = 0.5h |r (yni )|/k (y
n
i ) > 0,

b+i (y) = r+ (yni )
/
k (yni ) > 0, b−i (y) = r− (yni )

/
k (yni ) 6 0,

r+ (yni ) = 0.5 (r (yni ) + |r (yni )|) > 0, r− (yni ) = 0.5 (r (yni ) − |r (yni )|) 6 0,
ani+1 (y) = 0.5

(
k
(
yni+1

)
+ k (yni )

)
, ani (y) = 0.5

(
k
(
yni−1

)
+ k (yni )

)
.

Approximation error. The approximation error of the difference scheme (4.1) has the form

ψ = −ut + κ (u) (a (u) ûx̄)x + b
+ (u)a(+1) (u) ûx + b

− (u)a (u) ûx̄, (4.2)

where

u = un = u (tn) , û = un+1 = u (tn+1) , ux = (ui+1 − ui) /h,

ux̄ = (ui − ui−1) /h, a(+1) (u) = ai+1 (u) , a (u) = ai (u) .

Taking into account

b+ (u) = r+ (u) /k (u) , b− (u) = r− (u) /k (u) ,
r+ (u) + r− (u) = r (u) , r+ (u) − r− (u) = |r (u)| ,

ut =
∂u

∂t
+O (τ) , (a (u) ûx̄)x =

∂

∂x

(
k (u)

∂u

∂x

)
+O

(
h2 + τ

)
,

a(+1) (u) ûx = k (u)
∂u

∂x
+ 0.5h

∂

∂x

(
k (u)

∂u

∂x

)
+O

(
h2 + τ

)
,

a (u) ûx̄ = k (u)
∂u

∂x
− 0.5h

∂

∂x

(
k (u)

∂u

∂x

)
+O

(
h2 + τ

)
,

we get

b+ (u)a(+1) (u) ûx + b
− (u)a (u) ûx̄ = r (u)

∂u

∂x
+ R (u)

∂

∂x

(
k (u)

∂u

∂x

)
+O

(
h2 + τ

)
.

It follows from (4.2) that

ψ =
(R (u))2

1 + R (u)

∂

∂x

(
k (u)

∂u

∂x

)
+O

(
h2 + τ

)
= O

(
h2 + τ

)
.

Therefore the following statement is proved.

Theorem 4.1. The difference scheme (4.1) approximating problem (3.1)-(3.3) has second order of approximation
with respect to space and first order with respect to time.
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5. Monotonicity, two-sided and a priori estimates

We write the difference scheme (4.1) in the canonical form (2.1)

Ani y
n+1
i−1 −Cni y

n+1
i +Bni y

n+1
i+1 = −Fni , i = 1, 2, . . . ,N− 1, (5.1)

yn+1
0 = yn+1

N = 0, (5.2)

with coefficients defined as follows

Ani =
τ

h2a
n
i (y)

(
κni (y) − hb−i (y)

)
, Bni =

τ

h2a
n
i+1 (y)

(
κni (y) + hb+i (y)

)
,

Cni = 1 +Ani +Bni , Fni = yni , Dni = Cni −Ani −Bni = 1, i = 1,N− 1.

The scheme (5.1)-(5.2) is monotone if the positivity conditions of the coefficients (2.2)-(2.3) are satisfied
[18], i.e.,

Ani > 0, Bni > 0, Dni = Cni −Ani −Bni > 0.

We need to prove that ani (y) > 0 for all i,n. In fact, when n = 0, it is obvious that

a0
i (y) = 0.5 (k (u0i) + k (u0i−1)) > 0.

Assume that, for any arbitrary n, ani (y) > 0 is also true. From this assumption we have Ani > 0, Bni > 0,
Cni > 0. According to Lemma 1 on the base of the estimate (2.4) for arbitrary t = tn ∈ ωτ and all
i = 0, 1, . . . ,N, we have

min
{

0, min
16i6N−1

yni

}
6 yn+1

i 6 max
{

0, max
16i6N−1

yni

}
. (5.3)

Using induction on n, from (5.3) we obtain the two-sided estimate via the input data without assumption
for sign-definiteness of input data

min
{

0, min
l16x6l2

u0 (x)

}
6 yn+1

i 6 max
{

0, max
l16x6l2

u0 (x)

}
, i = 0, 1, . . .N. (5.4)

In view of (5.4) we obtain yn+1
i ∈ D̄u, i.e., an+1

i (y) = 0.5
(
k
(
yn+1
i

)
+ k

(
yn+1
i−1

))
> 0. Since all positivity

conditions for the coefficients (2.2)-(2.3) are satisfied, then the difference scheme (4.1) is monotone for all
h and τ (i.e., unconditionally monotone). Therefore, the following theorem is proved.

Theorem 5.1. Suppose that the conditions (3.6) are fulfilled. Then the finite-difference scheme (4.1) is uncondition-
ally monotone and for its solution y ∈ D̄u the above two-sided estimates (5.4) hold.

On the basis of the maximum principle in a standard way we obtain the a priori estimate in the C-norm

Theorem 5.2. Let the condition (3.6) be fulfilled. Then for the solution of the difference problem (4.1) the following
a priori estimate holds

‖yn‖C̄ 6 ‖u0‖C̄.

Proof. Since all the coefficients of the scheme satisfy inequalities (2.2)-(2.3), on the base of Corollary 2.2
we have

∥∥yn+1
∥∥
C̄
6 ‖yn‖C̄. Hence, we obtain the chain of relations∥∥yn+1∥∥

C̄
6 ‖yn‖C̄ 6

∥∥yn−1∥∥
C̄
6 · · · 6 ‖u0‖C̄.

The theorem is proved.

Remark 5.3. It is interesting to note that the maximal and minimal values of the difference solution do not
depend on the diffusion coefficient k(u) and the convection coefficient r(u).
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Remark 5.4. For the case of c = 0, equation (3.4) can be written as

∂u

∂t
= e−x

∂

∂x

(
k̄ (x,u)

∂u

∂x

)
, k̄ (x,u) = exk (u) , k (u) = β ′(u).

Then, as construction of monotone difference schemes for it, we do not need to use the regularization
principle.

Remark 5.5. The estimates obtained in (5.4) are fully consistent with the estimates of exact solution of
differential problem (3.7).

An example of the function β(u). For the case of the Frey model [11] β(u) = u/(1 − ρu)2, ρ > 0 from
(3.5) we obtain the coefficient k(u) of the form k(u) = (1 + ρu)/(1ρu)3. Then, by virtue of (3.6), equation
(3.1) will be parabolic if k(u) > 0, ∀uD̄u, i.e., if

−
1
ρ
< u (x, t) <

1
ρ

. (5.5)

Obviously, for solution of the difference scheme (4.1), which approximates problem (3.1)-(3.3), conditions
(5.5) are fulfilled, because by Theorem 3.1 for all i = 0, 1, 2, . . . ,N, n = 0, 1, 2, . . . ,N0 we have

−
1
ρ
< min

{
0, min
l16x6l2

u0 (x)

}
6 yni 6 max

{
0, max
l16x6l2

u0 (x)

}
<

1
ρ

.

6. Numerical implementation

6.1. Example 1.

We consider the particular case of Gamma equation with homogeneous boundary conditions

∂u

∂t
=
∂

∂x

(
1 + u

(1 − u)3
∂u

∂x

)
, ρ = 1, 0 < x < π, 0 < t 6 1,

u (x, 0) = sin x, u (0, t) = u (π, t) = 0.

(6.1)

As the coefficient k (u) = (1 + u) /(1 − u)3 is not defined at u = 1, then it is not defined for the initial
function u0 (x) = sin x at x = x∗ = π/2. So we build uniform grid with step h = π/ (2N+ 1) in order to
xi 6= x∗. The approximate solution of the problem (6.1) at t = 1, obtained by the difference scheme (4.1),
is shown on Fig. 1.

0.5 1.0 1.5 2.0 2.5 3.0

0.02

0.04

0.06

0.08

0.10

0.12

Figure 1: Numerical solution at t = 1 with step h = π/31 ≈ 0.1 and τ = 0.1.

Remark 6.1. The numerical solution is not defined, if x = x∗ is a node of the grid. The best numerical
results are obtained if the extremal point is not a node of grid.
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6.2. Example 2.
Because the Gamma equation has no exact solutions (analytical solutions), to assess efficiency of the

proposed difference scheme and to maintain the equality of the Gamma equation, we must add a residual
term f(x, t) to the right-hand side of (3.4). We consider equation (3.4) in the form

∂u

∂t
=
∂

∂x

(
k (u)

∂u

∂x

)
+ r (u)

∂u

∂x
+ f (x, t) , (6.2)

with the boundary and initial conditions

u (−π, t) = u (π, t) = 0, u (x, 0) = u0 (x) , (6.3)

and input data

k (u) = u2 + 1, r (u) =
√
u+ 4, u = u (x, t) , x ∈ [−π,π] , 0 6 t 6 T = 0.5,

f (x, t) = et
((

5 + e2t) sin (2x) − 2 cos (2x)
√

4 + et sin (2x) − 3e2t sin (6x)
)

, u0 (x) = sin (2x) ,

and suppose that an exact solution is u (x, t) = etsin (2x).
In Table 1 we showed the error of the method in the maximum norm and the L2-norm, respectively,

‖z‖C = ‖y− u‖C = max
(x,t)∈ω

|y (x, t) − u (x, t)| ,

‖z‖L2 = ‖y− u‖L2 =

√√√√N−1∑
i=1

h(yi − ui)
2

for different values of space and time discretization parameters. In particular h = π/10 with N = 20 and
τ = 0.1 have been initially chosen, and from them, h/2k and τ/4k, are considered with k = 1, 2, 3.

Table 1: Numerical results for problem (6.2)-(6.3).
h, τ h/2, τ/4 h/4, τ/16 h/8, τ/64

‖z‖C 0.12364 0.0501736 0.0132181 0.00335072
‖z‖L2 0.185965 0.0527086 0.0136802 0.00345762

The approximate solution of the problem (6.2)-(6.3) at T = 0.5 with step h = π/20 and τ = 0.025,
obtained by the difference scheme (5.1)-(5.2), is shown on Fig. 2.

Figure 2: Exact (red line) and approximate (blue nodes) solutions of the problem (6.2)-(6.3) at T = 0.5 with step h = π/20 and
τ = 0.025.

The computational experiment illustrates the higher accuracy of the new scheme and for the scheme
(5.1)-(5.2) the accuracy of order O

(
h2 + τ

)
is reached on uniform grids in space and time.
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7. Conclusions

In the article, we have developed unconditionally monotone finite-difference schemes of second-order
of local approximation on uniform grids, based on regularization principle, for the initial boundary prob-
lem value for the Gamma equation. Two-side estimates of the solution of the scheme are established.
Such estimates permit not only to prove the non-negativity of the exact solution, but also to find sufficient
conditions on the input data when the nonlinear problem is parabolic. As a result a priori estimates of
the approximate solution in the grid norm C that depend on the initial and boundary conditions only are
proved.
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