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Abstract
In this work, we present a collocation method based on exponential basis spline functions for solving generalized Newell-

Whitehead-Segel equation. The time derivative is discretized by finite difference scheme and the exponential basis spline func-
tions are employed to interpolate spatial derivatives. The convergence and stability of the proposed algorithm are established.
Numerical results demonstrate the accuracy of the proposed method.
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1. Introduction

The generalized Newell-Whitehead-Segel (gNWS) equation is extensively used in fluid mechanics and
its mathematical description can be stated as follows:

ut = muxx + au+ψ(x, t,u,ux,buq), 0 6 x 6 1, 0 6 t 6 T , (1.1)

where u is a function of x and t and m,a,b, are real constants with m > 0 and q ∈ Z+. The initial and
the boundary conditions are represented in equations (1.2), (1.3), and (1.4), respectively.

u(x, 0) = f(x), (1.2)
u(0, t) = g1(t), u(1, t) = g2(t), (1.3)
ux(0, t) = h1(t), ux(1, t) = h2(t), (1.4)

where f, gi’s, hi’s are known functions. By substituting a = −1,b = 1 = m,q = 2,ψ = buq into gNWS
equation (1.1), we obtain Fisher’s equation [3] while the values a = 1 = m,b = −1,q = 2,ψ = buq + uux
convert gNWS equation into Burgers-Fisher equation. Huxley equation [3] can be achieved from gNWS
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equation by setting m = 1,a = −β,b = 1 + β,q = 2,ψ = buq − u3 and gNWS eqation takes the form
of Burger Huxley equation when m = 1,a = −β,b = 1 + β,q = 2,ψ = buq + uux − u

3 are taken. The
Newell-Whitehead-Segel (NWS) equation [14] is the special case of gNWS Eq (1.1) when ψ = −bu2.
The gNWS equation becomes Allen-Cahn [18] equation when b = −a = 4,m = 1,q = 3,ψ = buq

are substituted in it while gNWS equation takes the form of Nagumo reaction diffusion equation when
m = 1,a = α,b = −1,q = 2,ψ = buq + u3 − u2.

The NWS equation explains the dynamic attitude of dual blend fluid nearby bifurcation point of the
Rayleigh-Benard convection of a binary fluid mixture. The layer of fluid heated from below advances a
systematic design of convection cells named as Benard cells which takes place in a horizontal plane. A
spontaneous change in severely heated fluid occurs which leads the hot fluid upwards while cold down-
wards. Because of analytical as well as experimental approachability, the phenomenon of this convection
is extensively studied. The judiciously inspected examples of the self-organized nonlinear systems are
the mentioned convection patterns [7]. These cells are produced due to gravity and Buoyancy forces. The
primary movement is the upwelling of the warmer liquid from the heated bottom layer [16]. Two types
of these shapes or patterns may be analyzed. Firstly, the liquid streamline from cylinders which might
be bent or the produced spirals named as roll (stripe) pattern. Secondly, the fluid movement is separated
into honey comb cells known as hexagonal shape. A part of liquid moves downwards, upwards in the
middle of each cell and on the boundary between the cells, respectively while the remaining travels op-
positely. For entirely different physical phenomena, the production of similar patterns can be observed,
e.g., the systems with propagation of laser beams [8] in a nonlinear medium with reacting and diffusing
species produce hexagonal pattern while visual cortex, human fingerprints and zebra’s skin follow stripe
patterns. The Rayleigh-Benard convection phenomenon and the convection cells in a gravity field are
depicted in Figure 1.

(a) Benard cells. (b) Convection cells in gravity field. (c) Simulation of Rayleigh Benard convection in 3D.

Figure 1: Benard cells phenominon and convection cells in gravity field.

The NWS equation has been studied extensively in the last decades. Kheiri et al. [11] developed
Homotopy analysis and Homotopy Pade methods for solving the modified Burgers-Korteweg-de Vries
and the Newell-Whitehead equations. Ezzati and Shakibi [6] used the Adomian’s Decomposition and
multi-quadric qausi-interpolation techniques to obtain the solution of NWS equation. Macias-Diaz and
Ramirez [12] computed numerical results for gNWS equation using finite difference algorithm. Aasaraai
[1] used differential transformation method (DTM) with variable and constant coefficients to investigate
the analytical solution of NWS equation. Nourazar et al. [13] developed Homotopy perturbation approach
to investigate the exact solution of NWS equation. Recently, Zahra et al. [21] applied a collocation
scheme based on cubic B-spline functions for the approximate solution of NWS equation using initial and
boundary conditions.

Several numerical methods have been proposed for solving boundary value problems such as finite
element, finite difference, spline interpolation, etc.. The B-spline method is one of the most efficient nu-
merical methods due to its simplicity. Here we aim to use the exponential B-spline method (ExBSM) as it
is capable to approximate the unknown function up to a certain smoothness. It has the potential to pro-
vide the approximation at non any point in the spatial domain with reasonable accuracy as compared to
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the typical finite difference approach. Moreover, it does not involve operators, procedure of linearization.
The main purpose of current study is to obtain the numerical solution of the proposed one dimen-

sional nonlinear generalized Newell-Whitehead-Segel equation via exponential B-spline method. The
time derivative is discretized by finite difference scheme while exponential B-spline functions interpolate
spatial derivatives. The convergence and stability of the proposed method is established. The obtained
numerical outcomes are show an excellent agreement with the true solutions. The computational re-
sults are compared with some other methods on the topic and it is observed that our proposed scheme
preforms better in terms of accuracy and efficiency.

2. Exponential basis functions and temporal discretization

The time [0, T ] and spatial interval [0, 1] are partitioned into equally divided intervals and taken as
pairs (xr, tk). Here xr = a+ rh, tk = k∆t for r = 0, 1, . . . ,N,k = 0, 1, . . . ,K where h and ∆t represent
spatial and time steps respectively. The exponential B-spline basis function (ExBSBF) can be stated as:

ηj (x) =



β2
(
(xr−2 − x) −

1
σ
(sinh(σ(xr−2 − x)))

)
, x ∈ [xr−2, xr−1],

α1 +β1(xr − x) + γe
σ(xr−x) + δe−σ(xr−x), x ∈ [xr−1, xr],

α1 +β1(x− xr) + γe
σ(x−xr) + δe−σ(x−xr), x ∈ [xr, xr+1],

β2
(
(x− xr−2) −

1
σ
(sinh(σ(x− xr−2)))

)
, x ∈ [xr+1, xr+2],

0, else,

(2.1)

where, α1 = σhc
σhc−s ,β1 =

σ(c(c−1)+s2)
2(σhc−s)(1−c) ,β2 = σ

2(σhc−s) ,γ =
e−σh(1−c)+s(e−σh−1)

4(σhc−s)(1−c) , δ =
(c−1)eσh+s(eσh−1)

4(σhc−s)(1−c) ,
with c = cosh(σh), s = sinh(σh) and σ > 0 is a free parameter.

3. Description of exponential B-spline collocation approach

If U(x, t) represents the true solution and u(x, t) is the approximate solution, then using exponential
B-spline functions we let [10, 19, 20]

ukj (x, t) =
N+1∑
j=−1

δkj (t)ηj(x), (3.1)

where δkj are to be determined. Using equations (2.1) and (3.1), we can evaluate the values of u and its
first two derivatives at xj as follows:

ukj = l1δ
k
j−1 + l2δ

k
j + l1δ

k
j+1,

(ux)
k
j = l3δ

k
j+1 + 0 δkj + (−l3)δ

k
j−1,

(uxx)
k
j = l4δ

k
j−1 + (−2l4)δkj + l4δ

k
j+1,

(3.2)

where, l1 = s−σh
2(σhc−s) , l2 = 1, l3 =

σ(1−c)
2(σhc−s) , l4 = sσ2

2(σhc−s) . Using Eqs (1.3), (3.1), and (3.2), we can write

u(x0, tk+1) = l1δ
k+1
−1 (t) + l2δ

k+1
0 (t) + l1δ

k+1
1 (t) = g1(tk+1), (3.3)

u(xN, tk+1) = l1δ
k+1
N−1(t) + l2δ

k+1
N (t) + l1δ

k+1
N+1(t) = g2(tk+1). (3.4)

Now implementing finite difference scheme to equation (1.1), the following expression can be obtained

uk+1
j − ukj
∆t

=
m(uxx)

k+1
j + (muxx)

k
j

2
+
a(u)k+1

j + (au)kj
2

+
(ψ)k+1

j + (ψ)kj
2

. (3.5)
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Separating terms of kth and (k+ 1)th time levels, equation (3.5) takes the form

d1u
k+1
j − d2(uxx)

k+1
j −∆t(ψ)k+1

j = r(xj), (3.6)

where, d1 = 2 − a∆t,d2 = m∆t,d3 = 2 + a∆t, r(xj) = d3u
k
j + d2(uxx)

k
j +∆t(ψ)

k
j . Using equation (3.2) in

equation (3.6) and some simplification yields

p1δ
k+1
j−1 + p2δ

k+1
j + p1δ

k+1
j+1 −∆t(ψ(u))k+1

j = r(xj), j = 0, 1, . . . ,N, (3.7)

where, p1 = d1l1 − d2l4,p2 = d1l2 + 2d2l4. Eliminate the unknowns δk+1
−1 and δk+1

N+1 with the help of equa-
tions (3.3), (3.4), and (3.7), a system of order (N+ 1)× (N+ 1) can be generated as follows:

Aδk+1
j −∆tB = C, (3.8)

where

A =


p∗1 0 0
p1 p2 p1

. . . . . . . . .
0

0
p1 p2 p1
0 0 p∗1

 , δk+1
j =


δk+1

0
δk+1

1
...

δk+1
N

 ,B =


ψk+1

0
ψk+1

1
...

ψk+1
N−1
ψk+1
N

 ,C =



r∗k0
rk1
rk2
...

rkN−1
r∗kN


,

where, r∗0 = p1g1(t) − l1r0, r∗N = p1g2(t) − l1rN,p∗1 = l2p1 − l1p2. The above recurrence relation is solved
after obtaining initial and first order approximation separately. The initial vector u0 is computed from
the initial condition (1.2). For the next approximation u1, we use Taylor series expansion at t = t0 +∆t as
follows:

u1 = u0 +∆tu0
t +

(∆t)2

2!
u0
tt +O(∆t)

3, (3.9)

where, u0
t = (muxx + au+ψ)0,u0

tt = (muxxt + aut + (ψ)t)
0, and the values of u0 and its derivatives are

computed by initial condition. By putting these values in equation (3.9), we achieve first order approxi-
mation as below:

u1 = u0 +∆t[muxx + au+ψ]0 +
(∆t)2

2!
[muxxt + aut + (ψ)t]

0 +O(∆t)3. (3.10)

Theorem 3.1. The rate of convergence of the presented scheme to discretize equation (1.1) is one in time direction.

Proof. Suppose uk be the spline approximation for exact solution Uk at time t = tk and local truncation
error of equation (3.6) is ek = uk −Uk, we have [4]

en+1 6 µk(∆t)
2, k > 2.

By utilizing equation (3.10) for k = 1, we obtain

e1 6 µ1(∆t)
3.

Choosing µ = max{µ1,µ2, . . . ,µn} and taking global error En+1 =
∑n
k=1 ek at (n+ 1)th time level we may

obtain the following expression:

|En+1| = |

n∑
k=1

ek| 6
n∑
k=1

|ek| 6 µ1(∆t)
3 +

n∑
k=2

µk(∆t)
2 6 nµ(∆t)2 6 nµ(T/n)∆t = C∆t,

where ∆t 6 (T/n) and C = µT which implies first order convergence in time direction.
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4. Convergence of the method

Suppose ukj (x, t) =
∑N+1
j=−1 δj(t)ηj(x) be the exponential B-spline approximation to the exact solution

U(x, t). Due to computational round off error let S∗(x) =
∑N+1
j=−1 δ

∗
j (t)ηj(x) be the computed spline

approximation to u(x). Therefore, we must estimate the errors ||u(x) − S∗(x)||∞ and ||U(x) − S∗(x)||∞
separately to estimate the error ||u(x) −U(x)||∞. Putting S∗(x) into equation (3.8), we obtain

Aδ∗ −∆tB∗ = C∗. (4.1)

Subtracting equation (3.10) and equation (4.1), we have

A(δ∗ − δ) −∆t(B∗ −B) = C∗ −C. (4.2)

Theorem 4.1. Suppose f(x) ∈ C4[a,b] and |f4(x)| 6 κ, ∀x with h being step size of equally space partition of
[a,b]. If S(x) is the unique spline function that interpolates f(x) at the nodes then ∃ a constant λj, s.t.,

||fj − Sj||∞ 6 λjκh
4−j, j = 0, 1, 2, 3.

Proof. For proof see [5, 9].

Using triangular inequality and Theorem 4.1, equation (3.7) takes the following form |r∗(xj) − r(xj)|

= |
(
d1S
∗(xj) − d2S

∗
xx(xj) −∆tψ(S

∗(xj))
)
−
(
d1u

k+1
j − d2(uxx)

k+1
j −∆t(ψ)k+1

j

)
|

6 |d1||S
∗(xj) −U(xj)|+ d2|S

∗
xx(xj) −Uxx(xj)|+∆t|ψ(xj,S

∗(xj)) −ψ(xj,U(xj))|

6 d1κλ0h
4 + d2κλ2h

2 +β(|S∗(xj) −U(xj)|),

where, ||ψ ′(z)|| 6 β, z ∈ R3 [15]. Finally, we are able to write

||C∗ −C|| 6 d1κλ0h
4 + d2κλ2h

2 +β(|S∗(xj) −U(xj)|).

Again using Theorem 4.1 yields

||C∗ −C|| 6 d1κλ0h
4 + d2κλ2h

2 +βκλ0h
4.

Also we can write
||C∗ −C|| 6M1h

2, (4.3)

where M1 = d1κλ0h
2 + d2κλ2 +βκλ0h

2.
Now using Jacobian for nonlinear term on L.H.S. of equation (4.2), we obtain the following equation

||B∗ −B|| = (
∂ϕ(ξ1)

∂u
J(δ∗ − δ)), (4.4)

where ξ1 ∈ (0, 1) and J is Jacobian given as

J =


0 0 0
l1 l2 l1

. . . . . . . . .
0

0
l1 l2 l1
0 0 0

 .

Substituting equation (4.4) into equation (4.2), the following expression is obtained

W(δ∗ − δ) = (C∗ −C), (4.5)
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where W = A+
∂ϕ(ξ1)
∂u J. Since matrix W is strictly diagonally dominant so non-singular, W−1 exists,

hence equation (4.5) implies
(δ∗ − δ) =W−1(C∗ −C).

Taking norm on both sides of the above equation and using equation (4.3), we obtain

||δ∗ − δ||∞ 6 ||W−1||M1h
2. (4.6)

Suppose γj is the sum of jth row of matrix W = [νj,i] for i = 0, 1, . . . ,N, then we have
γ0 = l2p1 − l1p2, if j = 0,
γj = 2p1 + p2, if 1 6 j 6 N− 1,
γN = l2p1 − l1p2, if j = N.

From the properties of inverse of matrices, we can write

N∑
j=0

ν−1
i,j γj = 1,

where ν−1
i,j are the entries of W−1.

||W−1|| =

N∑
j=0

||ν−1
i,j || 6

1
min(γj)

=
1
υl

6
1
|υl|

, (4.7)

where l is some integer between 0 and N. Putting equation (4.7) in equation (4.6) implies the relation

||δ∗ − δ||∞ 6 β2h
2, (4.8)

where β2 = M1
υl

.

Lemma 4.2. The exponential B-Spline basis functions satisfy

|

N∑
j=−1

ηj(x)| 6 3, 0 6 x 6 1. (4.9)

Proof. We know that

|

N+1∑
j=−1

ηj(x)| 6
N+1∑
j=−1

|ηj(x)|.

At any knot xj we have

N+1∑
j=−1

|ηj(x)| = |ηj−1(x)|+ |ηj(x)|+ |ηj+1(x)| = |l1|+ |l2|+ |l1| 6 2.

Also in each subinterval xj−1 6 x 6 xj

ηj(xj) = l2, ηj−1(xj−1) = l2, ηj+1(xj) = l1, ηj−2(xj−1) = l1.

Hence for any xj−1 6 x 6 xj, it is verified that

N+1∑
j=−1

|ηj(x)| = |ηj−2(x)|+ |ηj−1(x)|+ |ηj(x)|+ |ηj+1(x)| 6 3,

which completes the proof.
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Since

S∗(x) − u(x) =

N+1∑
j=−1

(δ∗j − δj)ηj(x).

Applying norm on both sides of the above equation and using equations (4.8) and (4.9) enables us to write

||S∗(x) − u(x)|| = ||

N+1∑
j=−1

(δ∗j − δj)ηj(x)|| = |

N∑
j=0

ηj(x)|||δ
∗
j − δj|| 6 3β2h

2.

Theorem 4.3. If u(x) is the exponential B-spline collocation approximation to exact solution U(x) then the method
has 2nd order convergence

||u(x) −U(x)|| 6 εh2,

where ε = λ0κh
2 + 3β2 is a finite constant.

Proof. Using triangular inequality and Theorem 4.1, the following relation may be achieved

||u(x) −U(x)|| = ||u(x) − S∗(x) + S∗(x) −U(x)||

6 ||S∗(x) −U(x)||+ ||u(x) − S∗(x)|| 6 λ0κh
4 + 3β2h

2 = εh2,

where ε = λ0κh
2 + 3β2.

Now if u(x, t) approximates the exact solution U(x, t), then

||u(x, t) −U(x, t)|| 6 ω(∆t+ h2),

where ω is constant. Hence our method is of first order convergence in time while second order in spatial
direction.

5. Stability

For Von Neumann stability analysis, consider ψ = buq in equation (1.1), the equation (3.7) takes the
following form

q1δ
k+1
j−1 + q2δ

k+1
j + q1δ

k+1
j+1 = q3δ

k
j−1 + q4δ

k
j + q3δ

k
j+1, (5.1)

where, d4 = b∆t,q1 = d1l1 − d2l4 − d4(l1)q, q2 = d1l2 + 2d2l4 − d4(l2)q, q3 = d3l1 + d2l4 + d4(l1)
q,

q4 = d3l2 − 2d2l4 + d4(l2)
q. Put δkj = ρkeiηjh [17] in equation (5.1), we obtain

q1ρ
k+1eiη(j−1)h + q2ρ

k+1eiη(j)h + q1ρ
k+1eiη(j+1)h = q3ρ

keiη(j−1)h + q4ρ
keiη(j)h + q3ρ

keiη(j+1)h.

Take φ = ηh and dividing both sides by ρkeiη(j)h yields

ρ
(
q1e

−iφ + q2 + q1e
iφ
)
= q3e

−iφ + q4 + q3e
iφ.

Since eiφ = cos(φ) + i sin(φ), so above equation yields

ρ =
2q3 cos(φ) + p4

2q1 cos(φ) + q2
. (5.2)

Substituting equations (3.2), (3.6), and (5.1) into equation (5.2) and after simplification the following
relation can be obtained as

ρ = −1 +
22+q (µ cos(φ) − ν)

2bν∆t(µν )
q cos(φ) + 2q (ν(−2 + (a+ b)∆t) − sν1 + (ν2 + s(−2 + a∆t+ ν1)) cos(φ))

, (5.3)

where ν = σhc− s,ν1 = m∆tσ2,µ = s− hσ,ν2 = h(2 − a∆t)σ, c = cosh(hσ), s = sin(hσ). It is obvious
from Eq. (5.3) that |ρ| < 1 which demonstrates the proposed method unconditionally stable.
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6. Numerical experiments

The numerical method presented in this paper is tested for getting solution of the generalized Newell-
Whitehead-Segel equation for the numerical accuracy. Throughout the paper, we set free parameter
σ = 1.175. All the computations are performed in MATLAB R2015b. In the first three examples, the
initial and Dirichlet boundary conditions are obtained from the exact solution while in the last example
Neumann boundary conditions are used. The following formulas are used to compute the numerical
results.

Absolute error = |Uj − u
k
j |, L∞ = max

j

∣∣Uj − uj∣∣ .
Example 6.1. Consider gNWS equation (1.1) with a = 2,m = 1,q = 2,b = −3,ψ = buq for which the
exact solution given in [1, 21] is

u(x, t) =
−2λe2t

−2 + 3λ (1 − e2t)
.

(a) Exact (b) Approximate

(c) 3D error
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

er
ro

r

×10-6 Error at different time levels

t=0.2
t=0.4
t=0.6
t=0.8
t=1

(d) 2D error

Figure 2: Solutions and Error graphs for t ∈ [0, 1] of Example 6.1.

The absolute maximum errors of Example 6.1 are provided in Table 1 at different time levels and
knots. The numerical results of ExBSM are compared with the existing methods named as Uniform cubic
B-spline (UCBS) [21], Trigonometric cubic B-spline (TCBS) [21], Extended cubic B-spline (ECBS) [21].
Figure 2 exhibits the solutions and errors graphically. It is obvious that the proposed method is more
reliable and efficient as compared to others.
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Table 1: Absolute maximum errors at λ = 0.1 of Example 6.1.

x t ExBSM UCBS[21] TCBS[21] ECBS[21]
0.2 0.2 5.760E-07 8.323E-04 8.295E-04 6.068E-04
0.6 8.471E-07 1.226E-03 1.222E-03 9.013E-04
0.8 5.760E-07 8.323E-04 8.295E-04 6.068E-04
0.2 1.0 2.714E-06 1.991E-05 3.239E-05 6.339E-05
0.6 4.046E-06 4.932E-06 2.342E-05 8.366E-05
0.8 2.714E-06 1.991E-05 3.239E-05 6.339E-05

Example 6.2. Consider gNWS equation (1.1) with a = 1 = m,q = 4,b = −1,ψ = buq and the exact
solution given in [13, 21] is

u(x, t) = (
1
2

tanh
(

−2
2
√

10
(x−

7t√
10

)

)
+

1
2
)
−2
3 .

(a) Exact (b) Approximate
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Figure 3: Solutions and Error graphs for t ∈ [0, 1] of Example 6.2.

The error terms of Example 6.2 at different time levels and knots are provided in Table 2. The nu-
merical outputs of ExBSM are compared with the methods (UCBS, TCBS, ECBS). The solutions and error
terms are displayed in Figure 3. It can be seen that proposed scheme is more reliable and efficient.

Example 6.3. Consider gNWS equation (1.1) with a = 3,b = −4,m = 1,q = 3,ψ = buq with the true
solution given in [13, 21] as

u(x, t) =
ex
√

6
√
( 3

4)

ex
√

6 + e

(
x
√

6
2 − 9t

2

) .
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Table 2: Absolute maximum errors for x, t ∈ [0, 1] of Example 6.2.

x t ExBSM UCBS[21] TCBS[21] ECBS[21]
0.2 0.2 1.881E-06 3.800E-04 3.951E-04 9.673E-04
0.6 1.985E-06 2.890E-04 3.111E-04 8.863E-04
0.8 2.122E-06 1.120E-04 1.270E-04 4.224E-04
0.2 1.0 7.143E-06 1.080E-03 1.103E-03 2.251E-03
0.6 1.107E-05 1.703E-03 1.734E-03 3.558E-03
0.8 7.534E-06 1.172E-03 1.192E-03 2.441E-03
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Figure 4: Solutions and Error graphs for t ∈ [0, 1] of Example 6.3.

Table 3: Absolute maximum errors of Example 6.3.

x t ExBSM UCBS[21] TCBS[21] ECBS[21]
0.2 0.2 1.100E-03 6.129E-02 6.134E-02 5.166E-02
0.6 1.500E-03 8.030E-02 8.036E-02 6.461E-02
0.8 9.883E-04 4.857E-02 4.862E-02 3.721E-02
0.2 1.0 1.100E-03 1.560E-02 1.563E-02 1.518E-03
0.6 1.500E-03 9.878E-03 9.969E-03 9.679E-03
0.8 9.883E-04 2.862E-03 2.915E-03 9.118E-03

For Example 6.3., the absolute maximum errors are tabulated in Table 3. A comparison of the ExBSM
with the existing methods (UCBS, TCBS, ECBS) can be analyzed. Figure 4 exhibits the solutions and
errors graphs. It may be observed that our method is more efficient, accurate and well organized.
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Example 6.4. Consider gNWS equation (1.1) with a = 0 = b,m = 1,q = 3,ψ = buq+u(α−u)(1−u),α =
0.5, l = 1,η = 0.3 with the exact solution given in [17, 21] as

u(x, t) =


0.3 + 0.04201052049t− 0.002794271318t2 − 0.0001237074665t3

−
(
6.498086711× (10)−10t+ 2.063100590× (10)−9t2 − 1.502107790× (10)−9t3

)
x2(l− x)2

−
(
5.530644662× (10)−9t− 1.727330167× (10)−8t2 + 1.237824484× (10)−8t3

)
x3(l− x)3.
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Figure 5: Solutions and Error graphs for t ∈ [0, 0.1] of Example 6.4.

Table 4: Exact and approximate solution of Example 6.4.

x t ExBSM UCBS[21] AVF[17] t proposed UCBS[21] AVF[17]
0.1 0.02 0.3008 0.2991 0.3026 0.08 0.3033 0.2966 0.3107
0.5 0.3008 0.2991 0.3026 0.3033 0.2966 0.3107
0.9 0.3008 0.2991 0.3026 0.3033 0.2966 0.3107

In Table 4, the exact and approximate solutions of Example 6.4 are listed. The numerical results
obtained by ExBSM are in close agreement with the true solution. It can be seen that our method is
more accurate as compared to the methods named (UCBS) and Variational formulation (VF) [17]. Figure
5 depict the solutions and errors patterns.

7. Conclusion:

The current study presents direct implementation of exponential B-spline method to generalized-
Whitehead-Segel equation to obtain its numerical solution. For this purpose, three different types of
boundary conditions are considered. The convergence of the proposed method is established both in
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space and time directions. The proposed scheme has been shown to be stable without any condition.
The obtained numerical results are in good agreement with the exact analytical solutions. A comparison
shows that the proposed method furnishes more accurate results as compared to the methods named as
Uniform cubic B-spline (UCBS) [21], Trigonometric cubic B-spline (TCBS) [21], Extended cubic B-spline
(ECBS) [21], and Variational formulation (VF) [17].
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