Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

On BF-semigroups and Fuzzy BF-semigroups

Mae Manahon^a, Jenette Bantug^b, Joemar Endam^{a,*}

^aMathematics Department, Negros Oriental State University, Dumaguete City, Philippines. ^bMathematics Department, Silliman University, Dumaguete City, Philippines.

Abstract

We introduce and establish the notion of BF-semigroups. We construct quotient BF-semigroups via BF-ideals and we investigate homomorphisms of BF-semigroups and establish the isomorphism theorems for BF-semigroups. Moreover, we apply the concept of fuzzy sets to BF-semigroups.

Keywords: BF/BF₁/BF₂-semigroup, sub BF-semigroup, BF-ideal, quotient BF-semigroup, fuzzy sub BF-semigroup. **2010 MSC:** 06F35, 08A05, 03G25, 94D05.

©2020 All rights reserved.

1. Introduction

The concept of BH-algebras was introduced by Jun et al. [4]. They defined a BH-algebra as an algebra of (A; *, 0) of type (2, 0) (that is, a nonempty set A with a binary operation * and a constant 0) satisfying the following axioms:

(B1) x * x = 0;

(B2) x * 0 = x;

(BH) x * y = 0 and y * x = 0 imply x = y.

In [5], Kim and Kim introduced BG-algebras. An algebra (A; *, 0) of type (2, 0) is a BG-algebra if it obeys (B1), (B2), and

(BG) x = (x * y) * (0 * y).

In [7], Walendziak introduced BF-algebras, together with BF_1/BF_2 -algebras. An algebra (A; *, 0) of type (2, 0) is a BF-algebra if it obeys (B1), (B2), and

*Corresponding author

doi: 10.22436/jmcs.020.04.06

Email addresses: maedmanahon5130gmail.com (Mae Manahon), jenettesbantug@su.edu.ph (Jenette Bantug), joemar.endam@norsu.edu.ph (Joemar Endam)

Received: 2019-07-16 Revised: 2020-02-06 Accepted: 2020-02-10

(BF) 0 * (x * y) = y * x.

A BF₁-algebra is a BF-algebra satisfying (BG) and a BF₂-algebra is a BF-algebra satisfying (BH). Let (A; *, 0) be a BF-algebra. A nonempty subset N of A is called a subalgebra of A if $x * y \in N$ for any $x, y \in N$. A subset I of A is called an ideal of A if it satisfies:

(I1) $0 \in I$;

(I2) $x * y \in I$ and $y \in I$ imply $x \in I$.

We say that an ideal I is normal if it satisfies:

(I3) $x * y \in I$ implies $(z * x) * (z * y) \in I$, for any $z \in A$.

The concept of fuzzy set, which was introduced by Zadeh [8] provides an extension of the classical notion of set. Since then a number of researches, both in theory and application, involving fuzzy sets have been established. In particular, Borumand Saeid and Rezvani [1] introduced fuzzy BF-algebras and they established some properties of this concept. Moreover, Hadipour [3] generalized the concept of fuzzy BFalgebras. We introduce and establish the notion of BF-semigroups. We construct quotient BF-semigroups via BF-ideals and we investigate homomorphisms of BF-semigroups and establish the isomorphism theorems for BF-semigroups. Moreover, we apply the concept of fuzzy sets to BF-semigroups.

2. BF-semigroups

Definition 2.1. A BF-semigroup is a nonempty set X together with two binary operations * and \cdot and a constant 0 satisfying:

- (i) (X; *, 0) is a BF-algebra;
- (ii) (X, \cdot) is a semigroup;
- (iii) $\mathbf{x} \cdot (\mathbf{y} \ast \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \ast (\mathbf{x} \cdot \mathbf{z})$ and $(\mathbf{x} \ast \mathbf{y}) \cdot \mathbf{z} = (\mathbf{x} \cdot \mathbf{z}) \ast (\mathbf{y} \cdot \mathbf{z})$.

Definition 2.2. A BF-semigroup is called a BF₁-semigroup (resp. a BF₂-semigroup) if it obeys (BG) (resp. (BH)).

Example 2.3. Let $X = \{0, a, b, c\}$ be a set with the following table of operations:

*	0	a	b	С	•	0	a	b	С
0	0	С	b	a	0	0	0	0	0
a	a	0	с	b	a	0	b	0	b
b	b	a	0	С	b	0	0	0	0
с	c	b	a	0	с	0	b	0	b

Then $(X; *, \cdot, 0)$ is a BF-semigroup.

Example 2.4. Let $X = \{0, a, b\}$ be a set with the following table of operations:

*	0	a	b	•	0	a	b
0	0	a	b	0	0	0	0
a	a	0	a	a	0	b	0
b	b	a	0	Ъ	0	0	0

Then $(X; *, \cdot, 0)$ is a BF-semigroup.

Example 2.5. Let $X = \{0, a, b\}$ be a set with the following table of operations:

*	0	a	b		0	a	b
0	0	a	b	0	0	0	0
a	a	0	0	a	0	a	b
b	b	0	0	b	0	b	a

Then $(X; *, \cdot, 0)$ is a BF-semigroup.

Example 2.6. If (X; *, 0) is a BF-algebra, then $(X; *, \cdot, 0)$ is a BF-semigroup, where $x \cdot y = 0$ for any $x, y \in X$.

Every BF₁-semigroup is a BF₂-semigroup (see [7, Proposition 2.12]). The BF-semigroup in Example 2.5 is not a BF₂-semigroup since a * b = 0 and b * a = 0 but $a \neq b$. Example 2.4 is a BF₂-semigroup which is not a BF₁-semigroup since $(b * a) * (0 * a) = a * a = 0 \neq b$.

Proposition 2.7 ([7, Proposition 2.5]). *If* (A; *, 0) *is a* BF-*algebra, then for any* $x, y \in A$,

- (a) 0 * (0 * x) = x;
- (b) 0 * x = 0 * y *implies* x = y;
- (c) x * y = 0 implies y * x = 0.

From now on, let X stands for BF-semigroup $(X; *, \cdot, 0)$.

Proposition 2.8. For all $a, b, c \in X$,

- (a) $\mathbf{a} \cdot \mathbf{0} = \mathbf{0} \cdot \mathbf{a} = \mathbf{0};$
- (b) $\mathbf{a} \cdot (\mathbf{0} * \mathbf{b}) = (\mathbf{0} * \mathbf{a}) \cdot \mathbf{b} = \mathbf{0} * (\mathbf{a} \cdot \mathbf{b});$
- (c) $(0 * a) \cdot (0 * b) = a \cdot b;$

(d) $a \cdot (b * (0 * c)) = (a \cdot b) * (0 * (a \cdot c)), (b * (0 * c)) \cdot a = (b \cdot a) * (0 * (c \cdot a)).$

Proof.

(a): By (B2), distributive property, and (B1), a · 0 = a · (0 * 0) = (a · 0) * (a · 0) = 0. Similarly, 0 · a = 0.
(b): By distributive property and (a), a · (0 * b) = (a · 0) * (a · b) = 0 * (a · b) = (0 · b) * (a · b) = (0 * a) · b.
(c): By (b), distributive property, (a), and Proposition 2.7(a), (0 * a) · (0 * b) = 0 * (a · (0 * b)) = 0 * ((a · 0) * (a · b)) = 0 * (0 * (a · b)) = a · b.

(d): By distributive property and (b), $a \cdot (b * (0 * c)) = (a \cdot b) * (a \cdot (0 * c)) = (a \cdot b) * (0 * (a \cdot c))$. Similarly, $(b * (0 * c)) \cdot a = (b \cdot a) * (0 * (c \cdot a))$.

Definition 2.9. A nonempty subset S of X is called a sub BF-semigroup of X if $x * y, x \cdot y \in S$ for all $x, y \in S$.

Clearly, {0} and X are sub BF-semigroups of X.

Example 2.10. Let $X = \{0, a, b, c\}$ be a set with the following table of operations:

*	0	а	b	С	•	0	a	b	С
0	0	a	b	С	0	0	0	0	0
a	a	0	с	b	a	0	a	b	с
b	b	с	0	a	b	0	b	с	a
с	c	b	a	0	с	0	С	a	b

Then $(X; *, \cdot, 0)$ is a BF-semigroup. The set $S_1 = \{0, a\}$ is a sub BF-semigroup of X, while the set $S_2 = \{0, a, b\}$ is not since $a * b = c \notin S_2$.

3. Ideals in BF-semigroups

Definition 3.1. A nonempty subset I of X is called a BF-ideal of X if it obeys (I1), (I2), (I3), and

(I4) $a \cdot x, x \cdot a \in I$ for any $a \in I, x \in X$.

This means I is a BF-ideal of X if and only if I is a normal ideal of X satisfying (I4). Also, if I is a BF-ideal of X, then I is a sub BF-semigroup of X. The set $I_1 = \{0, b\}$ in Example 2.4 is a BF-ideal of X while $I_2 = \{0, a\}$ is not since $a \cdot a = b \notin I_2$. Clearly, X is a BF-ideal of X. However, $\{0\}$ need not be a BF-ideal of X (see [7, Example 3.2]). If X is a BF₂-semigroup, then $\{0\}$ is a BF-ideal of X. Indeed, if $x, y, z \in X$, then clearly (I1) and (I2) hold for $\{0\}$. Suppose that x * y = 0. Then from [7, Proposition 2.9], x = y and so (z * x) * (z * y) = 0. Now, (I4) follows from Proposition 2.8(a). Therefore, $\{0\}$ is a BF-ideal of X.

Theorem 3.2.

- (a) The intersection of sub BF-semigroups of X is a sub BF-semigroup of X; and
- (b) the intersection of BF-ideals of X is a BF-ideal of X.

In [2], if I and J are ideals of BF-algebra (X; *, 0), then we define the subset IJ of X to be the set $\{x \in X : x = i * (0 * j) \text{ for some } i \in I, j \in J\}$. From [2, Lemma 3.3(iii)], if I and J are normal ideals of a BF-algebra (X; *, 0), then for any $i_1, i_2 \in I, j_1, j_2 \in J$, (SI) implies IJ is a subalgebra of X, where (SI) is given below

(SI)
$$(i_1 * j_1) * (i_2 * j_2) = (i_1 * i_2) * (j_1 * j_2).$$

Proposition 3.3. Let I and J be BF-ideals of a BF-semigroup X such that X satisfies (SI). Then IJ is a sub BF-semigroup of X.

Proof. Let $x, y \in IJ$. Then there exist $i_1, i_2 \in I$ and $j_1, j_2 \in J$ such that $x = i_1 * (0 * j_1)$ and $y = i_2 * (0 * j_2)$. Since I is a BF-ideal of X and $i_2 \in I$, $(i_1 * (0 * j_1)) \cdot i_2 \in I$. Since J is a BF-ideal of X and $j_2 \in J$, $(i_1 * (0 * j_1)) \cdot j_2 \in J$. Thus, by distributive property and Proposition 2.8 (b), we have

$$\begin{aligned} \mathbf{x} \cdot \mathbf{y} &= (\mathbf{i}_1 * (\mathbf{0} * \mathbf{j}_1)) \cdot (\mathbf{i}_2 * (\mathbf{0} * \mathbf{j}_2)) \\ &= [(\mathbf{i}_1 * (\mathbf{0} * \mathbf{j}_1)) \cdot \mathbf{i}_2] * [(\mathbf{i}_1 * (\mathbf{0} * \mathbf{j}_1)) \cdot (\mathbf{0} * \mathbf{j}_2)] \\ &= [(\mathbf{i}_1 * (\mathbf{0} * \mathbf{j}_1)) \cdot \mathbf{i}_2] * [\mathbf{0} * ((\mathbf{i}_1 * (\mathbf{0} * \mathbf{j}_1)) \cdot \mathbf{j}_2)] \in \mathbf{IJ}. \end{aligned}$$

Therefore, IJ is a sub BF-semigroup of X.

Definition 3.4. A map φ : X \rightarrow Y is called a BF-semigroup homomorphism (or simply BFs-homomorphism) if $\varphi(x * y) = \varphi(x) * \varphi(y)$ and $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$ for any $x, y \in X$. We denote by ker φ the subset { $x \in X : \varphi(x) = 0$ } of X (it is the kernel of the BFs-homomorphism φ).

Lemma 3.5. Let $\varphi : X \to Y$ be a BFs-homomorphism.

- (a) If I is a sub BF-semigroup of X, then $\varphi(I)$ is a sub BF-semigroup of Y.
- (b) If J is a sub BF-semigroup of Y, then $\varphi^{-1}(J)$ is a sub BF-semigroup of X.
- (c) If I is a BF-ideal of X and φ is one-to-one, then $\varphi(I)$ is a BF-ideal of $\varphi(X)$.
- (d) If J is a BF-ideal of Y, then $\varphi^{-1}(J)$ is a BF-ideal of X.

Proof. The proof is analogous to the proof of [2, Lemma 2.6].

If φ is a BFs-homomorphism, then ker φ need not be a BF-ideal of X (see [7, Example 3.2] with identity mapping). Moreover, there is a BFs-homomorphism with kernel equal to {0} but is not one-to-one (see [7, Example 3.13]).

Proposition 3.6. Let X and Y be BF₂-semigroups and let $\varphi : X \to Y$ be a BFs-homomorphism. Then

- (a) φ is one-to-one if and only if ker $\varphi = \{0\}$;
- (b) ker φ is a BF-ideal of X.

Proof. This follows from [7, Proposition 3.14].

Next, we construct quotient BF-semigroups via BF-ideals. Let I be a BF-ideal of X. Then I is a normal ideal of the BF-algebra (X; *, 0). From [7], (X/I; *', 0/I) is a BF-algebra (the quotient BF-algebra of X modulo I), where *' is defined by x/I *' y/I = (x * y)/I. Note that for any $x \in X$, $x/I = \{y \in X : x \sim_I y\}$ is the congruence class containing x, where the relation \sim_I is defined by $x \sim_I y$ if and only if $x * y \in I$. Now, we define \cdot' on X/I by $x/I \cdot' y/I = (x \cdot y)/I$. The operation \cdot' is well-defined. To see this, let $x/I, x'/I, y/I, y'/I \in X/I$. Suppose that x/I = x'/I and y/I = y'/I. Then $x * x' \in I$ and $y * y' \in I$. Since I is a BF-ideal of X and $y * y' \in I$, it follows that $x \cdot (y * y') \in I$. By distributive property, $(x \cdot y) * (x \cdot y') = x \cdot (y * y') \in I$ and so $x \cdot y \sim_I x \cdot y'$. Similarly, since $x * x' \in I$, it follows that $x \cdot y' \sim_I x' \cdot y'$. By transitive property, $x \cdot y \sim_I x' \cdot y'$. Hence, $x/I \cdot 'y/I = (x \cdot y)/I = (x' \cdot y')/I = x'/I \cdot 'y'/I$. It is easy to see that $(X/I; *', \cdot', 0/I)$ is a BF-semigroup. This BF-semigroup is called the quotient BF-semigroup of X modulo I.

Theorem 3.7. Let X and Y be BF₂-semigroups and let $\varphi : X \to Y$ be a BFs-homomorphism from X onto Y. Then X/ker φ is isomorphic to Y.

Proof. The proof is analogous to the proof of [7, Theorem 3.16].

If I and J are BF-ideals of X, then $I \cap J$ is a BF-ideal of X. Since I is sub BF-semigroup of X, $I \cap J$ is a BF-ideal of I. Thus, $I/(I \cap J)$ is well-defined. If X satisfies (SI), then by Proposition 3.3 and [2, Lemma 3.3 (i)], (IJ)/J is well-defined.

Theorem 3.8. If I and J are BF-ideals of X such that X satisfies (SI), then $I/(I \cap J)$ is isomorphic to (IJ)/J.

Proof. The proof is analogous to the proof of [2, Theorem 3.4].

Lemma 3.9. If I and J are BF-ideals of a BF-semigroup X such that $I \subseteq J$, then J/I is a BF-ideal of X/I.

Proof. From [2, Lemma 3.5], J/I is a normal ideal of X/I. Let $j/I \in J/I$ and $x/I \in X/I$. Then $j \in J$ and $x \in X$. Since J is a BF-ideal, $j \cdot x, x \cdot j \in J$. Hence, $j/I \cdot x/I = (j \cdot x)/I \in J/I$ and $x/I \cdot j/I = (x \cdot j)/I \in J/I$. Therefore, J/I is a BF-ideal of X/I.

Let I and J be BF-ideals of a BF₂-semigroup X such that $I \subseteq J$. Then by Lemma 3.9, (X/I)/(J/I) is well-defined.

Theorem 3.10. If I and J are BF-ideals of a BF₂-semigroup X such that $I \subseteq J$, then (X/I)/(J/I) is isomorphic to X/J.

Proof. The proof is analogous to the proof of [2, Theorem 3.6].

4. Fuzzy BF-semigroups

Definition 4.1. A fuzzy set μ of a BF-semigroup X is called a fuzzy sub BF-semigroup of X if it satisfies the following axioms for all $x, y \in X$:

- (i) $\mu(x * y) \ge \min\{\mu(x), \mu(y)\};$
- (ii) $\mu(x \cdot y) \ge \min\{\mu(x), \mu(y)\}.$

Example 4.2. Let $X = \{0, a, b, c\}$ be a set with the following table of operations:

*	0	a	b	с		0	a	b	с
0	0	a	b	С	0	0	0	0	0
a	a	0	с	b	a	0	0	a	a
b	b	с	0	a	b	0	0	b	b
с	c	b	a	0	С	0	0	с	с

Then $(X; *, \cdot, 0)$ is a BF-semigroup. Now, μ is a fuzzy sub BF-semigroup of X, where $\mu(0) = 0.7 = \mu(a)$ and $\mu(b) = 0.4 = \mu(c)$.

Lemma 4.3. Let μ be a fuzzy sub BF-semigroup of X. Then $\mu(0) \ge \mu(x)$ for all $x \in X$. Moreover, if μ is onto, then $\mu(0) = 1$.

Proof. The first statement follows from ([1, Lemma 3.3]). Now, if μ is onto, then there exists an $x \in X$ such that $\mu(x) = 1$. Therefore, $1 = \mu(x) \leq \mu(0) \leq 1$, that is, $\mu(0) = 1$.

Theorem 4.4. Let μ be a fuzzy sub BF-semigroup of X. Then there exists a sequence $\langle x_n \rangle$ in X such that $\lim_{n \to \infty} \mu(x_n) = 1$ if and only if $\mu(0) = 1$.

Proof. The first part of the theorem follows from ([1, Theorem 3.5]). Suppose that $\mu(0) = 1$. Consider the sequence $\langle x_n \rangle = \langle 0, 0, \cdots \rangle$ in X. Then clearly $\lim_{n \to \infty} \mu(x_n) = 1$.

Proposition 4.5. Let μ be a fuzzy sub BF-semigroup of X. Then the set $X_{\mu} = \{x \in X : \mu(x) = \mu(0)\}$ is a sub BF-semigroup of X.

Proof. Let $x, y \in X_{\mu}$. Then $\mu(x) = \mu(0) = \mu(y)$. From ([1, Theorem 3.14]), $x * y \in X_{\mu}$. Now,

$$\mu(\mathbf{x} \cdot \mathbf{y}) \ge \min\{\mu(\mathbf{x}), \mu(\mathbf{y})\} = \mu(\mathbf{0}).$$

Applying Lemma 4.3, $\mu(x \cdot y) = \mu(0)$. Hence, $x \cdot y \in X_{\mu}$. Therefore, X_{μ} is a sub BF-semigroup of X.

Lemma 4.6. If μ is a fuzzy sub BF-semigroup of X, then

- (a) $\mu(0 * x) = \mu(x);$
- (b) $\mu(x * (0 * y)) \ge \min\{\mu(x), \mu(y)\};$

(c)
$$\mu(x * y) = \mu(y * x)$$
.

Proof.

(a): By Lemma 4.3, $\mu(0 * x) \ge \min\{\mu(0), \mu(x)\} = \mu(x)$. By Proposition 2.7 (a) and Lemma 4.3, $\mu(x) = \mu(0 * (0 * x)) \ge \min\{\mu(0), \mu(0 * x)\} = \mu(0 * x)$. Therefore, $\mu(0 * x) = \mu(x)$.

(b): By (a), $\mu(x * (0 * y)) \ge \min\{\mu(x), \mu(0 * y)\} = \min\{\mu(x), \mu(y)\}.$

(c): By (BF) and (a),
$$\mu(x * y) = \mu(0 * (y * x)) = \mu(y * x)$$
.

Theorem 4.7. Suppose that μ is a fuzzy sub BF-semigroup of a BF₁-semigroup X. If $\mu(x * y) = \mu(0)$, then $\mu(x) = \mu(y)$.

Proof. Let $x, y \in X$ and $\mu(x * y) = \mu(0)$. By (BG), x = (x * y) * (0 * y). Thus, by Lemma 4.6 (a) and Lemma 4.3, we have $\mu(x) = \mu((x * y) * (0 * y)) \ge \min\{\mu(x * y), \mu(0 * y)\} = \min\{\mu(0), \mu(y)\} = \mu(y)$. By Lemma 4.6 (c), $\mu(0) = \mu(x * y) = \mu(y * x)$. Applying similar argument as above, we obtain $\mu(y) \ge \mu(x)$. Therefore, $\mu(x) = \mu(y)$.

Theorem 4.7 does not hold for BF-semigroup as shown in the following example.

Example 4.8. Consider the BF-semigroup (X; *, ·, 0) in Example 2.5. Now, μ is a fuzzy sub BF-semigroup of X, where $\mu(0) = 0.5 = \mu(a)$ and $\mu(b) = 0.2$. Moreover, $\mu(a * b) = \mu(0)$ but $\mu(a) = 0.5 \neq 0.2 = \mu(b)$.

The upper level set $U(\mu; t)$ is the set $U(\mu; t) = \{x \in X : \mu(x) \ge t\}$, where $0 \le t \le 1$.

Theorem 4.9. Suppose that $U(\mu;t)$ is nonempty. Then μ is a fuzzy sub BF-semigroup of X if and only if $U(\mu;t)$ is a sub BF-semigroup of X.

Proof. The "only if" statement is clear. Suppose that $U(\mu; t)$ is a sub BF-semigroup of X. If there are $x_0, y_0 \in X$ such that $\mu(x_0 * y_0) < \min\{\mu(x_0), \mu(y_0)\}$, then taking $t_0 = \frac{1}{2}(\mu(x_0 * y_0) + \min\{\mu(x_0), \mu(y_0)\})$, $\mu(x_0 * y_0) < t_0 < \min\{\mu(x_0), \mu(y_0)\}$. Hence, $x_0, y_0 \in U(\mu; t_0)$, but $x_0 * y_0 \notin U(\mu; t_0)$, a contradiction. This means that $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. Similarly, $\mu(x \cdot y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$. Therefore, μ is a fuzzy sub BF-semigroup of X.

Theorem 4.10. Let N be a nonempty subset of a BF-semigroup X. Suppose that μ_N is a fuzzy set in X defined by

$$\mu_{N}(x) = \begin{cases} \alpha, & x \in N, \\ \beta, & otherwise, \end{cases}$$

for all $x \in X$ and $\alpha, \beta \in [0, 1]$ with $\alpha > \beta$. Then μ_N is a fuzzy sub BF-semigroup of X if and only if N is a sub BF-semigroup of X. Moreover, in this case, $X_{\mu_N} = N$.

Proof. Straightforward.

Corollary 4.11. A subset N of X is a sub BF-semigroup X if and only if χ_N is a fuzzy sub BF-semigroup of X.

Proof. Take $\alpha = 1$ and $\beta = 0$ in Theorem 4.10.

Corollary 4.12. If N is a sub BF-semigroup of X, then there exists a fuzzy sub BF-semigroup μ of X such that $U(\mu; t) = N$ for any 0 < t < 1.

Let X and Y be two nonempty sets and $f : X \to Y$ a mapping. Let μ a fuzzy set of Y. The preimage of μ under f, denoted by μ^{f} , is the fuzzy set of X defined by $\mu^{f}(x) = \mu(f(x))$ for all $x \in X$, that is, $\mu^{f} = \mu \circ f$. Let μ be a fuzzy set of X. The mapping $f(\mu) : Y \to [0, 1]$ defined by

$$f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \{\mu(x)\}, & f^{-1}(y) \neq \emptyset, \\ 0, & f^{-1}(y) = \emptyset, \end{cases}$$

is called the image of μ under f, where $f^{-1}(y) = \{x \in X : f(x) = y\}$.

Let $f : X \to Y$ be a BFs-homomorphism. If μ is a fuzzy sub BF-semigroup, then $f(\mu)(0) = \mu(0)$ and $\mu^{f}(0) = \mu(0)$. Let N be a nonempty subset of a BF-semigroup X. A fuzzy set μ is said to have the supremum property if there exists $n_0 \in N$ such that $\mu(n_0) = \sup_{n \in N} \{\mu(n)\}$. If X is a finite set, then

 $\mu : X \rightarrow [0,1]$ has the supremum property. The following theorem shows that the homomorphic image $f(\mu)$ of a fuzzy sub BF-semigroup μ is a fuzzy sub BF-semigroup of the image of f.

Theorem 4.13. Let $f : X \to Y$ be a BFs-epimorphism. If μ is a fuzzy sub BF-semigroup of X with the supremum property, then $f(\mu)$ is a fuzzy sub BF-semigroup of Y.

Proof. Let μ be a fuzzy sub BF-semigroup of X with the supremum property. Suppose that $y_1, y_2 \in Y$. Since f is onto, $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are nonempty subsets of X. Since μ has the supremum property, there exist $x_1 \in f^{-1}(y_1)$ and $x_2 \in f^{-1}(y_2)$ such that $\mu(x_1) = \sup_{x \in f^{-1}(y_1)} \mu(x)$ and $\mu(x_2) = \sup_{x \in f^{-1}(y_2)} \mu(x)$. Since $f(x_1 * x_2) = f(x_1) * f(x_2) = y_1 * y_2, x_1 * x_2 \in f^{-1}(y_1 * y_2)$. Hence,

$$\begin{split} f(\mu)(y_1 * y_2) &= \sup_{x \in f^{-1}(y_1 * y_2)} \mu(x) \\ &\geqslant \mu(x_1 * x_2) \end{split}$$

$$\ge \min\{\mu(x_1), \mu(x_2)\}$$

= min $\left\{ \sup_{x \in f^{-1}(y_1)} \mu(x), \sup_{x \in f^{-1}(y_2)} \mu(x) \right\}$
= min{f(\mu)(y_1), f(\mu)(y_2)}.

Similarly, $f(\mu)(y_1 \cdot y_2) \ge \min\{f(\mu)(y_1), f(\mu)(y_2)\}$. Therefore, $f(\mu)$ is a fuzzy sub BF-semigroup of Y. \Box

If X is finite, then μ has the supremum property.

Corollary 4.14. If X is finite, $f : X \to Y$ is a BFs-epimorphism and μ is a fuzzy sub BF-semigroup of X, then $f(\mu)$ is a fuzzy sub BF-semigroup of Y.

Let $f : X \to Y$ be a BFs-homomorphism. The following theorem shows that the homomorphic preimage μ^f of a fuzzy sub BF-semigroup μ of Y is a fuzzy sub BF-semigroup of X.

Theorem 4.15. Let $f : X \to Y$ be a BFs-homomorphism. If μ is a fuzzy sub BF-semigroup of Y, then μ^f is a fuzzy sub BF-semigroup of X. If f is onto, then the converse holds.

Proof. Let μ is a fuzzy sub BF-semigroup of Y. Suppose that $x, y \in X$ such that f(x) = a and f(y) = b. Then

$$\mu^{f}(x * y) = \mu(f(x * y))$$

= $\mu(f(x) * f(y))$
= $\mu(a * b)$
 $\geq \min\{\mu(a), \mu(b)\}$
= $\min\{\mu(f(x)), \mu(f(y))\}$
= $\min\{\mu^{f}(x), \mu^{f}(y)\}.$

Similarly, $\mu^f(x \cdot y) \ge \min\{\mu^f(x), \mu^f(y)\}$. Hence, μ^f is a fuzzy sub BF-semigroup of X. For the converse, suppose that f is onto and μ^f is a fuzzy sub BF-semigroup of X. Let $a, b \in Y$. Since f is onto, a = f(x) and b = f(y) for some $x, y \in X$. Hence,

$$\mu(a * b) = \mu(f(x) * f(y))$$

= $\mu(f(x * y))$
= $\mu^{f}(x * y)$
 $\geq \min\{\mu^{f}(x), \mu^{f}(y)\}$
= $\min\{\mu(f(x)), \mu(f(y))\}$
= $\min\{\mu(a), \mu(b)\}.$

Similarly, $\mu(a \cdot b) \ge \min\{\mu(a), \mu(b)\}$. Therefore, μ is a fuzzy sub BF-semigroup of Y.

Acknowledgment

The authors would like to thank the referees for the remarks, comments, and suggestions which were incorporated into this revised version.

References

- [1] A. Borumand Saeid, M. A. Rezvani, On Fuzzy BF-algebras, Int. Math. Forum, 4 (2009), 13–25. 1, 4, 4, 4
- [2] J. C. Endam, J. P. Vilela, Homomorphism of BF-algebras, Math. Slovaca, 64 (2014), 13–20. 3, 3, 3, 3, 3, 3
- [3] A. R. Hadipour, Generalized Fuzzy BF-algebras, Sci. Magna, 5 (2009), 39-53. 1

- [4] Y. B. Jun, E. H. Roh, H. S. Kim, On BH-algebras, Sci. Math., 1 (1998), 347–354. 1
- [5] C. B. Kim, H. S. Kim, On BG-algebras, Demonstratio Math., 41 (2008), 497–505. 1
- [6] K. H. Lee, First Course on Fuzzy Theory and Applications, Springer-Verlag, Berlin, (2005).
- [7] A. Walendziak, On BF-algebras, Math. Slovaca, 57 (2007), 119–128. 1, 2, 2.7, 3, 3, 3, 3
- [8] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. 1