On BF-semigroups and Fuzzy BF-semigroups

Mae Manahon ${ }^{\text {a }}$, Jenette Bantug ${ }^{\text {b }}$, Joemar Endam ${ }^{\text {a,* }}$
${ }^{a}$ Mathematics Department, Negros Oriental State University, Dumaguete City, Philippines.
${ }^{b}$ Mathematics Department, Silliman University, Dumaguete City, Philippines.

Abstract

We introduce and establish the notion of BF-semigroups. We construct quotient BF-semigroups via BF-ideals and we investigate homomorphisms of BF -semigroups and establish the isomorphism theorems for BF -semigroups. Moreover, we apply the concept of fuzzy sets to BF-semigroups.

Keywords: $\mathrm{BF} / \mathrm{BF}_{1} / \mathrm{BF}_{2}$-semigroup, sub BF -semigroup, BF -ideal, quotient BF -semigroup, fuzzy sub BF -semigroup.
2010 MSC: 06F35, 08A05, 03G25, 94D05.
(c)2020 All rights reserved.

1. Introduction

The concept of BH-algebras was introduced by Jun et al. [4]. They defined a BH-algebra as an algebra of $(A ; *, 0)$ of type $(2,0)$ (that is, a nonempty set A with a binary operation $*$ and a constant 0) satisfying the following axioms:
(B1) $x * x=0$;
(B2) $x * 0=x$;
(BH) $x * y=0$ and $y * x=0$ imply $x=y$.
In [5], Kim and Kim introduced BG-algebras. An algebra ($\mathcal{A} ; *, 0$) of type $(2,0)$ is a BG-algebra if it obeys (B1), (B2), and
(BG) $x=(x * y) *(0 * y)$.
In [7], Walendziak introduced BF-algebras, together with $\mathrm{BF}_{1} / \mathrm{BF}_{2}$-algebras. An algebra $(A ; *, 0)$ of type $(2,0)$ is a BF-algebra if it obeys (B1), (B2), and

[^0](BF) $0 *(x * y)=y * x$.
$A B F_{1}$-algebra is a $B F$-algebra satisfying (BG) and a $B F_{2}$-algebra is a $B F$-algebra satisfying (BH). Let $(A ; *, 0)$ be a BF-algebra. A nonempty subset N of A is called a subalgebra of A if $x * y \in N$ for any $x, y \in N$. A subset I of A is called an ideal of A if it satisfies:
(I1) $0 \in \mathrm{I}$;
(I2) $x * y \in I$ and $y \in I$ imply $x \in I$.
We say that an ideal I is normal if it satisfies:
(I3) $x * y \in I$ implies $(z * x) *(z * y) \in I$, for any $z \in A$.
The concept of fuzzy set, which was introduced by Zadeh [8] provides an extension of the classical notion of set. Since then a number of researches, both in theory and application, involving fuzzy sets have been established. In particular, Borumand Saeid and Rezvani [1] introduced fuzzy BF-algebras and they established some properties of this concept. Moreover, Hadipour [3] generalized the concept of fuzzy BFalgebras. We introduce and establish the notion of BF -semigroups. We construct quotient BF -semigroups via $B F-$ ideals and we investigate homomorphisms of $B F$-semigroups and establish the isomorphism theorems for BF-semigroups. Moreover, we apply the concept of fuzzy sets to BF-semigroups.

2. BF-semigroups

Definition 2.1. A BF-semigroup is a nonempty set X together with two binary operations $*$ and \cdot and a constant 0 satisfying:
(i) $(X ; *, 0)$ is a BF-algebra;
(ii) (X, \cdot) is a semigroup;
(iii) $x \cdot(y * z)=(x \cdot y) *(x \cdot z)$ and $(x * y) \cdot z=(x \cdot z) *(y \cdot z)$.

Definition 2.2. A $B F$-semigroup is called a $B F_{1}$-semigroup (resp. a $B F_{2}$-semigroup) if it obeys (BG) (resp. (BH)).

Example 2.3. Let $X=\{0, a, b, c\}$ be a set with the following table of operations:

$*$	0	a	b	c
0	0	c	b	a
a	a	0	c	b
b	b	a	0	c
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	b	0	b
b	0	0	0	0
c	0	b	0	b

Then $(X ; *, \cdot, 0)$ is a BF-semigroup.
Example 2.4. Let $X=\{0, a, b\}$ be a set with the following table of operations:

$*$	0	a	b	\cdot	0	a	b
0	0	a	b	0	0	0	0
a	a	0	a	a	0	b	0
b	b	a	0	b	0	0	0

Then $(X ; *, \cdot 0)$ is a BF-semigroup.
Example 2.5. Let $X=\{0, a, b\}$ be a set with the following table of operations:

$*$	0	a	b	\cdot	0	a	b
0	0	a	b	0	0	0	0
a	a	0	0	a	0	a	b
b	b	0	0	b	0	b	a

Then $(X ; *, \cdot, 0)$ is a BF-semigroup.
Example 2.6. If $(X ; *, 0)$ is a BF-algebra, then $(X ; *, \cdot, 0)$ is a BF-semigroup, where $x \cdot y=0$ for any $x, y \in X$.
Every BF_{1}-semigroup is a BF_{2}-semigroup (see [7, Proposition 2.12]). The BF-semigroup in Example 2.5 is not a $B F_{2}$-semigroup since $a * b=0$ and $b * a=0$ but $a \neq b$. Example 2.4 is a $B F_{2}$-semigroup which is not a $B F_{1}$-semigroup since $(b * a) *(0 * a)=a * a=0 \neq b$.

Proposition 2.7 ([7, Proposition 2.5]). If $(A ; *, 0)$ is a $B F-$ algebra, then for any $x, y \in A$,
(a) $0 *(0 * x)=x ;$
(b) $0 * x=0 * y$ implies $x=y$;
(c) $x * y=0$ implies $y * x=0$.

From now on, let X stands for $B F-$ semigroup $(X ; *, \cdot, 0)$.
Proposition 2.8. For all $a, b, c \in X$,
(a) $a \cdot 0=0 \cdot a=0$;
(b) $\mathbf{a} \cdot(0 * b)=(0 * a) \cdot b=0 *(a \cdot b)$;
(c) $(0 * a) \cdot(0 * b)=a \cdot b$;
(d) $a \cdot(b *(0 * c))=(a \cdot b) *(0 *(a \cdot c)),(b *(0 * c)) \cdot a=(b \cdot a) *(0 *(c \cdot a))$.

Proof.
(a): By (B2), distributive property, and (B1), $a \cdot 0=a \cdot(0 * 0)=(a \cdot 0) *(a \cdot 0)=0$. Similarly, $0 \cdot a=0$.
(b): By distributive property and $(a), a \cdot(0 * b)=(a \cdot 0) *(a \cdot b)=0 *(a \cdot b)=(0 \cdot b) *(a \cdot b)=(0 * a) \cdot b$.
(c): By (b), distributive property, (a), and Proposition 2.7(a), $(0 * a) \cdot(0 * b)=0 *(a \cdot(0 * b))=0 *((a \cdot 0) *$ $(a \cdot b))=0 *(0 *(a \cdot b))=a \cdot b$.
(d): By distributive property and $(b), a \cdot(b *(0 * c))=(a \cdot b) *(a \cdot(0 * c))=(a \cdot b) *(0 *(a \cdot c))$. Similarly, $(b *(0 * c)) \cdot a=(b \cdot a) *(0 *(c \cdot a))$.

Definition 2.9. A nonempty subset S of X is called a sub BF-semigroup of X if $x * y, x \cdot y \in S$ for all $x, y \in S$.

Clearly, $\{0\}$ and X are sub BF-semigroups of X.
Example 2.10. Let $X=\{0, a, b, c\}$ be a set with the following table of operations:

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	a	b	c
b	0	b	c	a
c	0	c	a	b

Then $(X ; *, \cdot 0)$ is a BF-semigroup. The set $S_{1}=\{0, a\}$ is a sub BF-semigroup of X, while the set $S_{2}=\{0, a, b\}$ is not since $a * b=c \notin S_{2}$.

3. Ideals in BF-semigroups

Definition 3.1. A nonempty subset I of X is called a BF-ideal of X if it obeys (I1), (I2), (I3), and
(I4) $a \cdot x, x \cdot a \in I$ for any $a \in I, x \in X$.
This means I is a BF-ideal of X if and only if I is a normal ideal of X satisfying (I4). Also, if I is a $B F$-ideal of X, then I is a sub BF-semigroup of X. The set $I_{1}=\{0, b\}$ in Example 2.4 is a BF-ideal of X while $I_{2}=\{0, a\}$ is not since $a \cdot a=b \notin I_{2}$. Clearly, X is a BF-ideal of X. However, $\{0\}$ need not be a BF-ideal of X (see [7, Example 3.2]). If X is a $B F_{2}$-semigroup, then $\{0\}$ is a $B F$-ideal of X. Indeed, if $x, y, z \in X$, then clearly (I1) and (I2) hold for $\{0\}$. Suppose that $x * y=0$. Then from [7, Proposition 2.9], $x=y$ and so $(z * x) *(z * y)=0$. Now, (I4) follows from Proposition 2.8(a). Therefore, $\{0\}$ is a BF-ideal of X.

Theorem 3.2.

(a) The intersection of sub BF-semigroups of X is a sub BF-semigroup of X; and
(b) the intersection of BF-ideals of X is a BF-ideal of X .

In [2], if I and J are ideals of BF-algebra $(X ; *, 0)$, then we define the subset IJ of X to be the set $\{x \in X: x=i *(0 * j)$ for some $i \in I, j \in J\}$. From [2, Lemma 3.3(iii)], if I and J are normal ideals of a BF-algebra $(X ; *, 0)$, then for any $i_{1}, i_{2} \in I, j_{1}, j_{2} \in J$, (SI) implies IJ is a subalgebra of X, where (SI) is given below

$$
\text { (SI) }\left(i_{1} * j_{1}\right) *\left(i_{2} * j_{2}\right)=\left(i_{1} * i_{2}\right) *\left(j_{1} * j_{2}\right)
$$

Proposition 3.3. Let I and J be BF-ideals of a BF-semigroup X such that X satisfies (SI). Then IJ is a sub BFsemigroup of X .

Proof. Let $x, y \in I J$. Then there exist $i_{1}, i_{2} \in I$ and $j_{1}, j_{2} \in J$ such that $x=i_{1} *\left(0 * j_{1}\right)$ and $y=i_{2} *\left(0 * j_{2}\right)$. Since I is a BF-ideal of X and $i_{2} \in I,\left(i_{1} *\left(0 * j_{1}\right)\right) \cdot i_{2} \in I$. Since J is a BF-ideal of X and $j_{2} \in J,\left(i_{1} *\left(0 * j_{1}\right)\right)$. $j_{2} \in J$. Thus, by distributive property and Proposition 2.8 (b), we have

$$
\begin{aligned}
x \cdot y & =\left(i_{1} *\left(0 * j_{1}\right)\right) \cdot\left(i_{2} *\left(0 * j_{2}\right)\right) \\
& =\left[\left(i_{1} *\left(0 * j_{1}\right)\right) \cdot \mathfrak{i}_{2}\right] *\left[\left(i_{1} *\left(0 * j_{1}\right)\right) \cdot\left(0 * j_{2}\right)\right] \\
& \left.=\left[\left(i_{1} *\left(0 * \mathfrak{j}_{1}\right)\right) \cdot \mathfrak{i}_{2}\right] *\left[0 *\left(\left(\mathfrak{i}_{1} *\left(0 * \mathfrak{j}_{1}\right)\right) \cdot \mathfrak{j}_{2}\right)\right] \in I\right)
\end{aligned}
$$

Therefore, IJ is a sub BF-semigroup of X.
Definition 3.4. A map $\varphi: X \rightarrow Y$ is called a BF-semigroup homomorphism (or simply BFs-homomorphism) if $\varphi(x * y)=\varphi(x) * \varphi(y)$ and $\varphi(x \cdot y)=\varphi(x) \cdot \varphi(y)$ for any $x, y \in X$. We denote by ker φ the subset $\{x \in X: \varphi(x)=0\}$ of X (it is the kernel of the BFs-homomorphism φ).

Lemma 3.5. Let $\varphi: X \rightarrow Y$ be a BFs-homomorphism.
(a) If I is a sub BF -semigroup of X , then $\varphi(\mathrm{I})$ is a sub BF -semigroup of Y .
(b) If J is a sub BF -semigroup of Y , then $\varphi^{-1}(\mathrm{~J})$ is a sub BF -semigroup of X .
(c) If I is a BF-ideal of X and φ is one-to-one, then $\varphi(\mathrm{I})$ is a BF-ideal of $\varphi(\mathrm{X})$.
(d) If J is a BF-ideal of Y , then $\varphi^{-1}(\mathrm{~J})$ is a BF-ideal of X .

Proof. The proof is analogous to the proof of [2, Lemma 2.6].
If φ is a BFs-homomorphism, then $\operatorname{ker} \varphi$ need not be a BF-ideal of X (see [7, Example 3.2] with identity mapping). Moreover, there is a BFs-homomorphism with kernel equal to $\{0\}$ but is not one-to-one (see [7, Example 3.13]).

Proposition 3.6. Let X and Y be BF_{2}-semigroups and let $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ be a BFs -homomorphism. Then
(a) φ is one-to-one if and only if $\operatorname{ker} \varphi=\{0\}$;
(b) $\operatorname{ker} \varphi$ is a BF-ideal of X .

Proof. This follows from [7, Proposition 3.14].
Next, we construct quotient BF-semigroups via BF-ideals. Let I be a BF-ideal of X. Then I is a normal ideal of the BF-algebra $(X ; *, 0)$. From [7], $\left(X / I ; *^{\prime}, 0 / I\right)$ is a BF-algebra (the quotient BF-algebra of X modulo I), where $*^{\prime}$ is defined by $x / I *^{\prime} y / I=(x * y) / I$. Note that for any $x \in X, x / I=\{y \in X: x \sim I y\}$ is the congruence class containing x, where the relation \sim_{I} is defined by $x \sim_{I} y$ if and only if $x * y \in I$. Now, we define \cdot^{\prime} on X / I by $x / I \cdot^{\prime} y / I=(x \cdot y) / I$. The operation \cdot^{\prime} is well-defined. To see this, let $x / I, x^{\prime} / I, y / I, y^{\prime} / I \in X / I$. Suppose that $x / I=x^{\prime} / I$ and $y / I=y^{\prime} / I$. Then $x * x^{\prime} \in I$ and $y * y^{\prime} \in I$. Since I is a BF-ideal of X and $y * y^{\prime} \in I$, it follows that $x \cdot\left(y * y^{\prime}\right) \in I$. By distributive property, $(x \cdot y) *\left(x \cdot y^{\prime}\right)=$ $x \cdot\left(y * y^{\prime}\right) \in I$ and so $x \cdot y \sim_{I} x \cdot y^{\prime}$. Similarly, since $x * x^{\prime} \in I$, it follows that $x \cdot y^{\prime} \sim_{I} x^{\prime} \cdot y^{\prime}$. By transitive property, $x \cdot y \sim_{I} x^{\prime} \cdot y^{\prime}$. Hence, $x / I \cdot^{\prime} y / I=(x \cdot y) / I=\left(x^{\prime} \cdot y^{\prime}\right) / I=x^{\prime} / I \cdot^{\prime} y^{\prime} / I$. It is easy to see that $\left(\mathrm{X} / \mathrm{I} ; *^{\prime}, \cdot^{\prime}, 0 / \mathrm{I}\right)$ is a BF -semigroup. This BF -semigroup is called the quotient BF -semigroup of X modulo I .

Theorem 3.7. Let X and Y be BF_{2}-semigroups and let $\varphi: \mathrm{X} \rightarrow \mathrm{Y}$ be a BFs -homomorphism from X onto Y . Then $\mathrm{X} / \operatorname{ker} \varphi$ is isomorphic to Y .

Proof. The proof is analogous to the proof of [7, Theorem 3.16].
If I and J are BF-ideals of X, then $I \cap J$ is a BF-ideal of X. Since I is sub BF-semigroup of $X, I \cap J$ is a BF-ideal of I . Thus, $\mathrm{I} /(\mathrm{I} \cap \mathrm{J})$ is well-defined. If X satisfies (SI), then by Proposition 3.3 and [2, Lemma 3.3 (i)], (IJ)/J is well-defined.

Theorem 3.8. If I and J are BF -ideals of X such that X satisfies (SI), then $\mathrm{I} /(\mathrm{I} \cap \mathrm{J})$ is isomorphic to (IJ)/J.
Proof. The proof is analogous to the proof of [2, Theorem 3.4].
Lemma 3.9. If I and J are BF-ideals of a BF-semigroup X such that $\mathrm{I} \subseteq \mathrm{J}$, then J / I is a BF-ideal of X / I.
Proof. From [2, Lemma 3.5], J / I is a normal ideal of X / I. Let $j / I \in J / I$ and $x / I \in X / I$. Then $j \in J$ and $x \in X$. Since J is a BF-ideal, $j \cdot x, x \cdot j \in J$. Hence, $j / I \cdot x / I=(j \cdot x) / I \in J / I$ and $x / I \cdot j / I=(x \cdot j) / I \in J / I$. Therefore, J / I is a BF-ideal of X / I.

Let I and J be $B F$-ideals of a $B F_{2}$-semigroup X such that $I \subseteq J$. Then by Lemma $3.9,(X / I) /(J / I)$ is well-defined.

Theorem 3.10. If I and J are BF -ideals of a BF_{2}-semigroup X such that $\mathrm{I} \subseteq \mathrm{J}$, then $(\mathrm{X} / \mathrm{I}) /(\mathrm{J} / \mathrm{I})$ is isomorphic to X/J.

Proof. The proof is analogous to the proof of [2, Theorem 3.6].

4. Fuzzy BF-semigroups

Definition 4.1. A fuzzy set μ of a BF-semigroup X is called a fuzzy sub BF-semigroup of X if it satisfies the following axioms for all $x, y \in X$:
(i) $\mu(x * y) \geqslant \min \{\mu(x), \mu(y)\}$;
(ii) $\mu(x \cdot y) \geqslant \min \{\mu(x), \mu(y)\}$.

Example 4.2. Let $X=\{0, a, b, c\}$ be a set with the following table of operations:

$*$	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

\cdot	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	0	b	b
c	0	0	c	c

Then $(X ; *, \cdot, 0)$ is a BF-semigroup. Now, μ is a fuzzy sub BF-semigroup of X, where $\mu(0)=0.7=\mu(a)$ and $\mu(b)=0.4=\mu(c)$.

Lemma 4.3. Let μ be a fuzzy sub BF-semigroup of X. Then $\mu(0) \geqslant \mu(x)$ for all $x \in X$. Moreover, if μ is onto, then $\mu(0)=1$.

Proof. The first statement follows from ([1, Lemma 3.3]). Now, if μ is onto, then there exists an $x \in X$ such that $\mu(x)=1$. Therefore, $1=\mu(x) \leqslant \mu(0) \leqslant 1$, that is, $\mu(0)=1$.

Theorem 4.4. Let μ be a fuzzy sub BF-semigroup of X. Then there exists a sequence $\left\langle x_{n}\right\rangle$ in X such that $\lim _{n \rightarrow \infty} \mu\left(x_{n}\right)=1$ if and only if $\mu(0)=1$.
Proof. The first part of the theorem follows from ([1, Theorem 3.5]). Suppose that $\mu(0)=1$. Consider the sequence $\left\langle x_{n}\right\rangle=\langle 0,0, \cdots\rangle$ in X. Then clearly $\lim _{n \rightarrow \infty} \mu\left(x_{n}\right)=1$.

Proposition 4.5. Let μ be a fuzzy sub BF-semigroup of X. Then the set $X_{\mu}=\{x \in X: \mu(x)=\mu(0)\}$ is a sub BF -semigroup of X .

Proof. Let $x, y \in X_{\mu}$. Then $\mu(x)=\mu(0)=\mu(y)$. From ([1, Theorem 3.14]), $x * y \in X_{\mu}$. Now,

$$
\mu(x \cdot y) \geqslant \min \{\mu(x), \mu(y)\}=\mu(0)
$$

Applying Lemma 4.3, $\mu(x \cdot y)=\mu(0)$. Hence, $x \cdot y \in X_{\mu}$. Therefore, X_{μ} is a sub BF-semigroup of X.
Lemma 4.6. If μ is a fuzzy sub BF-semigroup of X, then
(a) $\mu(0 * x)=\mu(x)$;
(b) $\mu(x *(0 * y)) \geqslant \min \{\mu(x), \mu(y)\} ;$
(c) $\mu(x * y)=\mu(y * x)$.

Proof.
(a): By Lemma 4.3, $\mu(0 * x) \geqslant \min \{\mu(0), \mu(x)\}=\mu(x)$. By Proposition 2.7 (a) and Lemma 4.3, $\mu(x)=$ $\mu(0 *(0 * x)) \geqslant \min \{\mu(0), \mu(0 * x)\}=\mu(0 * x)$. Therefore, $\mu(0 * x)=\mu(x)$.
(b): $\operatorname{By}(a), \mu(x *(0 * y)) \geqslant \min \{\mu(x), \mu(0 * y)\}=\min \{\mu(x), \mu(y)\}$.
(c): By (BF) and (a), $\mu(x * y)=\mu(0 *(y * x))=\mu(y * x)$.

Theorem 4.7. Suppose that μ is a fuzzy sub $B F$-semigroup of a BF_{1}-semigroup X. If $\mu(x * y)=\mu(0)$, then $\mu(x)=\mu(y)$.

Proof. Let $x, y \in X$ and $\mu(x * y)=\mu(0)$. By (BG), $x=(x * y) *(0 * y)$. Thus, by Lemma 4.6 (a) and Lemma 4.3, we have $\mu(x)=\mu((x * y) *(0 * y)) \geqslant \min \{\mu(x * y), \mu(0 * y)\}=\min \{\mu(0), \mu(y)\}=\mu(y)$. By Lemma 4.6 (c), $\mu(0)=\mu(x * y)=\mu(y * x)$. Applying similar argument as above, we obtain $\mu(y) \geqslant \mu(x)$. Therefore, $\mu(x)=\mu(y)$.

Theorem 4.7 does not hold for BF-semigroup as shown in the following example.
Example 4.8. Consider the BF-semigroup ($\mathrm{X} ; *, \cdot, 0$) in Example 2.5. Now, μ is a fuzzy sub BF-semigroup of X, where $\mu(0)=0.5=\mu(a)$ and $\mu(b)=0.2$. Moreover, $\mu(a * b)=\mu(0)$ but $\mu(a)=0.5 \neq 0.2=\mu(b)$.

The upper level set $\mathrm{U}(\mu ; \mathrm{t})$ is the set $\mathrm{U}(\mu ; \mathrm{t})=\{\mathrm{x} \in \mathrm{X}: \mu(\mathrm{x}) \geqslant \mathrm{t}\}$, where $0 \leqslant \mathrm{t} \leqslant 1$.
Theorem 4.9. Suppose that $\mathrm{U}(\mu ; \mathrm{t})$ is nonempty. Then μ is a fuzzy sub BF-semigroup of X if and only if $\mathrm{U}(\mu ; \mathrm{t})$ is a sub BF -semigroup of X .

Proof. The "only if" statement is clear. Suppose that $\mathrm{U}(\mu ; \mathrm{t})$ is a sub BF-semigroup of X . If there are $x_{0}, y_{0} \in X$ such that $\mu\left(x_{0} * y_{0}\right)<\min \left\{\mu\left(x_{0}\right), \mu\left(y_{0}\right)\right\}$, then taking $t_{0}=\frac{1}{2}\left(\mu\left(x_{0} * y_{0}\right)+\min \left\{\mu\left(x_{0}\right), \mu\left(y_{0}\right)\right\}\right)$, $\mu\left(x_{0} * y_{0}\right)<t_{0}<\min \left\{\mu\left(x_{0}\right), \mu\left(y_{0}\right)\right\}$. Hence, $x_{0}, y_{0} \in U\left(\mu ; t_{0}\right)$, but $x_{0} * y_{0} \notin U\left(\mu ; t_{0}\right)$, a contradiction. This means that $\mu(x * y) \geqslant \min \{\mu(x), \mu(y)\}$ for all $x, y \in X$. Similarly, $\mu(x \cdot y) \geqslant \min \{\mu(x), \mu(y)\}$ for all $x, y \in X$. Therefore, μ is a fuzzy sub BF-semigroup of X.

Theorem 4.10. Let N be a nonempty subset of a BF -semigroup X . Suppose that μ_{N} is a fuzzy set in X defined by

$$
\mu_{N}(x)= \begin{cases}\alpha, & x \in N, \\ \beta, & \text { otherwise }\end{cases}
$$

for all $x \in X$ and $\alpha, \beta \in[0,1]$ with $\alpha>\beta$. Then μ_{N} is a fuzzy sub $B F-$ semigroup of X if and only if N is a sub $B F$-semigroup of X. Moreover, in this case, $\mathrm{X}_{\mu_{\mathrm{N}}}=\mathrm{N}$.
Proof. Straightforward.
Corollary 4.11. A subset N of X is a sub BF -semigroup X if and only if χ_{N} is a fuzzy sub BF -semigroup of X .
Proof. Take $\alpha=1$ and $\beta=0$ in Theorem 4.10.
Corollary 4.12. If N is a sub BF -semigroup of X , then there exists a fuzzy sub BF -semigroup μ of X such that $\mathrm{U}(\mu ; \mathrm{t})=\mathrm{N}$ for any $0<\mathrm{t}<1$.

Let X and Y be two nonempty sets and $f: X \rightarrow Y$ a mapping. Let μ a fuzzy set of Y. The preimage of μ under f, denoted by μ^{f}, is the fuzzy set of X defined by $\mu^{f}(x)=\mu(f(x))$ for all $x \in X$, that is, $\mu^{f}=\mu \circ f$. Let μ be a fuzzy set of X. The mapping $f(\mu): Y \rightarrow[0,1]$ defined by

$$
f(\mu)(y)= \begin{cases}\sup _{x \in f^{-1}(y)}\{\mu(x)\}, & f^{-1}(y) \neq \varnothing \\ 0, & f^{-1}(y)=\varnothing\end{cases}
$$

is called the image of μ under f, where $f^{-1}(y)=\{x \in X: f(x)=y\}$.
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BFs-homomorphism. If μ is a fuzzy sub BF-semigroup, then $f(\mu)(0)=\mu(0)$ and $\mu^{f}(0)=\mu(0)$. Let N be a nonempty subset of a BF-semigroup X. A fuzzy set μ is said to have the supremum property if there exists $n_{0} \in N$ such that $\mu\left(n_{0}\right)=\sup _{n \in N}\{\mu(n)\}$. If X is a finite set, then $\mu: X \rightarrow[0,1]$ has the supremum property. The following theorem shows that the homomorphic image $f(\mu)$ of a fuzzy sub BF-semigroup μ is a fuzzy sub BF-semigroup of the image of f.

Theorem 4.13. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BFs-epimorphism. If μ is a fuzzy sub BF-semigroup of X with the supremum property, then $f(\mu)$ is a fuzzy sub BF-semigroup of Y .

Proof. Let μ be a fuzzy sub BF-semigroup of X with the supremum property. Suppose that $y_{1}, y_{2} \in Y$. Since f is onto, $f^{-1}\left(y_{1}\right)$ and $f^{-1}\left(y_{2}\right)$ are nonempty subsets of X. Since μ has the supremum property, there exist $x_{1} \in f^{-1}\left(y_{1}\right)$ and $x_{2} \in f^{-1}\left(y_{2}\right)$ such that $\mu\left(x_{1}\right)=\sup _{x \in f^{-1}\left(y_{1}\right)} \mu(x)$ and $\mu\left(x_{2}\right)=\sup _{x \in f^{-1}\left(y_{2}\right)} \mu(x)$. Since $f\left(x_{1} * x_{2}\right)=f\left(x_{1}\right) * f\left(x_{2}\right)=y_{1} * y_{2}, x_{1} * x_{2} \in f^{-1}\left(y_{1} * y_{2}\right)$. Hence,

$$
\begin{aligned}
f(\mu)\left(y_{1} * y_{2}\right) & =\sup _{x \in f^{-1}\left(y_{1} * y_{2}\right)} \mu(x) \\
& \geqslant \mu\left(x_{1} * x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geqslant \min \left\{\mu\left(x_{1}\right), \mu\left(x_{2}\right)\right\} \\
& =\min \left\{\sup _{x \in f^{-1}\left(y_{1}\right)} \mu(x), \sup _{x \in f^{-1}\left(y_{2}\right)} \mu(x)\right\} \\
& =\min \left\{f(\mu)\left(y_{1}\right), f(\mu)\left(y_{2}\right)\right\} .
\end{aligned}
$$

Similarly, $f(\mu)\left(y_{1} \cdot y_{2}\right) \geqslant \min \left\{f(\mu)\left(y_{1}\right), f(\mu)\left(y_{2}\right)\right\}$. Therefore, $f(\mu)$ is a fuzzy sub BF-semigroup of Y.
If X is finite, then μ has the supremum property.
Corollary 4.14. If X is finite, $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a BFs-epimorphism and μ is a fuzzy sub BF-semigroup of X , then $\mathrm{f}(\mu)$ is a fuzzy sub BF -semigroup of Y .

Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BFs-homomorphism. The following theorem shows that the homomorphic preimage μ^{f} of a fuzzy sub BF-semigroup μ of Y is a fuzzy sub BF-semigroup of X.
Theorem 4.15. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a BFs-homomorphism. If μ is a fuzzy sub BF-semigroup of Y , then μ^{f} is a fuzzy sub BF-semigroup of X . If f is onto, then the converse holds.

Proof. Let μ is a fuzzy sub BF-semigroup of Y. Suppose that $x, y \in X$ such that $f(x)=a$ and $f(y)=b$. Then

$$
\begin{aligned}
\mu^{f}(x * y) & =\mu(f(x * y)) \\
& =\mu(f(x) * f(y)) \\
& =\mu(a * \mathbf{b}) \\
& \geqslant \min \{\mu(a), \mu(b)\} \\
& =\min \{\mu(f(x)), \mu(f(y))\} \\
& =\min \left\{\mu^{f}(x), \mu^{f}(y)\right\} .
\end{aligned}
$$

Similarly, $\mu^{f}(x \cdot y) \geqslant \min \left\{\mu^{f}(x), \mu^{f}(y)\right\}$. Hence, μ^{f} is a fuzzy sub BF-semigroup of X. For the converse, suppose that f is onto and μ^{f} is a fuzzy sub BF-semigroup of X. Let $a, b \in Y$. Since f is onto, $a=f(x)$ and $b=f(y)$ for some $x, y \in X$. Hence,

$$
\begin{aligned}
\mu(\mathbf{a} * \mathbf{b}) & =\mu(f(x) * f(y)) \\
& =\mu(f(x * y)) \\
& =\mu^{f}(x * y) \\
& \geqslant \min \left\{\mu^{f}(x), \mu^{f}(y)\right\} \\
& =\min \{\mu(f(x)), \mu(f(y))\} \\
& =\min \{\mu(a), \mu(b)\} .
\end{aligned}
$$

Similarly, $\mu(a \cdot b) \geqslant \min \{\mu(a), \mu(b)\}$. Therefore, μ is a fuzzy sub BF-semigroup of Y.

Acknowledgment

The authors would like to thank the referees for the remarks, comments, and suggestions which were incorporated into this revised version.

References

[1] A. Borumand Saeid, M. A. Rezvani, On Fuzzy BF-algebras, Int. Math. Forum, 4 (2009), 13-25. 1, 4, 4, 4
[2] J. C. Endam, J. P. Vilela, Homomorphism of BF-algebras, Math. Slovaca, 64 (2014), 13-20. 3, 3, 3, 3, 3, 3
[3] A. R. Hadipour, Generalized Fuzzy BF-algebras, Sci. Magna, 5 (2009), 39-53. 1
[4] Y. B. Jun, E. H. Roh, H. S. Kim, On BH-algebras, Sci. Math., 1 (1998), 347-354. 1
[5] C. B. Kim, H. S. Kim, On BG-algebras, Demonstratio Math., 41 (2008), 497-505. 1
[6] K. H. Lee, First Course on Fuzzy Theory and Applications, Springer-Verlag, Berlin, (2005).
[7] A. Walendziak, On BF-algebras, Math. Slovaca, 57 (2007), 119-128. 1, 2, 2.7, 3, 3, 3, 3
[8] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338-353. 1

[^0]: *Corresponding author
 Email addresses: maedmanahon513@gmail.com (Mae Manahon), jenettesbantug@su.edu.ph (Jenette Bantug), joemar.endam@norsu.edu.ph (Joemar Endam)
 doi: 10.22436/jmcs.020.04.06
 Received: 2019-07-16 Revised: 2020-02-06 Accepted: 2020-02-10

