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Abstract
An algorithm is introduced for computing the minimum cycle mean in a strongly connected directed graph with n vertices

and m arcs that requires O(n) working space. This is a considerable improvement for sparse graphs in comparison to the
classical algorithms that require O(n2) working space. The time complexity of the algorithm is still O(nm). An implementation
in C++ is made publicly available at http://www.pawelpilarczyk.com/cymealg/.
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1. Introduction

In the design of algorithms for finding the minimum or maximum mean weight of a cycle in a
weighted directed graph, attention has been paid to the performance in terms of execution time (see,
e.g., [3, 4, 8, 9]), but reducing the considerable storage requirements of all these approaches has not yet
been seriously taken into consideration. The best algorithms currently known for solving this problem
(see, e.g., [1, 2, 6]) are based on the original work by Karp [9], in which for each strongly connected
component the weights of path progressions of lengths from 1 to n from a selected source vertex to any
of the n vertices in the graph need to be computed by considering all the m arcs of the graph at each of
n rounds; see Section 2 for the details. These weights need to be tabulated and thus occupy O(n2) space
in addition to O(n+m) space for storing the graph, which makes the entire algorithm run in O(n2 +m)
space and O(nm) time. The improved algorithms do not get below these orders of complexity in the
pessimistic case, but provide early termination criteria (e.g., [8]) or reduce the number of operations that
are actually executed (e.g., [3]). Although these improvements indeed result in better performance, the
need to tabulate the weights of path progressions is still there.

In some applications one might need to apply this algorithm to huge graphs, where the memory
usage is a much more serious constraint than the running time. For example, in [5], the problem of
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computing a lower bound for the expansion exponent in one-dimensional dynamics was reduced to
computing the minimum cycle mean in a directed graph that represents the dynamical system on a
collection of intervals into which the domain of the map was subdivided. The larger the number of these
intervals, corresponding to vertices, the better the estimate. In the specific implementation used in [5],
the total system memory of 256 GB was exhausted when processing graphs with somewhat over 125,000
vertices, while the computation time did not exceed 24 hours, thus encouraging to try processing even
larger graphs in order to achieve better estimates of the expansion. The improved algorithm, introduced
in Section 3 below, considerable decreased memory usage and allowed for the extensive computations
described in [7].

Decreasing the usage of temporary storage down from O(n2), which is required in the original algo-
rithm, makes sense in the case of a sparse graph, in which the number m of arcs is below the maximum
O(n2), or otherwise the memory needed to store the graph alone is already of the order of O(n2). In
the most optimistic situation, m may be of the order of O(n), which is actually the case in the discussed
example, because the number of outgoing edges is bound by a constant that roughly corresponds to the
Lipschitz constant of the map.

The main idea to decrease the order of memory usage is to get rid of the need for tabulating the
weights of path progressions of all the lengths up to n, and to use a two-pass approach, as suggested
in [4]. Indeed, it is possible to conduct the computations in such a way that only a fixed number of path
progressions is stored for each of the n vertices of the graph, and thus the memory requirement drops
from O(n2) down to O(n), in addition to storing the graph itself. The latter can be done in O(n+m)
space, but in some applications, the edges might be given by a specific formula, and thus need not
be actually stored; instead, they can be quickly calculated whenever needed, which reduces the overall
memory usage to O(n) in that case. The time complexity remains at the order of O(nm).

2. Background

The classical result [9] is the following. Let λ∗ denote the minimum mean weight of a cycle in a
weighted directed graph G = (V ,E,w), where V is the set of n vertices of G, E is the set of m arcs
(directed edges) in G, and w : E → R is a function that defines the weight of each arc. Without loss of
generality, one can assume that G is strongly connected, or otherwise one can decompose G into strongly
connected components in O(n+m) time and space. Choose an arbitrary vertex v0 ∈ V . For each v ∈ V , let
Fk(v) denote the minimum weight of any path of length k whose starting vertex is v0 and ending vertex
equals v, or set Fk(v) := ∞ if no such path exists, for k = 0, . . . ,n− 1.

Theorem 2.1 ([9, Theorem 1]). Let G = (V ,E,w) be a strongly connected weighted directed graph with n := |V |

vertices and m := |E| arcs. Let λ∗ denote the minimum mean weight of a cycle in G. Then

λ∗ = min
v∈V

max
k<n

Fn(v) − Fk(v)

n− k
. (2.1)

As a consequence, λ∗ can be computed in O(n2) time, once the values Fk(v) have been tabulated. The
functions Fi can be computed using the recursive formula

Fk(v) = min
(u,v)∈E

(
Fk−1(u) +w(u, v)

)
for k = 1, . . . ,n, with the initial condition F0(v) = ∞ for v ∈ V \ {v0}, and F0(v0) = 0, which takes O(nm)
time. Since G is strongly connected, m > n− 1, and thus the overall time complexity of this algorithm is
O(nm). The amount of working space is O(n2), needed for tabulating all the values of Fk(v). Keeping the
graph in memory requires at least O(n+m) storage in general, thus making the overall space complexity
of O(n2 +m).
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3. Main result

The following algorithm shows that in the case of sparse graphs, where m � n2, the computation of
the minimum cycle mean can be actually done better than using Karp’s original algorithm. The difference
is especially important whenm is of the (optimal) order ofO(n), which actually appears in the application
to computational dynamics discussed in [5].

In the description of the algorithm, a convention is used that the minimum or maximum of an un-
defined value and a defined value is the latter. Moreover, a data structure for representing a mapping
(such as αk and γ) contains its finite domain (denoted dom) and the values assigned to the elements of
the domain, which can be re-defined by making a new assignment; moreover, the domain of a mapping
can be dynamically changed by defining additional assignments.

The algorithm consists of two passes, indexed by the value of p. For p = 0, the weights of path
progressions of length n are computed, and for p = 1, the maximum possible quotients that appear in
(2.1) for each vertex are determined.

Algorithm 3.1.
Input:
G = (V ,E,w)—a strongly connected weighted directed graph;

begin
n := |V |; γ := ∅; take any v0 ∈ V ;
for p := 0 to 1 do
α0 := ∅; α0(v0) := 0;
for k := 1 to n− p do
αk := ∅;
for all v ∈ domαk−1 do

for all v ′ such that (v, v ′) ∈ E do
αk(v

′) := min{αk(v ′),αk−1(v) +w(v, v ′)};
if p = 1 then
γ(v ′) := max{γ(v ′), (αn(v ′) −βk(v ′))/(n− k)};

forget αk−1;
return min{γ(v) : v ∈ V};

end.

Remark 3.2. If the arithmetic operations on the weights cannot be done precisely, e.g., because of using
floating-point representation of numbers, in order to compute an actual lower bound for the minimum
cycle mean in G, one must round downwards the results of computing αk(v ′) in the first pass (when
p = 0) and γ(v ′) in the second pass, and round upwards the results of computing αk(v ′) in the second
pass. The interested reader is referred to [10] for a comprehensive introduction to rigorous numerics,
rounding issues, and interval arithmetic.

Proposition 3.3. Given a strongly connected weighted directed graph G with n vertices and m arcs, Algorithm 3.1
computes the minimum mean weight of a cycle in G in O(n) working space. The time complexity of the algorithm
is O(nm).

Before proving Proposition 3.3, it is worth to note that since one can decompose an arbitrary directed
graph G into strongly connected components in O(n+m) time and space, the following result holds true.

Theorem 3.4. The minimum mean cycle weight in an arbitrary weighted directed graph G with n vertices and m
arcs can be computed in O(n+m) space and O(nm) time.

Proof of Proposition 3.3. Since it is obvious that the functions αk computed in the algorithm are the same
as Fk in Karp’s original algorithm (see Section 2), the returned value is the same as the one given by (2.1),
and thus it follows from Theorem 2.1 that the algorithm indeed returns the minimum cycle mean of G.
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In order to achieve the claimed space and time complexity, suitable data structures must be used.
Namely, since no more than two mappings αk, for k = 0, . . . ,n, are stored at a time, in addition to
αn which is not deleted after has been computed, in order to show that the amount of additional storage
needed by the algorithm isO(n), it is enough to show that both αk and γ can be stored inO(n) space each.
Moreover, if the collection of arcs leaving any vertex v of G can be determined inO(1) time independent of
v, the weight of each arc can be computed in O(1) time, the values of αk(v) and γ(v) can be determined in
O(1) time independent of v (and it can be determined in O(1) whether αk(v) or γ(v) are still undefined),
and the initialization αk := ∅ can be done in O(n) time, then the claimed time complexity of the algorithm
can be immediately proved by estimating the number of times the loops are executed. Appropriate data
structures are discussed in the remainder of the proof.

The graph can be represented in the following way. The vertices are identified by consecutive integers,
that is, V = {0, . . . ,n − 1}. The arcs leaving consecutive vertices are stored in a single array ϑ of size
m which only keeps the targets of the arcs, and an additional array η of length n stores the offsets
immediately past the ends of the groups of arcs starting from each vertex. More precisely, assuming that
η−1 = 0, the targets of all the arcs emanating from a vertex j are stored in the array ϑ at the positions
ηj−1, . . . ,ηj − 1. The weights of the arcs can be stored in an array of size m. Using this implementation
of the directed graph, one can determine the first arc emanating from a vertex v in O(1) time by looking
into the array ϑ, and take each next vertex also in O(1) time. Determining the weight of each arc can also
be done in O(1) time.

An appropriate implementation of a function f defined on a finite subset of V = {0, . . . ,n− 1}, to be
used for αk and γ, is a little more subtle. Let κ be the cardinality of the domain of f. Let A be an array
of n integers in the range {0, . . . ,n− 1} such that the first κ elements of the array contain the elements of
the domain of f in an arbitrary order. Let B be an array of n integers in the range {0, . . . ,n}, where the
j-th number is set to n if j /∈ dom f, and equals the index of the element j in A otherwise. Let F be an
array of size n such that its first κ entries correspond to the values of the function f on the corresponding
elements of its domain in the order they are listed in A. Note that this representation of f uses O(n) space.
Creating a new representation of f = ∅ takes O(n) time, because all the n entries of B must be set to n.
Checking if f(j) is defined takes O(1) time, because this information can be determined by the value of B
at position j. Recording the assignment f(j) := ω can be done in O(1) time: One first checks the j-th entry
in B; if it equals n then the element j is not in Q, and thus one must set the following: Aκ := j, Bj := κ,
Fκ := ω, and then increase κ by 1. Otherwise, the j-th entry in B contains the index of F that needs to be
updated to store the new value ω.

Remark 3.5. Clearing the data structure that stores a previous αk for re-use in the assignment αk := ∅ can
be done in the time O(κ) instead of O(n), where κ is the size of the domain of the map previously stored
in that data structure. Namely, while κ > 0, one can do the following: Let j be the entry of A at position
κ− 1; write n in B at position j; decrease κ by 1. Although this does not provide a better order of the time
complexity, using this faster way to reset the mapping data structure may save considerable amount of
time for the initial values of k, when the number of vertices reachable from the selected source v0 is still
small. This idea was used in [3] as part of the strategy to speed up the computations.

4. Tests and experiments

In order to confirm the usefulness of Algorithm 3.1 and to compare its demand for resources with
Karp’s original algorithm [9] in a practical application, both algorithms were tested on a collection of
graphs that arise naturally in the computation of expansivity estimates in a dynamical system, studied
in [5, 7]. Graphs in a wide range of sizes were considered, with the number of vertices ranging from
1,000 to 16,000. Due to the specific application, the number of edges going out from every vertex was
very small, and its average was 3 in all the examples, thus ensuring that each graph was sparse indeed.
Computations were conducted with approximate double-precision floating-point arithmetic, and also
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with rounding control that provides rigorous results. The software was running on a personal computer
with Intel R© CoreTM 2 Duo CPU E8400 at 3GHz, with 4GB RAM installed on the system, and under the
control of GNU/Linux Debian 4.19.67-2+deb10u2 (2019-11-11) x86 64. The measurements were made by
the popular utility program “GNU time.”

Table 1: Comparison of memory usage and processing time for a collection of graphs of various sizes. The results of running
Karp’s original algorithm are gathered at the left-hand side, and the results of applying Algorithm 3.1 are shown at the right-
hand side. In both cases, non-rigorous double-precision floating-point arithmetic was used.

Karp’s original algorithm
Number of Memory Processing

vertices usage [MB] time [s]
1000 11.35 0.1
2000 34.77 0.3
3000 74.33 0.8
4000 129.16 1.3
5000 199.48 2.1
6000 286.02 3.1
7000 386.92 4.2
8000 504.40 5.5
9000 636.58 7.8
10000 784.80 8.7
11000 948.21 10.9
12000 1126.96 13.2
13000 1318.41 18.7
14000 1531.88 26.9
15000 1755.44 29.7
16000 1995.78 34.6

Algorithm 3.1
Number of Memory Processing

vertices usage [MB] time [s]
1000 3.65 0.1
2000 3.80 0.6
3000 3.73 1.5
4000 4.05 2.7
5000 4.12 4.2
6000 4.11 6.0
7000 4.02 8.0
8000 4.11 10.4
9000 4.32 13.4
10000 4.63 16.7
11000 4.38 20.5
12000 4.68 24.8
13000 4.82 29.7
14000 5.12 33.4
15000 5.28 38.0
16000 5.31 44.1

Table 2: Comparison of memory usage and processing time for a collection of graphs of various sizes. The results of running
Karp’s original algorithm are gathered at the left-hand side, and the results of applying Algorithm 3.1 are shown at the right-
hand side. In both cases, double-precision floating-point arithmetic with controlled rounding was used to compute upper
bounds and lower bounds on the results of all operations, thus providing a mathematically rigorous (validated) result.

Karp’s original algorithm (rigorous)
Number of Memory Processing

vertices usage [MB] time [s]
1000 19.08 0.6
2000 66.10 2.5
3000 143.98 5.7
4000 253.02 10.2
5000 392.30 15.9
6000 564.17 23.0
7000 764.83 31.2
8000 997.29 40.8
9000 1259.38 52.0
10000 1553.45 64.6
11000 1877.80 79.0
12000 2232.80 95.6
13000 2613.04 117.3
14000 3036.34 150.1
15000 3479.57 178.7
16000 3768.88 213.3

Algorithm 3.1 (rigorous)
Number of Memory Processing

vertices usage [MB] time [s]
1000 3.75 0.8
2000 3.79 3.0
3000 3.88 7.1
4000 3.94 13.0
5000 4.04 19.6
6000 4.18 27.9
7000 4.25 36.9
8000 4.30 48.0
9000 4.25 61.9
10000 4.62 77.4
11000 4.38 94.6
12000 4.86 112.8
13000 4.86 133.6
14000 5.12 157.0
15000 5.28 177.0
16000 5.21 206.8
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Figure 1: The amount of memory used by Karp’s algorithm and the new Algorithm 3.1, both in the case of approximate and
rigorous numerics. See Tables 1 and 2 for the exact data.
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Figure 2: The running time (single CPU) of Karp’s algorithm and the new Algorithm 3.1, both in the case of approximate and
rigorous numerics. See Tables 1 and 2 for the exact data.

The results of the tests are gathered in Tables 1 and 2, and also illustrated in Figure 1 and in Figure 2.
One can immediately notice the profound difference in the memory usage, which is the major improve-
ment provided by Algorithm 3.1 over Karp’s original algorithm. Indeed, while the amount of 4GB RAM
available in the system didn’t allow running Karp’s algorithm on larger graphs (with rigorous numerics,
see Table 2), the memory usage reported in the case of Algorithm 3.1 was negligible (see Figure 1), and is
mainly due to the size of the graph that is being processed.

As it was emphasized in Section 3, the weights of path progressions are computed twice in Algo-
rithm 3.1, and this fact is indeed reflected in the actual performance. For example, the graph with 10,000
vertices was processed by Karp’s algorithm in 8.7 s, while Algorithm 3.1 needed almost twice as much
time. However, when rigorous numerics is taken into account (as discussed in Remark 3.2), the weights
of path progressions need to be computed twice also in Karp’s algorithm (in order to obtain the lower
and upper bounds). This diminishes the advantage of Karp’s algorithm over Algorithm 3.1, which is
confirmed in the results, especially clearly in Figure 2. Moreover, it is interesting to see that for small
graphs Karp’s algorithm performs slightly faster, but at some points Algorithm 3.1 actually outperforms
it. The most likely reason for this might be the overhead related to memory management.
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The C++ implementation of Algorithm 3.1 used for the experiments, as well as the sample graphs
discussed in this section, have been made publicly available at [11] as a reference and for testing purposes.
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