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Abstract

In this paper, the existence of positive solutions to a nonlinear eigenvalue problem is obtained by Leray-Schauder fixed
point theorem.
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1. Introduction

In this paper, we consider the nonlinear eigenvalue two-point boundary value problem{
u(4)(t) = λh(t)f(u(t)), t ∈ (0, 1),
u(0) = u′(1) = u′′(0) = u′′′(1) = 0,

(1.1)

where λ > 0 is a positive parameter.
We will make the following assumptions:

(i) f : [0, 1) −→ R is continuous and f(0) > 0;
(ii) h(t) ∈ C[0, 1] and there exist two constants τ, κ : τ ∈ [0, 1], κ ∈ (1,∞) such that h(τ) 6= 0 and∫ 1

0
G(t, s)h+(s)ds > κ[

∫ 1

0
G(t, s)h−(s)ds] (1.2)

for t ∈ [0, 1], where a+ is the positive part of a and a− is the negative part of a.

Next, we state the main result.

Theorem 1.1. Let (i) and (ii) hold. Then there exists a positive number λ∗ such that BVP (1.1) has at least one
positive solution for λ:0 < λ < λ∗.
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2. Preliminaries lemmas

To prove Theorem 1.1, we need several preliminary results.

Lemma 2.1. For y ∈ C[0, 1], the problem{
u(4)(t) = y(t) t ∈ (0, 1),
u(0) = u′(1) = 0 = u′′(0) = u′′′(1) = 0

(2.1)

has a unique solution

u(t) =

∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =
1
6

{
(6t− 3t2 − s2)s, 0 6 s 6 t 6 1,
(6s− 3s2 − t2)t, 0 6 t 6 s 6 1.

Lemma 2.2. If y ∈ C[0, 1], y > 0, then the unique solution u of the (2.1) satisfies

u > 0, t ∈ [0, 1].

Moreover, if y1(t)>y2(t) for t ∈ [0, 1], then the corresponding solutions u1(t) and u2(t) satisfy

u1(t) > u2(t), for t ∈ [0, 1].

Lemma 2.3. Let (i) and (ii) hold, then for every 0 < δ < 1, there exists a positive number λ1 such that, for
0 < λ < λ1, the problem {

u(4)(t) = λh+(t)f(u(t)), t ∈ (0, 1),
u(0) = u′(1) = 0 = u′′(0) = u′′′(1)

has a positive solution uλ1 with |uλ1 |0 −→ 0 as λ −→ 0, and

uλ1 > λδf(0)p(t), t ∈ [0, 1], (2.2)

where

p(t) =

∫ 1

0
G(t, s)h+(s)ds.

Proof. By Lemma 2.2, we know that p(t) >0 for t ∈ [0, 1]. From Lemma 2.1, (2.2) is equivalent to the
integral equation

u(t) = λ

∫ 1

0
G(t, s)h+(s)fu(s)ds := Au(t), (2.3)

where u ∈ C[0, 1]. Then A : C[0, 1] −→ C[0, 1] is completely continuous and fixed points of A are solutions
of (2.2). We apply the Leray-Schauder fixed point theorem to prove A has a fixed point.

Let ε > 0 be such that
f(t) > δf(0), for 0 6 ε.

Suppose that
λ <

ε

2|p|0f1(ε)
:= λ1,

where
f1(t) = max

s∈[0,t]
f(s).

Since

lim
t−→0+

f1(t)

t
= +∞,
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it follows that there exists τλ ∈ (0, ε), such that

f1(τλ)

τλ
=

1
2λ|p|0

. (2.4)

We note that (2.4) implies
τλ −→ 0 as λ −→ 0.

Now, we consider the equations
u = θAu, θ ∈ (0, 1),

let u ∈ C(0, 1) and θ ∈ (0, 1) be such that u=θAu. We claim that |u|0 6= τλ. In fact

u(t) = θλ

∫ 1

0
G(t, s)h+(s)fu(s)ds,

set

w(t) = θλ

∫ 1

0
G(t, s)h+(s)f1|u|0ds 6 θλf1(|u|0)p(t),

then by Lemma 2.2 and the fact that f(u)6f1(|u|0), we know that

u(t) 6 w(t), for t ∈ [0, 1].

Moreover, we have
|u|0 6 λ|p|0f1(|u|0)

or
f1(|u|0)

|u|0
>

1
λ|p|0

, (2.5)

which implies that |u|0 6= τλ. Thus by Leray-Schauder fixed point theorem, A has a fixed point uλ1 with

|uλ1 |0 6 τλ < ε.

Therefore, combining (2.3), (2.5), and using Lemma 2.2, we have that

uλ1(t) > λδf(0)p(t), t ∈ [0, 1].

3. Proof of the main result

Proof of Theorem 1.1. Let

q(t) =

∫ 1

0
G(t, s)h−(s)ds,

then q(t)>0. By (ii), there exist positive numbers c ∈ (0, 1), d ∈ (0, 1) such that

q(t)|f(y)| 6 dp(t)f(0) (3.1)

for y ∈ [0, c] and t ∈ [0, 1]. Fix δ ∈ (d, 1), and let λ2 > 0 be such that

|uλ1 |0 + λδf(0)|p|0 6 c (3.2)

for λ < λ2, where uλ1 is given by Lemma 2.3, and

|f(x) − f(y)| 6 f(0)(
δ− d

2
) (3.3)

for x ∈ [−c, c], y ∈ [−c, c] with |x− y| 6 λ2δf(0)|p|0.
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Let λ < λ2, we look for a solution uλ of the form uλ + vλ. Here vλ solves{
u(4)(t) = λh+(t)(f(uλ1 + v) − f(uλ1)) − λh

−(t)f(uλ1 + v), t ∈ (0, 1),
u(0) = u′(1) = 0 = u′′(0) = u′′′(1) = 0.

For each ω ∈ C[0, 1], let v = T(ω) be the solution of{
u(4)(t) = λh+(t)(f(uλ1 +ω) − f(uλ1)) − λh

−(t)f(uλ1 +ω), t ∈ (0, 1),
u(0) = u′(1) = 0 = u′′(0) = u′′′(1) = 0,

then T : C[O, 1] −→ C[0, 1] is completely continuous. Let v ∈ C[0, 1] and θ ∈ C[0, 1] be such that v=θTv.
Then we have {

u(4)(t) = θλh+(t)(f(uλ1 + v) − f(uλ1)) − θλh
−(t)f(uλ1 + v), t ∈ (0, 1),

u(0) = u′(1) = 0 = u′′(0) = u′′′(1) = 0.

We claim that |v|0 6= λδf(0)|p0|. Suppose to the contrary that |v|0 6= δf(0)|p0|. Then by (3.2) and (3.3), we
obtain

|uλ1 + v|0 6 |uλ1 |0|+ |v|0 6 c

and
|f(uλ1 + v) − f(uλ1)|0 6 f(0)(

δ− d

2
). (3.4)

Using (3.1), (3.4), Lemmas 2.1, and 2.2, we have

|v(t)| 6 λ(
δ− d

2
)f(0)p(t) + λdf(0)p(t) = λ(

δ+ d

2
)f(0)p(t). (3.5)

In particular,

|v|0 6 λ(
δ+ d

2
)f(0)p0 < λδf(0)|p|0

is a contradiction, and the claim is proved. Thus by Leray-Schauder fixed point theorem, T has a fixed
point vλ with

|vλ|0 6 λδf(0)|p|0.

Using (2.2) and (3.5), we obtain

uλ > uλ1 − |vλ| > λδf(0)p(t) − λ(
δ+ d

2
)f(0)p(t)

and
λδf(0)p(t) − λ(

δ+ d

2
)f(0)p(t) = λ(

δ− d

2
)f(0)p(t).

Therefore,

uλ > λ(
δ− d

2
)f(0)p(t) > 0,

i.e., uλ is a positive solution of (1.1). The proof is completed.
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