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Abstract

Non-associative algebraic structures are of interest to consider for their remarkable properties.
In this paper, we generalize the AG∗-groupoids to Γ − AG∗-groupoids and study their algebraic
properties. Among other results, it is shown that every Γ − AG∗-groupoid is left alternative and a
Γ−AG∗-groupoid having a left cancellative element is a T 1−Γ−AG∗-groupoid, a aΓ−AG∗-groupoid
S is a Γ-intra-regular if SΓa = S holds for all a ∈ S, let S be a Γ-intra-regular of Γ−AG∗-groupoid
then B is a right Γ-ideal of S if BΓS = B, if S is a Γ-intra-regular of Γ − AG∗-groupoid then
(SΓB)ΓS = B, where B is a Γ-interior ideal of S, in an Γ-intra-regular of Γ− AG∗-groupoid S if A
is a Γ-interior ideal of S then A is a Γ− bi-ideal of S, in an Γ-intra-regular of Γ− AG∗-groupoid S
if A is a Γ-interior ideal of S then A is a Γ(1, 2)-ideal of S. c©2016 All rights reserved.

Keywords: Γ− AG-groupoid, Γ− AG∗-groupoid, T 1 − Γ− AG-groupoid, Γ-left alternative, Γ-left
cancellative, Γ− 3-band, Γ-interior ideal, Γ-intra-regular, Γ− bi-ideal, Γ− (1, 2)-ideal.

1. Introduction and Preliminaries

The idea of generalization of communicative semigroups was introduced in 1977 by Kazim and
Naseerudin [2]. They named this structure as the left almost semigroup (LA-semigroup) in [1]. It is
also called as Abel-Grassmanns groupoid (AG-groupoid) in [3]. In generalizing this notion the new
structure Γ − AG- groupoid (Γ − LA-semigroup) is also defined by Shah and Rehman in [9]. Here
we introduce the notion of Γ − AG∗-groupoid which is a generalization of AG∗-groupoid studied in
[8], and then investigate some of their properties. Some new results on AG∗-groupoids have been
recently studied by Ahmad and Mushtaqin [3, 7]. We generalize these results and investigate some
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properties of Γ−AG∗-groupoids. Following [4, 7, 9], we first recall some preliminary definitions. Let
S and Γ be non-empty sets. We call S to be a Γ-Semigroup if there exists a mapping S×Γ×S → S
writing (a, γ, b) by aγb, such that S satisfies the identity (aγb)βc = aγ(bβc) for all a, b, c ∈ S and
γ, β ∈ Γ. A Γ-Semigroup with identity is called a Γ-monoid.

Let S and Γ be non-empty sets. We call S to be a Γ − AG-groupoid if there exists a mapping
S × Γ × S → S writing (a, γ, b) by aγb such that satisfies the identity (aγb)βc = (cγb)βa for all
a, b, c ∈ S and γ, β ∈ Γ.

An element e ∈ S is called a left identity if eγa = a for all a ∈ S and γ ∈ Γ. A Γ−AG-groupoid
S is called:

(i) Γ-medial if for every a, b, c, d ∈ S and γ, β ∈ Γ, (aαb)β(cγd) = (aαc)β(bγd).

(ii) Γ-paramedial if for every a, b, c, d ∈ S and γ, β ∈ Γ, (aαb)β(cγd) = (dαb)β(cγa).

(iii) Γ-locally associative if for every a ∈ S and γ, β ∈ Γ it satisfies γ, β ∈ Γ, (aγa)βa = aγ(aβa).

(iv) Γ-idempotent if for every a ∈ S and γ ∈ Γ, aγa = a.

In the following we recall the definitions from [3] which are applied in this paper.

Definition 1.1. A Γ−AG-groupoid S is called a Γ−AG-band if every its element is Γ-idempotent.

Definition 1.2. A Γ − AG-groupoid is called a T 1 − Γ − AG-groupoid if for every a, b, c, d ∈ S,
γ ∈ Γ, aγb = cγd implies bγa = dγc.

Definition 1.3. A Γ− AG-groupoid S is called a Γ− AG− 3-band if aα(aβa) = (aγa)βa = a, for
all a ∈ S and β, γ ∈ Γ.

Definition 1.4. A Γ− AG-groupoid S is called a Γ-left alternative if for all a, b ∈ S and α, β ∈ Γ,
(aαa)βb = aα(aβb).

Definition 1.5. A Γ−AG-groupoid S is called a Γ-left cancellative if for every a, b, c ∈ S and γ ∈ Γ,
aαb = aαc implies b = c.

Definition 1.6. An element a of a Γ − AG-groupoid S is called a Γ-intra-regular if there exists
x, y ∈ S and α, β, γ ∈ Γ such that a =

(
xα(aβa)

)
γy and S is called a Γ-intra-regular, if every

element of S is an Γ-intra-regular.

Definition 1.7. A Γ−AG-subgroupoid A from a Γ−AG-groupoid S is called a Γ-interior ideal of
S if (SΓA)ΓS ⊆ A.

Definition 1.8. A Γ − AG-subgroupoid A from a Γ − AG-groupoid S is called a Γ-bi-ideal of S if
(AΓS)ΓA ⊆ A.

Definition 1.9. A Γ−AG-subgroupoid A from a Γ−AG-groupoid S is called a Γ− (1, 2)-ideal of
S if (AΓS)ΓA2 ⊆ A.

We recall the three following lemmas from [4] which are applied to get some results.

Lemma 1.10. Every Γ− AG-groupoid is Γ-medial.

Lemma 1.11. Every Γ− AG-groupoid with left identity is Γ-paramedial.

Lemma 1.12. In an Γ − AG-groupoid S with left identity, we have aα(bβc) = bα(aβc) for every
a, b, c ∈ S and α, β ∈ Γ.

Lemma 1.13. Let S be a Γ − AG-groupoid with left identity e then, S2
Γ = SΓS = S and SΓe =

eΓS = S.
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2. On Γ − AG∗-groupoids

In this section we introduce the notion of Γ − AG∗-groupoid which is a generalization of AG∗-
groupoid studied in [8], and then investigate some of their properties.
An AG-groupoid S is called an AG∗-groupoid if it satisfies the identity (ab)c = b(ac) for all a, b, c ∈ S.

Definition 2.1. A Γ − AG-groupoid S is called a Γ − AG∗-groupoid if it satisfies the identity
(aγb)βc = bγ(aβc) for all a, b, c ∈ S and γ, β ∈ Γ.

Example 2.2. Let S be an arbitrary AG∗-groupoid and Γ any non-empty set. Define a mapping
S × Γ× S → S, by aγb = ab for all a, b ∈ S and γ ∈ Γ. Then S is a Γ−AG-groupoid (see [6]). Also
for every a, b, c ∈ S and γ, β ∈ Γ we have (aγb)βc = (ab)βc = (ab)c = b(ac). On the other hand,
bγ(aβc) = bγ(ac) = b(ac). Hence, (aγb)βc = bγ(aβc) and then S is a Γ− AG∗-groupoid.

Example 2.3. Let S be an arbitrary Γ − AG∗-groupoid and γ a fixed element in Γ. We define
a ◦ b = aγb for every a, b ∈ S. Then (S, ◦) is an AG∗-groupoid (see [6]). Also for every a, b, c ∈ S
and γ ∈ Γ, we have (a ◦ b) ◦ c = (aγb) ◦ c = (aγb)γc = bγ(aγc). On the other hand, b ◦ (a ◦ c) =
b ◦ (aγc) = bγ(aγc). Hence, (a ◦ b) ◦ c = b ◦ (a ◦ c). Therefore, S is an AG∗-groupoid.

Example 2.4. Let S be the set of all non-positive integers and Γ be the set of all non-positive
even integers. If aγb denotes as usual multiplication of integers for a, b ∈ S and γ ∈ Γ, then S is a
Γ− AG∗-groupoid but not an AG∗-groupoid.

Example 2.5. Let S be the set of all integers of the form 4n+ 1 where n is an integer and Γ denote
the set of all integers of the form 4n + 3. If aγb is a + γ + b, for all a, b ∈ S and γ ∈ Γ, then S is a
Γ− AG∗-groupoid but not an AG∗-groupoid.

Note that by Examples 2.4 and 2.5, Γ− AG∗-groupoids are a generalization of AG∗-groupoids.

Lemma 2.6. In every Γ − AG∗-groupoid, we have bγ(aβc) = bγ(cβa) for every a, b, c ∈ S and
γ, β ∈ Γ.

Proof. Let S be a Γ− AG∗-groupoid. We have
(aγb)βc = (cγb)βa, (by left invertive law)
(aγb)βc = bγ(aβc), (by Γ− AG∗-groupoid)
(aγb)βc = bγ(cβa), (by Γ− AG∗-groupoid)
Then, bγ(aβc) = bγ(cβa).

Lemma 2.7 ([5]). In a Γ−AG-groupoid S with a left identity, we have aαb = aβb for every a, b ∈ S
and α, β ∈ Γ.

Lemma 2.8. Every Γ− AG∗-groupoid with a left identity is a commutative Γ-semigroup.

Proof. Let S be a Γ−AG∗-groupoid with a left identity e. Then by Lemma 2.6, we have bγ(aβc) =
bγ(cβa) for every a, b, c ∈ S and γ, β ∈ Γ. Now putting b = e, it follows that eγ(aβc) = eγ(cβa)
and then aβc = cβa for every a, c ∈ S and β ∈ Γ. Therefore, S is commutative. Now since S is
commutative, we obtain,

(aγb)βc = (bγa)βc (by commutativity)

= aγ(bβc)(byΓ− AG∗ − groupoid).

Hence, S is a Γ-semigroup.
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Theorem 2.9 ([5]). If a Γ − AG-band S contains a left identity e, then S becomes a commutative
Γ-monoid.

Proposition 2.10 ([5]). Every T 1 − Γ− AG-groupoid is Γ-paramedial.

Proposition 2.11 ([8]). If S is an AG∗-groupoid, then for every x1, x2, x3, x4 ∈ S, we have
(x1x2)(x3x4) = (xP (1)xP (2))(xP (3)xP (4)) where P is any permutation on the set {1, 2, 3, 4}.

Note that Proposition 2.11 can be generalized for Γ − AG∗-groupoids with left identity. As for
Γ− AG∗-groupoids without left identity we have:

Proposition 2.12. If S is a Γ − AG∗-groupoid, then for every x1, x2, x3, x4 ∈ S and α, β, γ ∈ Γ,
(x1αx2)β(x3γx4) = (x1αxP (2))β(xP (3)γxP (4)) where P is any permutation on the set {2, 3, 4}.

Proof. Let x1, x2, x3, x4 be arbitrary elements of S. Then we have
(x1αx2)β(x3γx4) = (x1αx3)β(x2γx4) (by Γ-medial law)
(x1αx3)β(x4γx2) (by Lemma 2.6)
(x1αx2)β(x4γx3) = (x1αx4)β(x2γx3) = (x1αx4)β(x3γx2) (by Lemma 2.6. and Γ-medial law).

Proposition 2.13. Let S be a Γ − AG∗-groupoid. Then S is a commutative Γ-semigroup if any of
the following holds:

(i) aαb = cαd⇒ aαd = bαc,

(ii) aαb = cαd⇒ dαa = cαb,

for every a, b, c ∈ S and α ∈ Γ.

Proof. Since for every a, b ∈ S and α ∈ Γ the equation aαb = aαb trivially holds, an application of
(i) or (ii) proves commutatively. So for every a, b, c ∈ S and α, γ ∈ Γ, we get

(aαb)γc = bα(aγc) = (aγc)αb = (bγc)αa = aα(bγc).

Hence, S is a commutative Γ-semigroup.

Lemma 2.14. If S is a Γ− AG∗-band, then S = S2
Γ, where S

2
Γ = SΓS.

Proof. By the definition of Γ − AG-groupoid we have S2
Γ = SΓS ⊆ S. Let S be a Γ − AG∗-band.

For every x ∈ S, x = xγx ∈ SΓS for every γ ∈ Γ. Therefore, S ⊆ SΓS = S2
Γ. Hence, S = S2

Γ.

3. properties of Γ − AG∗-groupoids

In this section we investigate some important properties of Γ− AG∗-groupoids.

Proposition 3.1. Every Γ− AG∗-groupoid is a Γ-left alternative.

Proof. Let S be a Γ − AG∗-groupoid and let a, b, c ∈ S and α, β ∈ Γ. Then by the definition of
Γ− AG∗-groupoid we have

(aαb)βc = bα(aβc). (3.1)

Now replacing b by a in (3.1), we have (aαa)βc = aα(aβc). Hence, S is a Γ-left alternative.

Theorem 3.2. A Γ− AG∗-groupoid having a Γ-left cancellative element is T 1 − Γ− AG-groupoid.
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Proof. Let x be a Γ-left cancellative element of a Γ−AG∗-groupoid S and a, b, c, d ∈ S, and α, γ ∈ Γ.
Let aαb = cαd. Then

xγ(bαa) = (bγx)αa(by Γ− AG∗-groupoid)

= (aγx)αb(by left invertive law)

= xγ(aαb)(by Γ− AG∗-groupoid)

= xγ(cαd)(by assumption)

= (cγx)αd(by Γ− AG∗-groupoid)

= (dγx)αc(by left invertive law)

= xγ(dαc)(by Γ− AG∗-groupoid),

⇒ xγ(bαa) = xγ(dαc)

⇒ bαa = dαc.(by left cancellative law).

Hence, S is a T 1 − Γ− AG-groupoid.

Corollary 3.3. A Γ− AG∗-groupoid S having a Γ-left cancellative element is Γ-paramedical.

Proof. By Proposition 2.10 and Theorem 3.2, the result is immediate.

Proposition 3.4. Let S be a Γ−AG∗-groupoid. If t ∈ S is a Γ− 3-band, i.e. (tβt)γt = tβ(tγt) = t
for every γ, β ∈ Γ, then t2γ is a Γ-idempotent, where t2γ = tγt, γ ∈ Γ.

Proof. Let t ∈ S be a Γ− 3-band. Then,

t2γβt
2
γ = (tγt)β(tγt) = tγ

(
tβ(tγt)

)
(by Γ− AG∗-groupoid)

= tγt = t2γ.(by Γ− 3-band).

Hence, t2γ is a Γ-idempotent.

Theorem 3.5. A Γ−AG∗-groupoid S having a Γ-left cancellative square element is a T 1−Γ−AG-
groupoid.

Proof. Suppose x is a Γ-left cancellative square element of S and aαb = cαd for every a, b, c, d ∈ S
and α, γ ∈ Γ. Then it gives the following:

(xαx)γ(bαa) =
(
bγ(xαx)

)
αa(by Γ− AG∗-groupoid)

=
(
(xγb)αx

)
αa(by Γ− AG∗-groupoid)

= (aαx)α(xγb)(by left invertive law)

= (aαb)α(xγx)(by Proposition 2.12)

= (cαd)α(xγx)(by assumption)

= (cαx)α(xγd)(by Proposition 2.12)

=
(
(xγd)αx

)
αc(by left invertive law)

=
(
dγ(xαx)

)
αc(by Γ− AG∗-groupoid)

= (xαx)γ(dαc)(by Γ− AG∗-groupoid)

i.e. (xαx)γ(bαc) = (xαx)γ(dαc), so bαa = dαc. (by left cancellative law)
Hence, S is a T 1 − Γ− AG-groupoid.
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Proposition 3.6. Every T 1 − Γ− AG-groupoid is Γ-paramedial.

Proof. Let S be a T 1 − Γ− AG-groupoid and let a, b, c, d ∈ S and α, β, γ ∈ Γ. Now we have

(aαb)γ(cβd) = (aαc)γ(bβd)(by Lemma2.6)

⇒ (cβd)γ(aαb) = (bβd)γ(aαc)(byT 1 − Γ− AG− groupoid)

⇒ (cβd)γ(aαb) = (bβa)γ(dαc)(by Lemma2.6)

⇒ (aαb)γ(cβd) = (dαc)γ(bβa)(byT 1 − Γ− AG− groupoid)

⇒ (aαb)γ(cβd) = (dαb)γ(cβa).(by Lemma2.6)

Hence, S is Γ-paramedial.

Corollary 3.7. Every Γ-left cancellative Γ− AG∗-groupoid is Γ-paramedial.

Proof. By Proposition 2.10 and Theorem 3.2, the result is immediate.

Lemma 3.8. Let S be a Γ − AG∗-groupoid such that SΓa = S, hold for all a ∈ S, then aΓS = S
and SΓS = S.

Proof. Since SΓa = S for all a ∈ S then aΓS = S, S = SΓS = (SΓa)ΓS = aΓ(SΓS) = aΓS. Hence
aΓS = S.

Theorem 3.9. A Γ− AG∗-groupoid is a Γ-intra-regular if SΓa = S holds for all a ∈ S.

Proof. Since SΓa = S by lemma 3.8 SΓS = S. Let a ∈ S, then(
(SΓa)Γ(SΓa)

)
ΓS(by Γ− AG∗-groupoid)(

(SΓS)Γ(aΓa)
)
ΓS(by mediallaw)

(SΓa2
Γ)ΓS.

Hence a ∈ (SΓa2
Γ)ΓS, i.e. S is Γ-intra-regular.

Theorem 3.10. Let S be a Γ-intra-regular of Γ − AG∗-groupoid, then B is a right Γ-ideal of S if
BΓS = B.

Proof. Let B be a right Γ-ideal i.e. BΓS ⊆ B. Now let b ∈ B, then by assumption there exists
x, y ∈ S and α, β, γ ∈ Γ such that

b =
(
xα(bβb)

)
γy (by Γ-intra-regular)

(bβb)α(xγy) ∈ BΓS (byΓ− AG∗-groupoid),

implies B ⊆ BΓS. Hence BΓS = B.

Theorem 3.11. If S is a Γ-intra-regular of Γ−AG∗-groupoid then (SΓB)ΓS = B, where B is a Γ-
interior ideal of S.

Proof. Since B is a Γ-interior ideal of S also (SΓB)ΓS ⊆ B, let b ∈ B, we have

b =
(
xα(bβb)

)
γy (by Γ-intra-regular)(

(bαx)βb
)
γy (by Γ− AG∗-groupoid).

Since β ⊆ S implies bαx ∈ S. Hence b ∈ (SΓB)ΓS.
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Theorem 3.12. In an Γ-intra-regular of Γ−AG∗-groupoid S, if A is a Γ-interior ideal of S then is
a Γ(1, 2)-ideal of S.

Proof. let A be a Γ-interior ideal of, i.e. (SΓA)ΓS ⊆ A. Let ρ ∈ (AΓS)Γ(AΓA), then ρ = (aµs)θ(bαc)
for some a, b, c ∈ A, s ∈ S and µ, θ, α ∈ Γ.
Since S is Γ-intra-regular so there exists x, y ∈ S and β, γ, δ ∈ Γ such that a =

(
xβ(aδa)

)
γy. Now

we have

ρ = (aµs)θ(bαc) =
(
(bαc)µs

)
θa (by Γ-leftinvertive)

=
(
(bαc)µs

)
θ

((
xβ(aδa)

))
γy (by Γ-intra-regular)

=
(
xβ(aδa)

)
θ
(
(bαc)µs

)
γy (by Γ− AG∗-groupoid)

=
(
xβ(aδa)

)
θ
(
(sαc)µb

)
γy (by Γ-leftinvertive)

=

((
(sαc)θ

(
xβ(aδa)

))
µb

)
(by Γ− AG∗-groupoid),

obviously
(
(sαc)θ

(
xβ(aδa)

))
∈ S, as S is Γ − AG∗-subgroupoid and A is Γ − AG-subgroupoid,

therefore ρ ∈ (SΓA)ΓS ⊆ A i.e. (AΓS)Γ(AΓA) ⊆ A. Hence A is a Γ− (1, 2)-ideal of S.

Theorem 3.13. In a Γ-interior ideal of Γ−AG∗-subgroupoid S if A is a Γ-interior ideal of S then
A is a Γ− bi-ideal of S.

Proof. Let A be a Γ-interior ideal of S, then (SΓA)ΓS ⊆ A. Let ρ ∈ (AΓS)ΓA, then ρ = (aµs)ψb for
some a, b ∈ A, s ∈ S and µ, ψ ∈ Γ. Since S is Γ-intra-regular so there exists x, y ∈ S and β, γ, δ ∈ Γ
such that b =

(
x(bδb)

)
γy. Now we have

ρ = (aµs)ψ
(
xβ(bδb)

)
γy (by Γ-leftinvertive)

=
(
x(bδb)

)
ψ(aµs)γy (by Γ− AG∗-groupoid)

=
(
(bδb)β

(
xψ(aµs)

))
γy (by Γ− AG∗-groupoid)

=
(((

xψ(aµs)
)
δb
)
βb

)
γy ∈ (SΓA)ΓS ⊆ A (by Γ-leftinvertive).

Thus (AΓS)ΓA ⊆ A. Hence A is a Γ− bi-ideal of S.

References

[1] P. Holgate, Groupoid satisfying a simple invertive law, Math. Student, 61 (1992), 101–106.1
[2] M. A. Kazim, M. d. Naseeruddin, On almost semigroups, Portugal. Math., 36 (1977), 41–47.1
[3] Q. Mushtaq, M. Khan, Decomposition of AG*-groupoids, Quasigroups related sys., 15 (2007), 303–308.

1
[4] M. Rashad, I. Ahmad, M. Shah, On relation between right alternative and nuclear square AG-groupoids,

Int. Math. Forum, 5 (2013), 237–243.1, 1
[5] A. R. Shabani, H. Rasouli, Some Results on T i − Γ − AG (i = 1, 2, 3, 4) groupoids, Math. Aeterna, 5

(2015), 125–134.2.7, 2.9, 2.10
[6] M. Shah, I. Ahmad, A. Ali, Discovery of new classes of AG-groupoids, Res. J. Recent Sci., 11 (2012),

47–49.2.2, 2.3
[7] M. Shah, I. Ahmad, M. Rashad, Some properties of AG*-groupoids, Res. J. Recent Sci., 4 (2013), 91–93.

1
[8] T. Shah, I. Rehman, On Γ−ideals and Γ− Bi−ideals in Γ− AG−groupoids, Int. J. Algebra, 4 (2010),

267–276.1, 2, 2.11
[9] T. Shah, I. Rehman, Decomposition of locally associative Γ − AG−groupoids, Novi Sad J. Math., 43

(2013), 1–8.1


	1 Introduction and Preliminaries
	2 On -AG*-groupoids
	3 properties of -AG*-groupoids

