Available online at www.isr-publications.com/jmcs J. Math. Computer Sci. 16 (2016), 81–87 Research Article

Online: ISSN 2008-949x

Journal of Mathematics and Computer Science

Journal Homepage: www.tjmcs.com - www.isr-publications.com/jmcs

Intra regular and interior ideal in Γ -AG*- groupoids

A. R. Shabani, H. Rasouli*

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Abstract

Non-associative algebraic structures are of interest to consider for their remarkable properties. In this paper, we generalize the AG^* -groupoids to $\Gamma - AG^*$ -groupoids and study their algebraic properties. Among other results, it is shown that every $\Gamma - AG^*$ -groupoid is left alternative and a $\Gamma - AG^*$ -groupoid having a left cancellative element is a $T^1 - \Gamma - AG^*$ -groupoid, a $a\Gamma - AG^*$ -groupoid S is a Γ -intra-regular if $S\Gamma a = S$ holds for all $a \in S$, let S be a Γ -intra-regular of $\Gamma - AG^*$ -groupoid then B is a right Γ -ideal of S if $B\Gamma S = B$, if S is a Γ -intra-regular of $\Gamma - AG^*$ -groupoid then $(S\Gamma B)\Gamma S = B$, where B is a Γ -interior ideal of S, in an Γ -intra-regular of $\Gamma - AG^*$ -groupoid S if A is a Γ -interior ideal of S then A is a $\Gamma - bi$ -ideal of S, in an Γ -intra-regular of $\Gamma - AG^*$ -groupoid S if A is a Γ -interior ideal of S then A is a $\Gamma(1, 2)$ -ideal of S. (©2016 All rights reserved.

Keywords: $\Gamma - AG$ -groupoid, $\Gamma - AG^*$ -groupoid, $T^1 - \Gamma - AG$ -groupoid, Γ -left alternative, Γ -left cancellative, $\Gamma - 3$ -band, Γ -interior ideal, Γ -intra-regular, $\Gamma - bi$ -ideal, $\Gamma - (1, 2)$ -ideal.

1. Introduction and Preliminaries

The idea of generalization of communicative semigroups was introduced in 1977 by Kazim and Naseerudin [2]. They named this structure as the left almost semigroup (*LA*-semigroup) in [1]. It is also called as Abel-Grassmanns groupoid (*AG*-groupoid) in [3]. In generalizing this notion the new structure $\Gamma - AG$ - groupoid ($\Gamma - LA$ -semigroup) is also defined by Shah and Rehman in [9]. Here we introduce the notion of $\Gamma - AG^*$ -groupoid which is a generalization of AG^* -groupoid studied in [8], and then investigate some of their properties. Some new results on AG^* -groupoids have been recently studied by Ahmad and Mushtaqin [3, 7]. We generalize these results and investigate some

*Corresponding author

Email address: hrasouli@srbiau.ac.ir (H. Rasouli)

properties of $\Gamma - AG^*$ -groupoids. Following [4, 7, 9], we first recall some preliminary definitions. Let S and Γ be non-empty sets. We call S to be a Γ -Semigroup if there exists a mapping $S \times \Gamma \times S \to S$ writing (a, γ, b) by $a\gamma b$, such that S satisfies the identity $(a\gamma b)\beta c = a\gamma(b\beta c)$ for all $a, b, c \in S$ and $\gamma, \beta \in \Gamma$. A Γ -Semigroup with identity is called a Γ -monoid.

Let S and Γ be non-empty sets. We call S to be a $\Gamma - AG$ -groupoid if there exists a mapping $S \times \Gamma \times S \to S$ writing (a, γ, b) by $a\gamma b$ such that satisfies the identity $(a\gamma b)\beta c = (c\gamma b)\beta a$ for all $a, b, c \in S$ and $\gamma, \beta \in \Gamma$.

An element $e \in S$ is called a left identity if $e\gamma a = a$ for all $a \in S$ and $\gamma \in \Gamma$. A $\Gamma - AG$ -groupoid S is called:

- (i) Γ -medial if for every $a, b, c, d \in S$ and $\gamma, \beta \in \Gamma$, $(a\alpha b)\beta(c\gamma d) = (a\alpha c)\beta(b\gamma d)$.
- (ii) Γ -paramedial if for every $a, b, c, d \in S$ and $\gamma, \beta \in \Gamma$, $(a\alpha b)\beta(c\gamma d) = (d\alpha b)\beta(c\gamma a)$.
- (iii) Γ -locally associative if for every $a \in S$ and $\gamma, \beta \in \Gamma$ it satisfies $\gamma, \beta \in \Gamma$, $(a\gamma a)\beta a = a\gamma(a\beta a)$.
- (iv) Γ -idempotent if for every $a \in S$ and $\gamma \in \Gamma$, $a\gamma a = a$.

In the following we recall the definitions from [3] which are applied in this paper.

Definition 1.1. A $\Gamma - AG$ -groupoid S is called a $\Gamma - AG$ -band if every its element is Γ -idempotent. **Definition 1.2.** A $\Gamma - AG$ -groupoid is called a $T^1 - \Gamma - AG$ -groupoid if for every $a, b, c, d \in S$, $\gamma \in \Gamma$, $a\gamma b = c\gamma d$ implies $b\gamma a = d\gamma c$.

Definition 1.3. A $\Gamma - AG$ -groupoid S is called a $\Gamma - AG - 3$ -band if $a\alpha(a\beta a) = (a\gamma a)\beta a = a$, for all $a \in S$ and $\beta, \gamma \in \Gamma$.

Definition 1.4. A Γ – AG-groupoid S is called a Γ -left alternative if for all $a, b \in S$ and $\alpha, \beta \in \Gamma$, $(a\alpha a)\beta b = a\alpha(a\beta b)$.

Definition 1.5. A Γ – AG-groupoid S is called a Γ -left cancellative if for every $a, b, c \in S$ and $\gamma \in \Gamma$, $a\alpha b = a\alpha c$ implies b = c.

Definition 1.6. An element a of a $\Gamma - AG$ -groupoid S is called a Γ -intra-regular if there exists $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that $a = (x\alpha(a\beta a))\gamma y$ and S is called a Γ -intra-regular, if every element of S is an Γ -intra-regular.

Definition 1.7. A $\Gamma - AG$ -subgroupoid A from a $\Gamma - AG$ -groupoid S is called a Γ -interior ideal of S if $(S\Gamma A)\Gamma S \subseteq A$.

Definition 1.8. A $\Gamma - AG$ -subgroupoid A from a $\Gamma - AG$ -groupoid S is called a Γ -bi-ideal of S if $(A\Gamma S)\Gamma A \subseteq A$.

Definition 1.9. A $\Gamma - AG$ -subgroupoid A from a $\Gamma - AG$ -groupoid S is called a $\Gamma - (1, 2)$ -ideal of S if $(A\Gamma S)\Gamma A^2 \subseteq A$.

We recall the three following lemmas from [4] which are applied to get some results.

Lemma 1.10. Every $\Gamma - AG$ -groupoid is Γ -medial.

Lemma 1.11. Every $\Gamma - AG$ -groupoid with left identity is Γ -paramedial.

Lemma 1.12. In an Γ – AG-groupoid S with left identity, we have $a\alpha(b\beta c) = b\alpha(a\beta c)$ for every $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Lemma 1.13. Let S be a Γ – AG-groupoid with left identity e then, $S_{\Gamma}^2 = S\Gamma S = S$ and $S\Gamma e = e\Gamma S = S$.

2. On $\Gamma - AG^*$ -groupoids

In this section we introduce the notion of $\Gamma - AG^*$ -groupoid which is a generalization of AG^* -groupoid studied in [8], and then investigate some of their properties.

An AG-groupoid S is called an AG^* -groupoid if it satisfies the identity (ab)c = b(ac) for all $a, b, c \in S$.

Definition 2.1. A $\Gamma - AG$ -groupoid S is called a $\Gamma - AG^*$ -groupoid if it satisfies the identity $(a\gamma b)\beta c = b\gamma(a\beta c)$ for all $a, b, c \in S$ and $\gamma, \beta \in \Gamma$.

Example 2.2. Let S be an arbitrary AG^* -groupoid and Γ any non-empty set. Define a mapping $S \times \Gamma \times S \to S$, by $a\gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. Then S is a $\Gamma - AG$ -groupoid (see [6]). Also for every $a, b, c \in S$ and $\gamma, \beta \in \Gamma$ we have $(a\gamma b)\beta c = (ab)\beta c = (ab)c = b(ac)$. On the other hand, $b\gamma(a\beta c) = b\gamma(ac) = b(ac)$. Hence, $(a\gamma b)\beta c = b\gamma(a\beta c)$ and then S is a $\Gamma - AG^*$ -groupoid.

Example 2.3. Let S be an arbitrary $\Gamma - AG^*$ -groupoid and γ a fixed element in Γ . We define $a \circ b = a\gamma b$ for every $a, b \in S$. Then (S, \circ) is an AG^* -groupoid (see [6]). Also for every $a, b, c \in S$ and $\gamma \in \Gamma$, we have $(a \circ b) \circ c = (a\gamma b) \circ c = (a\gamma b)\gamma c = b\gamma(a\gamma c)$. On the other hand, $b \circ (a \circ c) = b \circ (a\gamma c) = b\gamma(a\gamma c)$. Hence, $(a \circ b) \circ c = b \circ (a \circ c)$. Therefore, S is an AG^* -groupoid.

Example 2.4. Let S be the set of all non-positive integers and Γ be the set of all non-positive even integers. If $a\gamma b$ denotes as usual multiplication of integers for $a, b \in S$ and $\gamma \in \Gamma$, then S is a $\Gamma - AG^*$ -groupoid but not an AG^* -groupoid.

Example 2.5. Let S be the set of all integers of the form 4n + 1 where n is an integer and Γ denote the set of all integers of the form 4n + 3. If $a\gamma b$ is $a + \gamma + b$, for all $a, b \in S$ and $\gamma \in \Gamma$, then S is a $\Gamma - AG^*$ -groupoid but not an AG^* -groupoid.

Note that by Examples 2.4 and 2.5, $\Gamma - AG^*$ -groupoids are a generalization of AG^* -groupoids.

Lemma 2.6. In every $\Gamma - AG^*$ -groupoid, we have $b\gamma(a\beta c) = b\gamma(c\beta a)$ for every $a, b, c \in S$ and $\gamma, \beta \in \Gamma$.

Proof. Let S be a $\Gamma - AG^*$ -groupoid. We have $(a\gamma b)\beta c = (c\gamma b)\beta a$, (by left invertive law) $(a\gamma b)\beta c = b\gamma(a\beta c)$, (by $\Gamma - AG^*$ -groupoid) $(a\gamma b)\beta c = b\gamma(c\beta a)$, (by $\Gamma - AG^*$ -groupoid) Then, $b\gamma(a\beta c) = b\gamma(c\beta a)$.

Lemma 2.7 ([5]). In a Γ – AG-groupoid S with a left identity, we have $a\alpha b = a\beta b$ for every $a, b \in S$ and $\alpha, \beta \in \Gamma$.

Lemma 2.8. Every $\Gamma - AG^*$ -groupoid with a left identity is a commutative Γ -semigroup.

Proof. Let S be a $\Gamma - AG^*$ -groupoid with a left identity e. Then by Lemma 2.6, we have $b\gamma(a\beta c) = b\gamma(c\beta a)$ for every $a, b, c \in S$ and $\gamma, \beta \in \Gamma$. Now putting b = e, it follows that $e\gamma(a\beta c) = e\gamma(c\beta a)$ and then $a\beta c = c\beta a$ for every $a, c \in S$ and $\beta \in \Gamma$. Therefore, S is commutative. Now since S is commutative, we obtain,

$$(a\gamma b)\beta c = (b\gamma a)\beta c$$
 (by commutativity)
= $a\gamma (b\beta c)(by\Gamma - AG^* - groupoid).$

Hence, S is a Γ -semigroup.

Theorem 2.9 ([5]). If a Γ – AG-band S contains a left identity e, then S becomes a commutative Γ -monoid.

Proposition 2.10 ([5]). Every $T^1 - \Gamma - AG$ -groupoid is Γ -paramedial.

Proposition 2.11 ([8]). If S is an AG^{*}-groupoid, then for every $x_1, x_2, x_3, x_4 \in S$, we have $(x_1x_2)(x_3x_4) = (x_{P(1)}x_{P(2)})(x_{P(3)}x_{P(4)})$ where P is any permutation on the set $\{1, 2, 3, 4\}$.

Note that Proposition 2.11 can be generalized for $\Gamma - AG^*$ -groupoids with left identity. As for $\Gamma - AG^*$ -groupoids without left identity we have:

Proposition 2.12. If S is a $\Gamma - AG^*$ -groupoid, then for every $x_1, x_2, x_3, x_4 \in S$ and $\alpha, \beta, \gamma \in \Gamma$, $(x_1\alpha x_2)\beta(x_3\gamma x_4) = (x_1\alpha x_{P(2)})\beta(x_{P(3)}\gamma x_{P(4)})$ where P is any permutation on the set $\{2, 3, 4\}$.

Proof. Let x_1, x_2, x_3, x_4 be arbitrary elements of S. Then we have $(x_1\alpha x_2)\beta(x_3\gamma x_4) = (x_1\alpha x_3)\beta(x_2\gamma x_4)$ (by Γ -medial law) $(x_1\alpha x_3)\beta(x_4\gamma x_2)$ (by Lemma 2.6) $(x_1\alpha x_2)\beta(x_4\gamma x_3) = (x_1\alpha x_4)\beta(x_2\gamma x_3) = (x_1\alpha x_4)\beta(x_3\gamma x_2)$ (by Lemma 2.6. and Γ -medial law). \Box

Proposition 2.13. Let S be a $\Gamma - AG^*$ -groupoid. Then S is a commutative Γ -semigroup if any of the following holds:

- (i) $a\alpha b = c\alpha d \Rightarrow a\alpha d = b\alpha c$,
- (*ii*) $a\alpha b = c\alpha d \Rightarrow d\alpha a = c\alpha b$,

for every $a, b, c \in S$ and $\alpha \in \Gamma$.

Proof. Since for every $a, b \in S$ and $\alpha \in \Gamma$ the equation $a\alpha b = a\alpha b$ trivially holds, an application of (i) or (ii) proves commutatively. So for every $a, b, c \in S$ and $\alpha, \gamma \in \Gamma$, we get

$$(a\alpha b)\gamma c = b\alpha(a\gamma c) = (a\gamma c)\alpha b = (b\gamma c)\alpha a = a\alpha(b\gamma c).$$

Hence, S is a commutative Γ -semigroup.

Lemma 2.14. If S is a $\Gamma - AG^*$ -band, then $S = S_{\Gamma}^2$, where $S_{\Gamma}^2 = S\Gamma S$.

Proof. By the definition of $\Gamma - AG$ -groupoid we have $S_{\Gamma}^2 = S\Gamma S \subseteq S$. Let S be a $\Gamma - AG^*$ -band. For every $x \in S$, $x = x\gamma x \in S\Gamma S$ for every $\gamma \in \Gamma$. Therefore, $S \subseteq S\Gamma S = S_{\Gamma}^2$. Hence, $S = S_{\Gamma}^2$. \Box

3. properties of $\Gamma - AG^*$ -groupoids

In this section we investigate some important properties of $\Gamma - AG^*$ -groupoids.

Proposition 3.1. Every $\Gamma - AG^*$ -groupoid is a Γ -left alternative.

Proof. Let S be a $\Gamma - AG^*$ -groupoid and let $a, b, c \in S$ and $\alpha, \beta \in \Gamma$. Then by the definition of $\Gamma - AG^*$ -groupoid we have

$$(a\alpha b)\beta c = b\alpha(a\beta c). \tag{3.1}$$

Now replacing b by a in (3.1), we have $(a\alpha a)\beta c = a\alpha(a\beta c)$. Hence, S is a Γ -left alternative. \Box

Theorem 3.2. A $\Gamma - AG^*$ -groupoid having a Γ -left cancellative element is $T^1 - \Gamma - AG$ -groupoid.

Proof. Let x be a Γ -left cancellative element of a $\Gamma - AG^*$ -groupoid S and $a, b, c, d \in S$, and $\alpha, \gamma \in \Gamma$. Let $a\alpha b = c\alpha d$. Then

$$\begin{aligned} x\gamma(b\alpha a) &= (b\gamma x)\alpha a(\text{by }\Gamma - AG^*\text{-groupoid}) \\ &= (a\gamma x)\alpha b(\text{by left invertive law}) \\ &= x\gamma(a\alpha b)(\text{by }\Gamma - AG^*\text{-groupoid}) \\ &= x\gamma(c\alpha d)(\text{by assumption}) \\ &= (c\gamma x)\alpha d(\text{by }\Gamma - AG^*\text{-groupoid}) \\ &= (d\gamma x)\alpha c(\text{by left invertive law}) \\ &= x\gamma(d\alpha c)(\text{by }\Gamma - AG^*\text{-groupoid}), \end{aligned}$$

 $\Rightarrow x\gamma(b\alpha a) = x\gamma(d\alpha c)$ $\Rightarrow b\alpha a = d\alpha c. (by left cancellative law).$

Hence, S is a $T^1 - \Gamma - AG$ -groupoid.

Corollary 3.3. A $\Gamma - AG^*$ -groupoid S having a Γ -left cancellative element is Γ -paramedical.

Proof. By Proposition 2.10 and Theorem 3.2, the result is immediate.

Proposition 3.4. Let S be a $\Gamma - AG^*$ -groupoid. If $t \in S$ is a $\Gamma - 3$ -band, i.e. $(t\beta t)\gamma t = t\beta(t\gamma t) = t$ for every $\gamma, \beta \in \Gamma$, then t_{γ}^2 is a Γ -idempotent, where $t_{\gamma}^2 = t\gamma t, \gamma \in \Gamma$.

Proof. Let $t \in S$ be a Γ – 3-band. Then,

$$t_{\gamma}^{2}\beta t_{\gamma}^{2} = (t\gamma t)\beta(t\gamma t) = t\gamma (t\beta(t\gamma t))(\text{by }\Gamma - AG^{*}\text{-groupoid})$$
$$= t\gamma t = t_{\gamma}^{2}.(\text{by }\Gamma - 3\text{-band}).$$

Hence, t_{γ}^2 is a Γ -idempotent.

Theorem 3.5. $A \ \Gamma - AG^*$ -groupoid S having a Γ -left cancellative square element is a $T^1 - \Gamma - AG$ -groupoid.

Proof. Suppose x is a Γ -left cancellative square element of S and $a\alpha b = c\alpha d$ for every $a, b, c, d \in S$ and $\alpha, \gamma \in \Gamma$. Then it gives the following:

$$(x\alpha x)\gamma(b\alpha a) = (b\gamma(x\alpha x))\alpha a(by \Gamma - AG^*\text{-groupoid})$$

= $((x\gamma b)\alpha x)\alpha a(by \Gamma - AG^*\text{-groupoid})$
= $(a\alpha x)\alpha(x\gamma b)(by \text{ left invertive law})$
= $(a\alpha b)\alpha(x\gamma x)(by \text{ Proposition 2.12})$
= $(c\alpha d)\alpha(x\gamma x)(by \text{ assumption})$
= $(c\alpha x)\alpha(x\gamma d)(by \text{ Proposition 2.12})$
= $((x\gamma d)\alpha x)\alpha c(by \text{ Proposition 2.12})$
= $((x\gamma d)\alpha x)\alpha c(by \text{ If invertive law})$
= $(d\gamma(x\alpha x))\alpha c(by \Gamma - AG^*\text{-groupoid})$
= $(x\alpha x)\gamma(d\alpha c)(by \Gamma - AG^*\text{-groupoid})$

i.e. $(x\alpha x)\gamma(b\alpha c) = (x\alpha x)\gamma(d\alpha c)$, so $b\alpha a = d\alpha c$. (by left cancellative law) Hence, S is a $T^1 - \Gamma - AG$ -groupoid. **Proposition 3.6.** Every $T^1 - \Gamma - AG$ -groupoid is Γ -paramedial.

Proof. Let S be a $T^1 - \Gamma - AG$ -groupoid and let $a, b, c, d \in S$ and $\alpha, \beta, \gamma \in \Gamma$. Now we have

$$(a\alpha b)\gamma(c\beta d) = (a\alpha c)\gamma(b\beta d)(by \text{ Lemma2.6})$$

$$\Rightarrow (c\beta d)\gamma(a\alpha b) = (b\beta d)\gamma(a\alpha c)(byT^{1} - \Gamma - AG - groupoid)$$

$$\Rightarrow (c\beta d)\gamma(a\alpha b) = (b\beta a)\gamma(d\alpha c)(by \text{ Lemma2.6})$$

$$\Rightarrow (a\alpha b)\gamma(c\beta d) = (d\alpha c)\gamma(b\beta a)(byT^{1} - \Gamma - AG - groupoid)$$

$$\Rightarrow (a\alpha b)\gamma(c\beta d) = (d\alpha b)\gamma(c\beta a).(by \text{ Lemma2.6})$$

Hence, S is Γ -paramedial.

Corollary 3.7. Every Γ -left cancellative $\Gamma - AG^*$ -groupoid is Γ -paramedial.

Proof. By Proposition 2.10 and Theorem 3.2, the result is immediate.

Lemma 3.8. Let S be a $\Gamma - AG^*$ -groupoid such that $S\Gamma a = S$, hold for all $a \in S$, then $a\Gamma S = S$ and $S\Gamma S = S$.

Proof. Since $S\Gamma a = S$ for all $a \in S$ then $a\Gamma S = S$, $S = S\Gamma S = (S\Gamma a)\Gamma S = a\Gamma(S\Gamma S) = a\Gamma S$. Hence $a\Gamma S = S$.

Theorem 3.9. $A \ \Gamma - AG^*$ -groupoid is a Γ -intra-regular if $S\Gamma a = S$ holds for all $a \in S$.

Proof. Since $S\Gamma a = S$ by lemma 3.8 $S\Gamma S = S$. Let $a \in S$, then

 $((S\Gamma a)\Gamma(S\Gamma a))\Gamma S(\text{by }\Gamma - AG^*\text{-groupoid})$ $((S\Gamma S)\Gamma(a\Gamma a))\Gamma S(\text{by mediallaw})$ $(S\Gamma a_{\Gamma}^2)\Gamma S.$

Hence $a \in (S\Gamma a_{\Gamma}^2)\Gamma S$, i.e. S is Γ -intra-regular.

Theorem 3.10. Let S be a Γ -intra-regular of $\Gamma - AG^*$ -groupoid, then B is a right Γ -ideal of S if $B\Gamma S = B$.

Proof. Let B be a right Γ -ideal i.e. $B\Gamma S \subseteq B$. Now let $b \in B$, then by assumption there exists $x, y \in S$ and $\alpha, \beta, \gamma \in \Gamma$ such that

$$b = (x\alpha(b\beta b))\gamma y \quad (by \ \Gamma\text{-intra-regular}) (b\beta b)\alpha(x\gamma y) \in B\Gamma S \quad (by\Gamma - AG^*\text{-groupoid}),$$

implies $B \subseteq B\Gamma S$. Hence $B\Gamma S = B$.

Theorem 3.11. If S is a Γ -intra-regular of $\Gamma - AG^*$ -groupoid then $(S\Gamma B)\Gamma S = B$, where B is a Γ -interior ideal of S.

Proof. Since B is a Γ -interior ideal of S also $(S\Gamma B)\Gamma S \subseteq B$, let $b \in B$, we have

$$b = (x\alpha(b\beta b))\gamma y \quad (by \ \Gamma\text{-intra-regular}) \\ ((b\alpha x)\beta b)\gamma y \quad (by \ \Gamma - AG^*\text{-groupoid}).$$

Since $\beta \subseteq S$ implies $b\alpha x \in S$. Hence $b \in (S \cap B) \cap S$.

Theorem 3.12. In an Γ -intra-regular of $\Gamma - AG^*$ -groupoid S, if A is a Γ -interior ideal of S then is a $\Gamma(1, 2)$ -ideal of S.

Proof. let A be a Γ -interior ideal of, i.e. $(S\Gamma A)\Gamma S \subseteq A$. Let $\rho \in (A\Gamma S)\Gamma(A\Gamma A)$, then $\rho = (a\mu s)\theta(b\alpha c)$ for some $a, b, c \in A$, $s \in S$ and $\mu, \theta, \alpha \in \Gamma$.

Since S is Γ -intra-regular so there exists $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a = (x\beta(a\delta a))\gamma y$. Now we have

$$\rho = (a\mu s)\theta(b\alpha c) = ((b\alpha c)\mu s)\theta a \quad (by \ \Gamma \text{-leftinvertive})$$
$$= ((b\alpha c)\mu s)\theta \left((x\beta(a\delta a)) \right)\gamma y \quad (by \ \Gamma \text{-intra-regular})$$
$$= (x\beta(a\delta a))\theta((b\alpha c)\mu s)\gamma y \quad (by \ \Gamma - AG^*\text{-groupoid})$$
$$= (x\beta(a\delta a))\theta((s\alpha c)\mu b)\gamma y \quad (by \ \Gamma \text{-leftinvertive})$$
$$= \left(((s\alpha c)\theta(x\beta(a\delta a)))\mu b \right) \quad (by \ \Gamma - AG^*\text{-groupoid}),$$

obviously $((s\alpha c)\theta(x\beta(a\delta a))) \in S$, as S is $\Gamma - AG^*$ -subgroupoid and A is $\Gamma - AG$ -subgroupoid, therefore $\rho \in (S\Gamma A)\Gamma S \subseteq A$ i.e. $(A\Gamma S)\Gamma(A\Gamma A) \subseteq A$. Hence A is a $\Gamma - (1, 2)$ -ideal of S. \Box

Theorem 3.13. In a Γ -interior ideal of $\Gamma - AG^*$ -subgroupoid S if A is a Γ -interior ideal of S then A is a Γ -bi-ideal of S.

Proof. Let A be a Γ -interior ideal of S, then $(S\Gamma A)\Gamma S \subseteq A$. Let $\rho \in (A\Gamma S)\Gamma A$, then $\rho = (a\mu s)\psi b$ for some $a, b \in A, s \in S$ and $\mu, \psi \in \Gamma$. Since S is Γ -intra-regular so there exists $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $b = (x(b\delta b))\gamma y$. Now we have

$$\rho = (a\mu s)\psi(x\beta(b\delta b))\gamma y \quad \text{(by } \Gamma\text{-leftinvertive)} \\ = (x(b\delta b))\psi(a\mu s)\gamma y \quad \text{(by } \Gamma - AG^*\text{-groupoid)} \\ = ((b\delta b)\beta(x\psi(a\mu s)))\gamma y \quad \text{(by } \Gamma - AG^*\text{-groupoid)} \\ = (((x\psi(a\mu s))\delta b)\beta b)\gamma y \in (S\Gamma A)\Gamma S \subseteq A \quad \text{(by } \Gamma\text{-leftinvertive)}.$$

Thus $(A\Gamma S)\Gamma A \subseteq A$. Hence A is a $\Gamma - bi$ -ideal of S.

References

- [1] P. Holgate, Groupoid satisfying a simple invertive law, Math. Student, 61 (1992), 101-106.1
- [2] M. A. Kazim, M. d. Naseeruddin, On almost semigroups, Portugal. Math., 36 (1977), 41–47.1
- [3] Q. Mushtaq, M. Khan, Decomposition of AG*-groupoids, Quasigroups related sys., 15 (2007), 303–308.
 1
- [4] M. Rashad, I. Ahmad, M. Shah, On relation between right alternative and nuclear square AG-groupoids, Int. Math. Forum, 5 (2013), 237–243.1, 1
- [5] A. R. Shabani, H. Rasouli, Some Results on $T^i \Gamma AG$ (i = 1, 2, 3, 4) groupoids, Math. Aeterna, 5 (2015), 125–134.2.7, 2.9, 2.10
- [6] M. Shah, I. Ahmad, A. Ali, Discovery of new classes of AG-groupoids, Res. J. Recent Sci., 11 (2012), 47–49.2.2, 2.3
- [7] M. Shah, I. Ahmad, M. Rashad, Some properties of AG*-groupoids, Res. J. Recent Sci., 4 (2013), 91–93.
 1
- [8] T. Shah, I. Rehman, On Γ -ideals and Γ -Bi-ideals in Γ -AG-groupoids, Int. J. Algebra, 4 (2010), 267–276.1, 2, 2.11
- [9] T. Shah, I. Rehman, Decomposition of locally associative Γ AG-groupoids, Novi Sad J. Math., 43 (2013), 1–8.1