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1. Introduction

The topological transversality theorem [4] for continuous compact maps states that for continuous
compact maps F and Gwith F ∼= G then F is essential if and only if G is essential. The essential map theory
was extended to set valued maps and to d–essential maps [6–8]. In this paper we consider admissible
maps (see below) and we establish a very general topological transversality theorem. To do this we first
present a very simple result which we will then use to establish topological transversality theorems in a
variety of settings.

Let X, Y be metric spaces and Γ paracompact. A continuous single valued map p : Γ → X is called a
Vietoris map (written p : Γ ⇒ X) if the following two conditions are satisfied:

(i). for each x ∈ X, the set p−1(x) is acyclic (with respect to the C̆ech cohomology functor),
(ii). p is a perfect map i.e., p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.

Let D(X, Y) be the set of all admissible pairs X
p⇐ Γ

q→ Y where p is a Vietoris map and q is
continuous. We will denote every such diagram by (p,q). Given two diagrams (p,q) and (p ′,q ′), where

X
p ′
⇐ Γ ′

q ′
→ Y, we write (p,q) ∼ (p ′,q ′) if there a homeomorphism f : Γ → Γ ′ such that p ′ ◦ f = p and

q ′ ◦ f = q. The equivalence class of a diagram (p,q) ∈ D(X, Y) with respect to ∼ is denoted by

φ = {X
p⇐ Γ

q→ Y} : X→ Y
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or φ = [(p,q)] and is called a morphism from X to Y. We let M(X, Y) be the set of all such morphisms.
Note if (p,q), (p1,q1) ∈ D(X, Y) (where X

p⇐ Γ
q→ Y and X

p1⇐ Γ ′
q1→ Y) and (p,q) ∼ (p1,q1) then

it is easy to see that for x ∈ X we have q1 (p
−1
1 (x)) = q (p−1(x)). For any φ ∈ M(X, Y) a set φ(x) =

qp−1 (x) where φ = [(p,q)] is called an image of x under a morphism φ. Let φ ∈ M(X, Y) and (p,q)
a representative of φ. We define φ(X) ⊆ Y by φ(X) = q (p−1(X)). Note φ(X) does not depend on the
representative of φ. Now φ ∈ M(X, Y) is called compact provided the set φ(X) is relatively compact in
Y. We say a map φ is admissible or determined by a morphism {X

p⇐ Γ
q→ Y} provided φ(x) = qp−1(x)

for any x ∈ X and we write φ ∈ Adm(X, Y) (note φ is upper semicontinuous) i.e., Adm(X, Y) denotes
the class of all admissible set-valued maps φ : X → 2Y (note a set-valued map φ : X → 2Y is admissible
if it is represented by an admissible pair). Let U be open in X and let F, G ∈ Adm∂U(U,X) (i.e., F, G ∈
Adm(U,X) with x /∈ F(x), x /∈ G(x) for x ∈ ∂U) be compact maps. We say F ∼= G (compactly) in
Adm∂U(U,X) if there exists a (compact) admissible Ψ : U× [0, 1] → 2X with x /∈ Ψt(x) for any x ∈ ∂U
and t ∈ (0, 1), Ψ0 = F and Ψ1 = G (here Ψt(x) = Ψ(x, t)). Note ∼= (compactly) in Adm∂U(U,X) is an
equivalence relation; see [3, Section 46], [5, Section 5]. Suppose F ∈ Adm∂U(U,X) is a compact map and
f : U → X is a single valued continuous compact map with x 6= f(x) for x ∈ ∂U. For a condition (clearly
satisfied if f is the zero map) to guarantee that F ∼= f (compactly) in Adm∂U(U,X) see [3, (Section 46),
Proposition 46.3].

2. Topological Transversality Theorem

We will consider classes A and B of maps. Let E be a completely regular space and U an open subset
of E.

Definition 2.1. We say F ∈ A(U,E) if F ∈ A(U,E) and F : U → K(E) is a upper semicontinuous (u.s.c.)
compact map; here U denotes the closure of U in E and K(E) denotes the family of nonempty compact
subsets of E.

Remark 2.2. Examples of F ∈ A(U,E) might be that F has convex values or F has acyclic values or F is
admissible (as described in Section 1).

In this paper we fix a Φ ∈ B(U,E) (i.e., Φ ∈ B(U,E) and Φ : U→ K(E) is a u.s.c. map).

Definition 2.3. We say F ∈ A∂U(U,E) if F ∈ A(U,E) and Φ(x) ∩ F(x) = ∅ for x ∈ ∂U; here ∂U denotes
the boundary of U in E.

Definition 2.4. Let F, G ∈ A∂U(U,E). We say F ∼= G in A∂U(U,E) if there exists a u.s.c. compact map
Ψ : U× [0, 1] → K(E) with Ψ ∈ A(U× [0, 1],E), Φ(x) ∩ Ψt(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1) (here
Ψt(x) = Ψ(x, t)), Ψ0 = F and Ψ1 = G. In addition here we always assume for any map Θ ∈ A(U× [0, 1],E)
and any maps g ∈ C(U,U × [0, 1]) and f ∈ C(U × [0, 1],U × [0, 1]) then Θ ◦ g ∈ A(U,E) and Θ ◦ f ∈
A(U× [0, 1],E); here C denotes the class of single valued continuous functions.

Remark 2.5.

(a). In our results below alternatively we could use the following definition for ∼= in A∂U(U,E): F ∼= G

in A∂U(U,E) if there exists a u.s.c. compact map Ψ : U× [0, 1]→ K(E) with Ψ( . ,η( . )) ∈ A(U,E) for any
continuous function η : U → [0, 1] with η(∂U) = 0, Φ(x) ∩Ψt(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1) (here
Ψt(x) = Ψ(x, t)), Ψ0 = F and Ψ1 = G. [Note the additional assumption in Definition 2.4 is not needed
here].

(b). Throughout the paper we assume ∼= in A∂U(U,E) is a reflexive, symmetric relation.

Remark 2.6. Let F ∈ A∂U(U,E). We say F is Φ–essential in A∂U(U,E) if for every map J ∈ A∂U(U,E)
with J|∂U = F|∂U and J ∼= F in A∂U(U,E) there exists a x ∈ U with Φ(x)∩ J (x) 6= ∅.

We now present a simple result which will more or less immediately yield a very general topological
transversality theorem.
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Theorem 2.7. Let E be a completely regular topological space, U an open subset of E, F ∈ A∂U(U,E) and
G ∈ A∂U(U,E) is Φ–essential in A∂U(U,E). Also suppose{

for any map J ∈ A∂U(U,E) with J|∂U = F|∂U and
J ∼= F in A∂U(U,E) we have G ∼= J in A∂U(U,E).

(2.1)

Then F is essential in A∂U(U,E).

Proof. Without loss of generality assume ∼= in A∂U(U,E) is as in Definition 2.4. Consider any map J ∈
A∂U(U,E) with J|∂U = F|∂U and J ∼= F in A∂U(U,E). From (2.1) there exists a u.s.c. compact map
HJ : U× [0, 1] → K(E) with HJ ∈ A(U× [0, 1],E), Φ(x) ∩HJt(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1) (here
HJt(x) = H

J(x, t)), HJ0 = G and HJ1 = J. Let

K =
{
x ∈ U : Φ(x)∩HJ(x, t) 6= ∅ for some t ∈ [0, 1]

}
and

D =
{
(x, t) ∈ U× [0, 1] : Φ(x)∩HJ(x, t) 6= ∅

}
.

Now D 6= ∅ (note G is Φ–essential in A∂U(U,E)) and D is closed (note Φ and HJ are u.s.c.) and so
D is compact (note HJ is a compact map). Let π : U× [0, 1] → U be the projection. Now K = π(D) is
closed (see Kuratowski’s theorem [2, pp 126]) and so in fact compact (recall projections are continuous).
Also note K ∩ ∂U = ∅ (since Φ(x) ∩HJt(x) = ∅ for any x ∈ ∂U and t ∈ [0, 1]) so since E is Tychonoff
there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1. Define the map R by
R(x) = HJ(x,µ(x)). Now R ∈ A∂U(U,E) (note HJ(x,µ(x)) = HJ ◦ g(x) where g : U → U × [0, 1] is
given by g(x) = (x,µ(x))) with R|∂U = G|∂U (note if x ∈ ∂U then R(x) = HJ(x, 0) = G(x) and so
R(x) ∩Φ(x) = G(x) ∩Φ(x)). We now show R ∼= G in A∂U(U,E). To see this let Q : U× [0, 1] → K(E) be
given byQ(x, t) = HJ(x, t µ(x)) = HJ ◦ f(x, t) where f : U× [0, 1]→ U× [0, 1] is given by f(x, t) = (x, t µ(x)).
Note Q ∈ A(U× [0, 1],E), Q0 = G, Q1 = R and Φ(x) ∩Qt(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1) (since if
t ∈ (0, 1) and x ∈ ∂U then Φ(x) ∩HJ(x, t µ(x)) = Φ(x) ∩HJ

tµ(x)(x) so x ∈ K and as a result µ(x) = 1 i.e.,
Φ(x) ∩HJ(x, t µ(x)) = Φ(x) ∩HJ(x, t)). Thus R ∼= G in A∂U(U,E). Since G is Φ–essential in A∂U(U,E)
there exists a x ∈ U with Φ(x) ∩ R(x) 6= ∅ (i.e., Φ(x) ∩HJ

µ(x)(x) 6= ∅). Thus x ∈ K, µ(x) = 1 and so

∅ 6= Φ(x)∩HJ1(x) = Φ(x)∩ J(x).

Remark 2.8.

(i). In the proof of Theorem 2.7 it is simple to adjust the proof if we use ∼= in A∂U(U,E) from Remark 2.5
if we note R( . ) = HJ( . ,µ( . )) and Q( . ,ν( . )) = HJ( . ,ν( . )µ( . )) = HJ( . ,w( . )) (with w( . ) = ν( . )µ( . ))
for any continuous ν : U→ [0, 1] with ν(∂U) = 0 (note w : U→ [0, 1] is continuous and w(∂U) = 0).

(ii). One could replace u.s.c. in the definition of A(U,E), B(U,E), Definition 2.4 and Remark 2.5 with any
condition that guarantees that K in the proof of Theorem 2.7 is closed; this is all that is needed if E is
normal. If E is Tychonoff and not normal the one can also replace the compactness of the map in A(U,E),
Definition 2.4 and Remark 2.5 with any condition that guarantees that K in the proof of Theorem 2.7 is
compact.

Example 2.9. Theorem 2.7 immediately yields a general Leray–Schauder type alternative for coincidences.
Let E be a completely metrizable locally convex space, U an open subset of E, F ∈ A∂U(U,E), G ∈
A∂U(U,E) is Φ–essential in A∂U(U,E) and Φ(x) ∩ [t F(x) + (1 − t)G(x)] = ∅ for x ∈ ∂U and t ∈ (0, 1).
For any map J ∈ A∂U(U,E) with J|∂U = F|∂U suppose HJ ∈ A(U× [0, 1],E) where HJ(x, t) = t J(x) + (1 −
t)G(x) [Also here we assume for any map Θ ∈ A(U× [0, 1],E) and any maps g ∈ C(U,U× [0, 1]) and
f ∈ C(U× [0, 1],U× [0, 1]) then Θ ◦ g ∈ A(U,E) and Θ ◦ f ∈ A(U× [0, 1],E)]. Then F is Φ–essential in
A∂U(U,E).
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The proof follows from Theorem 2.7 since topological vector spaces are completely regular and note
if J ∈ A∂U(U,E) with J|∂U = F|∂U then with HJ(x, t) = t J(x) + (1 − t)G(x) note HJ0 = G, HJ1 = J,
HJ : U× [0, 1] → K(E) is a u.s.c. compact (see [1, Theorem 4.18]) map, HJ ∈ A(U× [0, 1],E) and Φ(x) ∩
HJt(x) = ∅ for x ∈ ∂U and t ∈ (0, 1) (if x ∈ ∂U and t ∈ (0, 1) then since J|∂U = F|∂U we note that
Φ(x)∩HJt(x) = Φ(x)∩ [t F(x) + (1 − t)G(x)]) so as a result G ∼= J (Definition 2.4) in A∂U(U,E) (i.e., (2.1)
holds). [Note E being a completely metrizable locally convex space can be replaced by any (Hausdorff)
topological vector space E which has the property that the closed convex hull of a compact set in E

is compact. In fact it is easy to see, if we argue differently, that all we need to assume is that E is a
topological vector space].

We now present the topological transversality theorem in a general setting. Assume

∼= in A∂U(U,E) is an equivalence relation. (2.2)

Theorem 2.10. Let E be a completely regular topological space, U an open subset of E and assume (2.2) holds.
Suppose F and G are two maps in A∂U(U,E) with F ∼= G in A∂U(U,E). Then F is Φ–essential in A∂U(U,E) if
and only if G is Φ–essential in A∂U(U,E).

Proof. Assume G is Φ–essential in A∂U(U,E). To show F is Φ–essential in A∂U(U,E) let J ∈ A∂U(U,E)
with J|∂U = F|∂U and J ∼= F in A∂U(U,E). Now since F ∼= G in A∂U(U,E) then (2.2) guarantees that
G ∼= J in A∂U(U,E) i.e., (2.1) holds. Then Theorem 2.7 guarantees that F is Φ–essential in A∂U(U,E). A
similar argument shows that if F is Φ–essential in A∂U(U,E) then G is Φ–essential in A∂U(U,E).

Assume (2.2) holds. If F and G are maps in A∂U(U,E) with F|∂U = G|∂U is F ∼= G in A∂U(U,E)? We
will discuss this now.

We assume the following conditions:

E is a (Hausdorff) topological vector space and U is convex (2.3)

there exists a retraction r : U→ ∂U (2.4)

and {
for any map Θ ∈ A(U,E) and f ∈ C(U× [0, 1],U)
then Θ ◦ f ∈ A(U× [0, 1],E).

(2.5)

Remark 2.11. Note topological vector spaces are completely regular. Also if E is an infinite dimensional
Banach space and U is convex then (2.4) holds. Also note if A is closed under composition then (2.5)
holds.

Let r be in (2.4) and let F and G be maps in A∂U(U,E) with F|∂U = G|∂U. Consider the map F? given
by F?(x) = F(r(x)) for x ∈ U. Note F?(x) = G(r(x)) for x ∈ U since F|∂U = G|∂U. Let

H(x, λ) = G(2 λ r(x) + (1 − 2 λ) x) = G ◦ j (x, λ) for (x, λ) ∈ U×
[

0,
1
2

]
(here j : U×

[
0, 1

2

]
→ U (note U is convex) is given by j(x, λ) = 2 λ r(x)+ (1− 2 λ) x). Now H : U×

[
0, 1

2

]
→

K(E) is a u.s.c. compact map. Also from (2.5) note H ∈ A(U×
[
0, 1

2

]
,E) with Φ(x)∩Hλ(x) = ∅ for x ∈ ∂U

and λ ∈
[
0, 1

2

]
(note if x ∈ ∂U and λ ∈

[
0, 1

2

]
then since r(x) = x we have Φ(x) ∩Hλ(x) = Φ(x) ∩G(x)).

Thus G ∼= F? in A∂U(U,E) (Definition 2.4). Similarly with

Q(x, λ) = Φ((2 − 2 λ) r(x) + (2 λ− 1) x) for (x, λ) ∈ U×
[

1
2

, 1
]

we see that F? ∼= F in A∂U(U,E) (Definition 2.4). Combining gives F ∼= G in A∂U(U,E) (Definition 2.4).
In this situation we could replace Definition 2.6 with:
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Definition 2.12. Let F ∈ A∂U(U,E). We say F is essential in A∂U(U,E) if for every map J ∈ A∂U(U,E)
with J|∂U = F|∂U there exists a x ∈ U with Φ(x)∩ J (x) 6= ∅.

Now from Theorem 2.7 (in fact here the argument would be shorter since the map Q is not needed
and the assumption Θ ◦ f ∈ A(U× [0, 1],E) is not needed in Definition 2.4) and Theorem 2.10 we have:

Theorem 2.13. Let E be a topological vector space, U an open convex subset of E and assume (2.2), (2.4) and
(2.5) hold. Suppose F and G are two maps in A∂U(U,E) with F ∼= G in A∂U(U,E) (as in Definition 2.4). Then F
is Φ–essential (Definition 2.12) in A∂U(U,E) if and only if G is Φ–essential (Definition 2.12) in A∂U(U,E).

Remark 2.14.

(i). Suppose (2.4) and (2.5) hold and in addition assume
for any map Θ ∈ A(U,E) then Θ( . ,η( . )) = Θ ◦ f( . ,η( . )) ∈ A(U,E)
for any continuous function η : U→ [0, 1] with η(∂U) = 0 where
f(x, t) = t r(x) + (1 − t) x, t ∈ [0, 1], x ∈ U.

(2.6)

Let F and G be maps in A∂U(U,E) with F|∂U = G|∂U. It is simple to adjust the proof above (use (2.6)
instead of (2.5)) to establish F ∼= G in A∂U(U,E) (as in Remark 2.5). As a result we get immediately
Theorem 2.13 (with (2.5) replaced by (2.6) and ∼= in A∂U(U,E) (Definition 2.4) replaced by ∼= in A∂U(U,E)
(Remark 2.5)).

(ii). Let F and G be maps in A∂U(U,E) with F|∂U = G|∂U. Assume the following conditions:

E is a completely metrizable locally convex space (2.7)

Φ(x)∩ [t F(x) + (1 − t)G(x)] = ∅ for x ∈ ∂U and t ∈ (0, 1) (2.8)

and {
η( . ) F( . ) + (1 − η( . ))G( . ) ∈ A(U,E) for any
continuous function η : U→ [0, 1] with η(∂U) = 0.

(2.9)

Let H(x, λ) = λ F(x) + (1 − λ)G(x) for (x, λ) ∈ U× [0, 1]. Note H : U× [0, 1] → K(E) is a u.s.c. compact
(see [1, Theorem 4.18]) map and by (2.9) note H( . ,η( . )) ∈ A(U,E) for any continuous function η : U →
[0, 1], and from (2.8) note Φ(x) ∩Ht(x) = ∅ for x ∈ ∂U and t ∈ (0, 1) so as a result F ∼= G in A∂U(U,E)
(Remark 2.5). [Note (2.7) can be replaced by any topological vector space E which has the property that
the closed convex hull of a compact set in E is compact]. As a result in this setting we get immediately
Theorem 2.13 (with (2.3), (2.4), (2.5) replaced by (2.7), (2.8), (2.9) and ∼= in A∂U(U,E) (Definition 2.4)
replaced by ∼= in A∂U(U,E) (Remark 2.5)).

Now we present an example of a Φ–essential (Definition 2.12) map.

Example 2.15. Let E be a (Hausdorff) topological space, U an open subset of E, Φ ∈ B(E,E) (i.e.,
Φ ∈ B(E,E) and Φ : E→ K(E) is a u.s.c. map) and F ∈ A∂U(U,E). Assume the following conditions hold:

there exists a x ∈ U with Φ(x)∩ {0} 6= ∅ (2.10)

there exists a retraction r : E→ U (2.11)

Φ(x)∩ λ F(x) = ∅ for x ∈ ∂U and λ ∈ (0, 1) (2.12)
for any continuous map µ : E→ [0, 1] with µ(E \U) = 0
and any map J ∈ A∂U(U,E) with J|∂U = F|∂U
there exists a w ∈ E with Φ(w)∩ µ(w) J(r(w)) 6= ∅

(2.13)

and
there is no z ∈ E \U with Φ(z)∩ {0} 6= ∅. (2.14)
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Then F is Φ–essential (Definition 2.12) in A∂U(U,E).
To see this let J ∈ A∂U(U,E) with J|∂U = F|∂U. Now let

K =
{
x ∈ U : Φ(x)∩ λ J(x) 6= ∅ for some λ ∈ [0, 1]

}
.

Now K 6= ∅ (see (2.10)) is compact and K ⊆ U. In fact K ⊆ U from (2.12) (note if x ∈ ∂U and x ∈ K
then for some λ ∈ [0, 1] we have ∅ 6= Φ(x) ∩ λ J(x) = Φ(x) ∩ λ F(x), a contradiction). Then there exists a
continuous map µ : E→ [0, 1] with µ(E \U) = 0 and µ(K) = 1. Let r be as in (2.11) and (2.13) guarantees
that there exists a x ∈ E with Φ(x) ∩ µ(x) J(r(x)) 6= ∅. If x ∈ E \U then µ(x) = 0 so Φ(x) ∩ {0} 6= ∅,
and this contradicts (2.14). Thus x ∈ U so Φ(x) ∩ µ(x) J(x) 6= ∅, so x ∈ K, µ(x) = 1 and consequently
Φ(x)∩ J(x) 6= ∅.

Remark 2.16. It is very easy to extend the above ideas to the (L, T) Φ–essential maps in [6].

Now we consider a generalization of Φ–essential maps, namely the d–Φ–essential maps. Let E be
a completely regular topological space and U an open subset of E. For any map F ∈ A(U,E) write
F? = I× F : U→ K(U× E), with I : U→ U given by I(x) = x, and let

d :
{
(F?)−1 (B)

}
∪ {∅} → Ω (2.15)

be any map with values in the nonempty set Ω where B =
{
(x,Φ(x)) : x ∈ U

}
.

Definition 2.17. Let F ∈ A∂U(U,E) and write F? = I× F. We say F? : U → K(U× E) is d–Φ–essential if
for every map J ∈ A∂U(U,E) (write J? = I× J) with J|∂U = F|∂U and J ∼= F in A∂U(U,E) we have that
d
(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).

Remark 2.18. If F? is d–Φ–essential then

∅ 6= (F?)−1 (B) = {x ∈ U : (x, F(x))∩ (x,Φ(x)) 6= ∅},

so there exists a x ∈ U with (x,Φ(x))∩ (x, F(x)) 6= ∅ (i.e., Φ(x)∩ F(x) 6= ∅).

Theorem 2.19. Let E be a completely regular topological space, U an open subset of E, B =
{
(x,Φ(x)) : x ∈ U

}
,

d is defined in (2.15), F ∈ A∂U(U,E) and G ∈ A∂U(U,E) (write F? = I× F and G? = I×G). Suppose G? is
d–Φ–essential and 

for any map J ∈ A∂U(U,E) with J|∂U = F|∂U and
J ∼= F in A∂U(U,E) we have G ∼= J in A∂U(U,E)
and d

(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
.

(2.16)

Then F? is d–Φ–essential.

Proof. Without loss of generality assume ∼= in A∂U(U,E) is as in Definition 2.4. Consider any map J ∈
A∂U(U,E) (write J? = I× J) with J|∂U = F|∂U and J ∼= F in A∂U(U,E). From (2.16) there exists a u.s.c.
compact map HJ : U × [0, 1] → K(E) with HJ ∈ A(U × [0, 1],E), Φ(x) ∩ HJt(x) = ∅ for any x ∈ ∂U
and t ∈ (0, 1) (here HJt(x) = HJ(x, t)), HJ0 = G, HJ1 = J and d

(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
. Let

(HJ)? : U× [0, 1]→ K(U× E) be given by (HJ)?(x, t) = (x,HJ(x, t)) and let

K =
{
x ∈ U : (x,Φ(x))∩ (HJ)?(x, t) 6= ∅ for some t ∈ [0, 1]

}
.

Now K 6= ∅ is closed, compact and K ∩ ∂U = ∅ so since E is Tychonoff there exists a continuous map
µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1. Let R(x) = HJ(x,µ(x)) and write R? = I× R. Now as in
Theorem 2.7, R ∈ A∂U(U,E) with R|∂U = G|∂U and R ∼= G in A∂U(U,E). Since G? is d–Φ–essential then

d
(
(G?)−1 (B)

)
= d

(
(R?)−1 (B)

)
6= d(∅). (2.17)
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Now since µ(K) = 1 we have

(R?)−1 (B) =
{
x ∈ U : (x,Φ(x))∩ (x,HJ(x,µ(x))) 6= ∅

}
=
{
x ∈ U : (x,Φ(x))∩ (x,HJ(x, 1)) 6= ∅

}
= (J?)−1 (B),

so from (2.17) we have d
(
(G?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅). Now combine with the above and we

have d
(
(F?)−1 (B)

)
= d

(
(J?)−1 (B)

)
6= d(∅).

Note again it is simple to adjust the proof in Theorem 2.19 if we use ∼= in A∂U(U,E) from Remark 2.5.

Theorem 2.20. Let E be a completely regular topological space, U an open subset of E, B =
{
(x,Φ(x)) : x ∈ U

}
,

d is defined in (2.15) and assume (2.2) holds. Suppose F and G are two maps in A∂U(U,E) (write F? = I× F and
G? = I×G) and F ∼= G in A∂U(U,E). Then F? is d–Φ–essential if and only if G? is d–Φ–essential.

Proof. Without loss of generality assume ∼= in A∂U(U,E) is as in Definition 2.4. Assume G? is d–Φ–
essential. Let J ∈ A∂U(U,E) (write J? = I× J) with J|∂U = F|∂U and J ∼= F in A∂U(U,E). If we show
(2.16) then F? is d–Φ–essential from Theorem 2.19. Now (2.2) implies that G ∼= J in A∂U(U,E). To
complete (2.16) we need to show d

(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
. We will follow the argument in

Theorem 2.19. Note since G ∼= F in A∂U(U,E) let H : U× [0, 1] → K(E) be a u.s.c. compact map with
H ∈ A(U× [0, 1],E), Φ(x) ∩Ht(x) = ∅ for any x ∈ ∂U and t ∈ (0, 1) (here Ht(x) = H(x, t)), H0 = G and
H1 = F. Let H? : U× [0, 1]→ K(U× E) be given by H?(x, t) = (x,H(x, t)) and let

K =
{
x ∈ U : (x,Φ(x))∩H?(x, t) 6= ∅ for some t ∈ [0, 1]

}
.

Now K 6= ∅ and there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1. Let
R(x) = H(x,µ(x)) and write R? = I× R. Now R ∈ A∂U(U,E) with R|∂U = G|∂U and R ∼= G in A∂U(U,E)
so since G? is d–Φ–essential then d

(
(G?)−1 (B)

)
= d

(
(R?)−1 (B)

)
6= d(∅). Now since µ(K) = 1 we have

(R?)−1 (B) =
{
x ∈ U : (x,Φ(x))∩ (x,H(x,µ(x))) 6= ∅

}
=
{
x ∈ U : (x,Φ(x))∩ (x,H(x, 1)) 6= ∅

}
= (F?)−1 (B),

so d
(
(F?)−1 (B)

)
= d

(
(G?)−1 (B)

)
.

Note again it is simple to adjust the proof in Theorem 2.20 if we use ∼= in A∂U(U,E) from Remark 2.5.

Remark 2.21. It is very easy to extend the above ideas to the (L, T) d–Φ–essential maps in [7].
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