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Abstract

In this paper we propose a new definition of the modified Laplace transform La(f(t)) for a piece-wise continuous function
of exponential order which further reduces to simple Laplace transform for a = e where a 6= 1 and a > 0. Also we prove some
basic results of this modified Laplace transform and connection with different functions.
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1. Introduction and Definitions

Named after Pierre-Simon Laplace, Laplace transform was first introduced in 1782 during the study
of probability theory, and is one of the important tools for solving linear constant coefficient, ordinary or
partial differential equations under suitable initial and boundary value problem. It is basically a linear
operator of a function f(t) with <(arg(t)) > 0 that transforms it into a function f(s) with a complex
argument s. The Laplace transform, in the analysis of linear time-invariant systems (harmonic oscillators,
electrical circuits, optical devices and mechanical systems), acts as a transformation from time domain to
the frequency domain. It is much similar to Fourier transform though the difference actually lies in that
the Fourier transform expresses a function or signal as a series of modes of vibration, whereas the Laplace
transform settle a function into its moments. It finds very wide application in various area of physics,
electrical engineering, control engineering, optics, mathematics and signal processing. For further details
(see the references [1, 2, 6–11, 13, 14]).
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Definition 1.1 (Laplace transform). The Laplace transform of a function f(t) is defined as:

L(f(t)) = F(s) =

∫∞
0
e−stf(t)dt, (<(s) > 0),

where, the function f(t) is piece-wise continuous and of exponential order.
The inverse Laplace transform is defined as:

f(t) = L−1(F(s)) =
1

2πi

∫c+i∞
c−i∞ estf(t)dt, (<(s) > 0, c > 0),

where L−1 is notation of inverse Laplace transform.

Definition 1.2 (Double Laplace transform). Lately, Lokenath Debnath [3] came up with an interested work
in which he defined the double Laplace transform in following manner

L(f(x,y)) = L[Lf(x;y); x� p;y� q] =

∫∞
0

∫∞
0
e−(px+qy)f(x,y)dxdy. (<(p),<(q) > 0)

and studied its various properties to solve partial differential equations and integral equations.

Definition 1.3 (Gamma function). The gamma function is defined by

Γ(m) =

∫∞
0
e−ttm−1dt, (<(m) > 0).

Definition 1.4 (Pochhamer symbol). The Pochhamer symbol is defined as

(a)n = a(a+ 1)(a+ 2)(a+ 3) · · · (a+n− 1),

where n ∈N,a is neither zero nor a negative integer,

(a)n =
Γ(a+n)

Γ(a)
, (a)n−k =

(−1)k(a)n
(1 − a−n)k

, (0 6 k 6 n).

Definition 1.5 (Hypergeometric function). The hypergeometric function has the series representation as:

2F1

[
a, b;
c; t

]
=

∞∑
n=0

(a)n(b)n
(c)n

tn

n!
. (1.1)

Definition 1.6 (Confluent hypergeometric function). The confluent hypergeometric function defined by

1F1 [a;b; t] =
∞∑
n=0

(a)n
(b)n

tn

n!
. (1.2)

Definition 1.7 (The generalized hypergeometric function). The Generalized hypergeometric function pFq
with p numerator parameter and q denominator parameter is defined by

pFq[a1,a2 . . . ,ap;b1,b2 . . . ,bq; t] =
∞∑
n=0

(a1)n, (a2)n, . . . , (ap)n
(b1)n, (b2)n, . . . , (bq)n

tn

n!
, (1.3)

whereai ∈ C (i = 1, 2, . . . ,p),bi ∈ C \ Z−
0 , (i = 1, 2, . . . ,q), where Z−

0 = . . . − 2,−1, 0.

Definition 1.8 (Laguerre polynomial). The Laguerre polynomial of one variable t is defined by by the
following relation

Ln(t) =

n∑
k=0

(−1)kn! tk

(k!)2(n− k)!
. (1.4)
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Definition 1.9 (Bessel function). The Bessel function of order zero is defined by the following relation

J0(t) =

∞∑
k=0

(−1)kt2k

22k Γ(1 + k)
. (1.5)

Definition 1.10 (Legendre polynomials). The Legendre polynomial is defined by

Pn(t) =

[n2 ]∑
k=0

(−1)k( 1
2)n−k(2t)

n−2k

k!(n− 2k)
. (1.6)

2. Definition of modified Laplace transform

The modified Laplace transform for a function f(t) which is piece-wise continuous and of exponential
order is defined by the integral

La(f(t)) = F(s;a) =
∫∞

0
a−stf(t)dt, (<(s) > 0, a ∈ (0,∞) \ {1}), (2.1)

provided that the integral in (2.1) exists.
For a = e, the modified Laplace transform becomes simple Laplace transform given by

Le(f(t)) = F(s; e) = L(f(t)) =

∫∞
0
e−stf(t)dt.

2.1. Linear property of modified Laplace transform

If f(t) and g(t) are two functions whose modified Laplace transform exists, then for any constant α
and β, we have

La (α(f(t)) +β(g(t))) = α (Laf(t) +βLag(t)) .

Proof. We can easily write

La (α(f(t)) +β(g(t))) =

∫∞
0
a−stLa (α(f(t)) +β(g(t)))dt = α

(∫∞
0
a−stf(t)dt

)
+β

(∫∞
0
a−stg(t)dt

)
,

which, on using (2.1), we get desired result.

Proposition 2.1. The following properties are valid for modified Laplace transform.

(1) If f(t) = 1, then

La(1) =
1

s. log a
, (s > 0).

(2) If f(t) = t, then

La(t) =
1

s2.(log a)2 , (s > 0).

(3) If f(t) = tn, then

La(t
n) =

Γ(n+ 1)
sn+1.(log a)n+1 , (s > 0,n = 0, 1, 2, . . .).

(4) If f(t) = ebt, then

La(e
bt) =

∫∞
0
a−stebtdt =

1
s loga− b

, (s loga > |b|).
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(5) If f(t) = sinh bt, then

La(sinhbt) =
∫∞

0
a−st

(
ebt − ebt

2

)
dt

=
1
2

∫∞
0
e−st loga(ebt − e−bt)dt

=
1
2

[∫∞
0
e−t(s loga−b) − e−t(s loga+b)

]
dt

=
b

s2(loga)2 − b2 , (s loga > |b|).

(6) If f(t) = cosh bt, then

La(coshbt) =
∫∞

0
a−st

(
ebt + ebt

2

)
dt

=
1
2

∫∞
0
e−st loga(ebt + e−bt)dt

=
1
2

[∫∞
0
e−t(s loga−b) + e−t(s loga+b)

]
dt

=
b

s2(loga)2 − b2 , (s loga > |b|).

(7) If f(t) = sinbt, then

La(sinbt) =
∫∞

0
a−st

(
ebt − ebt

2i

)
dt

=
1
2i

∫∞
0
e−st loga(ebt − e−bt)dt

=
1
2i

[∫∞
0
e−t(s loga−b) − e−t(s loga+b)

]
dt

=
b

s2(loga)2 + b2 , (s loga > 0).

(8) If f(t) = cosbt, then

La(cosbt) =
∫∞

0
a−st

(
ebt − ebt

2

)
dt

=
1
2

∫∞
0
e−st loga(ebt − e−bt)dt

=
1
2

[∫∞
0
e−t(s loga−b) − e−t(s loga+b)

]
dt

=
s

s2(loga)2 + b2 , (s loga > 0).

2.2. Unit step function
We now present a method for solving certain initial value problem with discontinuous forcing func-

tion. For example, an external force acting on a mechanical system or a voltage applied to an electrical
circuit can be turned off after a certain period of time. Therefore, we shall discuss the case of function
having jump type discontinuity at t = c.

u(t− c) =

{
0, x < c,
1, x > c,

(2.2)
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which, on applying the modified Laplace transform gives

La (u(t− c)) =

∫∞
0
a−stu(t− c)dt.

Now in view of (2.2), we get

La (u(t− c)) =

∫c
0
a−st0dt+

∫∞
c

a−stdt =
a−sc

s loga
.

2.3. First shifting property
If La(f(t)) = F(s;a), then for a > 0 (a 6= 1), we have

La(e
btf(t))dt = F(s loga− b).

Proof. By using (2.1), we write

La(f(t)) =

∫∞
0
a−stebtf(t)dt =

∫∞
0
e−t(s loga−a)f(t)dt.

Now by integrating and using limit, we obtain

La(e
btf(t))dt = F(s loga− b).

2.4. Second shifting property
If f(t) be a piece-wise continuous function and of exponential order such that La(f(t)) = F(s;a), then

we have the expression
La[f(t− b)ub(t)] = e

−sbLa(f(t)).

Proof. With the help of the definition of modified Laplace transform in (2.1), we can write

La[f(t− b)ub(t)] =

∫∞
0
a−st logaf(t− b)dt.

Further, by putting τ = t− b implies dτ = dt, therefore

La[f(t− b)ub(t)] =

∫∞
b

a−st logaf(t− b)dt =

∫∞
0
e−s(τ+b) loga f(τ)dτ = e−sb

∫∞
0
a−stf(t)dt,

which gives
La[f(t− b)ub(t)] = e

−sbLa(f(t)).

Definition 2.2.

Convolution: The convolution of f(t) and g(t) (f(t) and g(t) are piece-wise continuous and of exponential
order) is denoted by (f ∗ g) and is defined as

(f ∗ g)(t) =
∫t

0
f(t− u)g(u)du. (2.3)

It can be easily seen that the set of all modified Laplace transformable functions form commutative semi
group with respect to the convolution operation ∗.
Commutativity: The operation ∗ defined above for modified Laplace transform is commutative, that is,

(f ∗ g)(t) = (g ∗ f)(t).



M. Saif, F. Khan, K. S. Nisar, S. Araci, J. Math. Computer Sci., 21 (2020), 127–135 132

Associativity: The operation ∗ defined above for modified Laplace transform is associative, that is,

{f ∗ (g ∗ h)} = {(f ∗ g) ∗ h} .

Distributivity: The operation ∗ defined above for modified Laplace transform is distributive, that is,

{f ∗ (g+ h)} = (f ∗ g) + (f ∗ h).

Identity: The operation ∗ defined above for modified Laplace transform has identity, that is,

(f ∗ δ)(t) = δ = (δ ∗ f)(t),

where δ is Kronecker delta.

Theorem 2.3 (Convolution theorem). Let La(f(t)) = F(s;a) and La(g(t)) = G(s;a) be such that f(t) and
g(t) are piece-wise continuous functions on [0,∞). Then their convolution (f ∗ g) is defined by:

La(f ∗ g)(t) = F(s;a)G(s;a).

Proof. By simply using (2.1) and (2.3), we obtain

{La(f ∗ g)(t)}=La

[∫∞
0
f(u)g(t− u)du

]
=

∫∞
0
a−st

(∫t
0
f(u)g(t− u)du

)
dt=

∫∞
0
a−st

∫t
0
f(u)g(t− u)dudt.

Putting t− u = z implies dt = dz, and we write

{La(f ∗ g)(t)} =
∫∞
u=0

∫∞
t=u

a−stf(u)g(t− u)dudt =

∫∞
u=0

∫∞
z=0

a−p(u+z)f(u)g(z)dzdu.

After separating the variables, we get

{La(f ∗ g)(t)} =
(∫∞

0
a−puf(u)du

)
+

(∫∞
0
a−pzg(z)dz

)
,

from which the result easily follows.

2.5. Connection with Bessel function of order zero
Modified Laplace transform in (2.1) is connected with Bessel function of order zero by the relation

La [J0(t)] =
1√

s2(loga)2 + 1
,

where, J0(t) is defined by (1.5).

2.6. Connection with Laguerre polynomial
Modified Laplace transform in (2.1) is connected with simple Laguerre polynomial∫∞

0
a−stLn(t)dt =

1
s

(
1 −

loga
s

)n
,

where, Ln(t) is given by (1.4).

2.7. Modified Laplace transform of hypergeometric function
The modified Laplace transform of hypergeometric function given in (1.1), is given as:

La 2F1[a,b; c; z] = La

{ ∞∑
n=0

(a)n(b)n
(c)n

tn

n!

}
=

∞∑
n=0

(a)n(b)n
(c)n

∫∞
0
a−sttndt =

(
1

s loga

)
2F0

[
a,b;

1
s loga

]
.
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2.8. Modified Laplace transform of confluent hypergeometric function

The modified Laplace transform of confluent hypergeometric function given in (1.2) is connected as:

La 2F1[a,−, 1, t] = La

{ ∞∑
n=0

(a)n
(1)n

tn

n!

}
=

∞∑
n=0

(a)n
(1)n

∫∞
0
a−sttndt =

(
1

s loga

)
1F0

[
a,b;

1
s loga

]
.

2.9. Modified Laplace transform of generalized hypergeometric function

The modified Laplace transform of generalized hypergeometric function given in (1.3) is given as:

La pFq[a1,a2 . . . ,ap;b1,b2 . . . ,bq−1; t] =La

{ ∞∑
n=0

(a1)n, (a2)n, . . . , (ap)n
(b1)n, (b2)n, . . . , (bq−1)n(1)n

tn

n!

}

=

∞∑
n=0

(a1)n, (a2)n, . . . , (ap)n
(b1)n, (b2)n, . . . , (bq−1)n(1)n(1)n

∫∞
0
a−sttndt

=

(
1

s log a

)
pFq−1

[
a1,a2, . . .ap,b1,b2, . . . ,bq−1;

1
s loga

]
.

2.10. Modified Laplace transform of Legendre polynomials

The modified Laplace transform of Legendre polynomial given in (1.6) is given as:

La
{
tβPn(t)dt

}
=2n

[n2 ]∑
k=0

(−n)2k(
1
2)n

k!n!(1 − 1
2 −n)k22k

∫∞
0
a−sttβ+n−2kdt

=
2n( 1

2)n

n!

[n2 ]∑
k=0

(−n)2k

k!( 1
2 −n)k22k

Γ(1 +n− 2k+β)
s1+n−2k+β(loga)1+n−2k+β

=
2n( 1

2)nΓ(1 +β+n)

n!s1+β+n(loga)1+β+n 2F3

[
−n

2 , −n
2 + 1

2 ;
1
2 −n, 1

2(−β−n), 1
2(1 −β−n);

−
(s loga)2

4

]
.

3. Modified inverse Laplace transform

In this section, we define the modified inverse Laplace transform of a function f(t) given by:

L−1
a (f(t)) =

1
2πi

∫c+i∞
c−i∞ astF(s;a)dt, (c > 0).

Proposition 3.1. Let f(t) be a piece wise continuous function of exponential order. Then, the following properties
are valid for modified inverse Laplace transform.

(1) If f(s) = 1
s , then

L−1
a

(
1
s

)
= loga, (s > 0).

(2) If f(s) = 1
sn , then

L−1
a

(
1
sn

)
=

(loga)n+1tn

Γ(n+ 1)
, (s > 0).

(3) If f(s) = 1
s loga−b , then

L−1
a

(
1

s loga− b

)
= ebt, (s loga > |b|).
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(4) If f(s) = b
s2(loga)2−b2 , then

L−1
a

(
b

s2(loga)2 − b2

)
= sinhbt, (s loga > |b|).

(5) If f(s) = s
s2(loga)2−b2 , then

L−1
a

(
s

s2(loga)2 − b2

)
= coshbt, (s loga > |b|).

(6) If f(s) = b
s2(loga)2+b2 , then

L−1
a

(
b

s2(loga)2 + b2

)
= sinbt, (s loga > 0).

(7) If f(s) = s
s2(loga)2+b2 , then

L−1
a

(
s

s2(loga)2 + b2

)
= cosbt, (s loga > 0).

Theorem 3.2.

Linearity property: Let α,β be constants and f1(s;a), f2(s;a) be the modified Laplace transform of F1(s,a) and
F2(s,a), respectively, then

L−1
a (αf1(s;a) +βf2(s;a)) = α

(
L−1
a f1(s;a)

)
+β

(
L−1
a f2(s;a)

)
= αF1(s,a) +βF2(s,a).

First shifting property: If L−1
a F(s;a) = f(t), then

L−1
a {F(s loga− b)} = eatf(t).

Second shifting property: If L−1
a F(s;a) = f(t), then

L−1
a

{
e−sbLa(f(t))

}
= f(t− b)ub(t).

Convolution theorem: If L−1
a (F(s;a)) = f(t), L−1

a (G(s;a)) = g(t), then

L−1
a {F(s;a)G(s;a)} = (f ∗ g).

4. Conclusion

Laplace transform is an important tool applied in vast areas of science and engineering. The applica-
tions of Laplace transform are not limited to areas of applied mathematics, statistics and engineering but
to a much wider extent for, e.g., a very simple application of modified Laplace transform in the area of
physics could be to find out the harmonic vibration of a beam. Being useful, a very extensive work on
Laplace transform is available in literature (see, for details, [3–5, 12]) and several authors have dug into
its properties and applications. Following up, in this paper, our motive is to present a modified form
of Laplace transform that is more general and works on a larger domain (a ∈ (0,∞) \ {1}). The results
obtained by this transform in potential problems of physics and applied mathematics will be more pre-
cised and accurate. We will discuss some advanced problems involving modified Laplace transform in
the subsequent paper.

For future work, we introduce a modified double Laplace transform and show its linear property.
Interested authors can further study advanced properties of the double Laplace transform.
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The modified double Laplace transform of a function f(x,y) of two variable x and y is defined as:

La(f(x,y)) =
∫∞

0

∫∞
0
a−(px+qy)f(x,y)dxdy (4.1)

provided the integral in (4.1) exists.
Eq. (4.1) satisfies the following linear property:

La {α(f(x,y)) +β(g(x,y))} = α (Laf(x,y) +βLag(x,y)) ,

where α and β are constant.
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