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Abstract
In this paper, the variational iteration method (VIM) has been applied to find the fuzzy solutions of the fuzzy Burgers

equations with variable coefficients and fuzzy parameters. We follow the same strategy as in Buckley and Feuring which is:
(1) first check to see if the Buckly-Feuring method produces a solution, and (2) if the Buckly-Feuring method does not give a
solution, then see if the Seikkala procedure generates a solution. Several examples are given to show the new theorem of the
Buckley-Feuring solution and the Seikkala solution.
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1. Introduction

Zadeh is credited with introducing the concept of fuzzy sets in 1965 as a mathematical means of
describing vagueness in linguistics. The idea may be considered as a generalization of classical set theory,
in the decade since Zadeh’s pioneering paper on fuzzy sets [22]. Assume Burgers models have imprecise
parameters, since fuzzy sets theory is a powerful tool for modeling imprecise and processing vague in
mathematical models, hence the our idea is solving Burgers equation with fuzzy parameters via the same
strategy as Buckley and Feuring [4] using Variational Iteration Method (VIM) [13–15]. We begin this
section with definition the notation we will use in the paper and then specify the fuzzy Burgers equation
we wish to solve. In the next section we present the Buckly-Feuring solution and the Seikkala solution
[18]. Also, in this section we give a sufficient condition for BF-solution to exist. The last section contains
two examlpes where in the first example both solutions can exist in disjoint subregion of the domain as
shown in Figs 1 and 2. In the last example the BF-solution does not exist but the S-solution can exist within
some subregion of the domain as shown in Figs. 3, 4, and 5. In comparison with the paper [5, 17], we
investigate nonlinear partial differential equations with fuzzy parameters, fuzzy initial value and fuzzy
forcing functions, we propose a new theorem for finding the exact fuzzy solutions, witch extended to the
Buckley-Feuring for the proposed models.
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2. Preliminaries

We place a bar over a capital letter to denote a fuzzy number of Rn. So, A, K, ε, β etc. all represent
fuzzy numbers of Rn for some n. We write µA(t), a number in [0, 1], for the membership function of A
evaluated at t ∈ Rn. An α-cut of A is always a closed and bounded interval written as A[α], is defined
as {t | µA(t) > α} for 0 < α < 1. We separately specify A[0] as the closure of the union of all the A[α] for
0 < α 6 1.

Definition 2.1 ([6]). Let RF =
{
A | A : R→ [0, 1], satisfies (1)-(4)

}
:

(1) ∀A ∈ RF, A is normal;
(2) ∀A ∈ RF, A is a fuzzy convex set;
(3) ∀A ∈ RF, A is upper semi-continuous on R;
(4) A[0] is a compact set.

Then RF is called fuzzy number space and ∀A ∈ RF, A is called a fuzzy number.

Definition 2.2 ([6, 16]). We represent an arbitrary fuzzy number by an ordered pair of functions A[α] =
[A1(α),A2(α)], α ∈ [0, 1], which satisfy the following requirements:

1. A1(α) is an increasing function over [0, 1];
2. A2(α) is a decreasing function on [0, 1];
3. A1(α) and A2(α) are bounded left continuous on (0, 1], and right continuous at α = 0;
4. A1(α) 6 A2(α), for 0 6 α 6 1.

Definition 2.3. For a fuzzy set A = (a1,a2,a3), (a1 < a2 < a3), A is called triangular fuzzy number with
peak a2, left width a2 − a1 > 0 and right width a3 − a2 > 0, if its membership function has the following
form:

µA(t) =


1 −

(a2 − t)

a2 − a1
, a1 6 t 6 a2,

1 −
(t− a2)

a3 − a2
, a2 6 t 6 a3,

0, otherwise.

Definition 2.4. For arbitrary fuzzy numbers A[α] =
[
a1(α),a2(α)

]
and B[α] =

[
b1(α),b2(α)

]
we have

algebraic operations as follows:

1. (A+B)[α] = [a1(α) + b1(α),a2(α) + b2(α)];
2. (A−B)[α] = [a1(α) − b2(α),a2(α) − b1(α)];

3. kA[α] =

{
[ka1(α),ka2(α)] k > 0,
[ka2(α),ka1(α)] k < 0;

4. (A.B)[α] = {min z, max z} with z =
{
a1(α).b1(α), a1(α).b2(α), a2(α).b1(α), a2(α).b2(α)

}
;

5. If 0 /∈ [b1(α),b2(α)], AB [α] = [(a1
b1
)(α), (a2

b2
)(α)], where

(
a1

b1
)(α) = min

{
a1(α)

b1(α)
,
a1(α)

b2(α)
,
a2(α)

b1(α)
,
a2(α)

b2(α)

}
, (

a2

b2
)(α) = max

{
a1(α)

b1(α)
,
a1(α)

b2(α)
,
a2(α)

b1(α)
,
a2(α)

b2(α)

}
.

We adopt the general definition of a fuzzy number given in [7–9].

3. Fuzzy Burgers equations

Consider the one-dimensional Burgers equation has the form [1]

Ut(t, x) + P(t, x, ε,U(t, x))Ux(t, x) +Q(x,ν)Uxx(t, x) = F(t, x,k), (3.1)

or
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Ut(t, x) + P(t, x, ε,U(t, x))Ux(t, x) = Q(x,ν)Uxx(t, x) + F(t, x,k), (3.2)

subject to certain initial and boundary conditions.
These initial and boundary conditions, in state one-dimensional, can come in a variety of forms such

as U(0, x) = c1 or U(0, x) = g1(x, c2) or U(M1, x) = g2(x, c3, c4), . . . . In this work the method is applied
for the Burgers equation (3.1). For Eq. (3.2), the same discussion can be made. In following lines, the
components of (3.1) are enumerated:

• I1 = [0,M1] and I2 = [M2,M3] are two intervals, which Mn1 (n1 = 2, 3) is negative or positive and
M1 > 0;

• F(t, x,k), U(t, x), P(t, x, ε,U(t, x)) and Q(x,ν) will be continuous functions for (t, x) ∈
∏2
j=1 Ij;

• Q(x,ν) has a finite number of roots each x ∈ I2;

• k =
(
k1, . . . ,kn

)
, c =

(
c1, . . . , cm

)
, ε =

(
ε1, . . . , εs

)
, and ν =

(
ν1, . . . ,νe

)
are vectors of constants

with kj ∈ Jj, ci ∈ Li and εr ∈ Hr and νl ∈ Dl.

Assume that Eq. (3.1) has a solution

U(t, x) = G(t, x,k, c, ε,ν) (3.3)

for G and
Gt(t, x,k, c, ε,ν) + P(ε,G(t, x,k, c, ε,ν))Gx(t, x,k, c, ε,ν) +Q(x,ν)Gxx(t, x,k, c, ε,ν)

are continuous with (t, x) ∈
2∏
j=1

Ij, k ∈ J =
n∏
j=1

Jj, c ∈ L =

m∏
i=1

Li, ε ∈ H =

s∏
r=1

Hr and ν ∈ D =

e∏
l=1

Dl.

Suppose the constants kj, ci ,εr and νl are imprecise in their values. We will model this uncertainty
by substituting triangular fuzzy numbers for the kj, ci , εr and νl. If we fuzzify (3.1), then we obtain the
fuzzy Burgers equation. Using the extension principle, we compute F, P, and Q from F, P, and Q, where
F(t, x,K) has K = (k1, . . . ,kn) and P(ε,U) has ε = (ε1, . . . , εs) and Q(ν) a ν = (ν1, . . . ,νe) for kj, εr and βl
triangular fuzzy numbers in Jj (0 6 j 6 n), Hr (0 6 r 6 s) and Dl (0 6 l 6 e).

The function U is changed to U where U :

2∏
j=1

Ij → RF. That is, U(t, x) is a fuzzy function. The fuzzy

Burgers equation is

Ut(t, x) + P(ε,U(t, x))Ux(t, x) +Q(ν)Uxx(t, x) = F(t, x,K), (3.4)

subject to certain initial and boundary conditions. The initial and boundary conditions can be of the form

U(0, x) = C1 or U(0, x) = g1(x,C2) or U(M1, x) = g2(x,C3,C4).

The gj is the fuzzification gi via extension principle. Then, we wish to solve the problem given in (3.4).
Finally, we fuzzify G in (3.3).

Let Z(t, x) = G(t, x,K,C, ε,β) where Z is computed using the extension principal and is a fuzzy
solution. In Section 5, we will discuss the concept solution with the same strategy as Buckley-Feuring for
fuzzy Burgers equation.

Let

K[α] =

n∏
j=1

Kj[α], ε[α] =
s∏
r=1

εr[α], C[α] =
m∏
i=1

Ci[α], and ν[α] =
e∏
l=1

νl[α].
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4. The variational iteration method

To illustrate the basic concepts of VIM, consider the following general nonlinear partial differential
equation: {

LU(t, x) + RU(t, x) +NU(t, x) = F(t, x,k),
U(t, 0) = g(t),

where L = ∂
∂t , R is a linear operator which has partial derivatives with respect to x, N is a nonlinear

operator, also F(t, x,k) is the source non-homogeneous term. According to the VIM [20, 21], we can
construct the following iteration formula:

Un+1(t, x) = Un(t, x) +
∫t

0
λ{LUn + RŨn +NŨn − F(s, x,k)}ds, (4.1)

where λ is general Lagrange multiplier [14], which can be identified optimally via the variational theory
[15, 20], RŨn andNŨn are considered as restricted variation, i.e. δRŨn = 0, δNŨn = 0. First, it is required
to determine the Lagrange multipliers λ that will be identified optimally via integration by parts. The
approximations Un+1,n > 0, calculate variation with respect to un, the following stationary conditions
are obtained:

λ
′
(s) = 0, 1 + λ(s)|s=t = 0.

So, the Lagrange multiplier is λ = −1. Submitting the results into (4.1) leads to the following iteration
formula

Un+1(t, x) = Un(t, x) −
∫t

0
{LUn + RUn +NUn − F(s, x,k)}ds. (4.2)

The second term on the right is called the correction term (4.2) can be solved iteratively using U0(t, x) =
g(x) as an initial approximation. Also the VIM used for system of linear and nonlinear partial differential
equation in [20] can be handled to obtain Seikkala solution.

5. Buckley-Feuring solution (BFS) and Seikkala solution (SS)

Buckley-Feuring first presented the BFS in [3, 4]. They define for all t, x and α ∈ [0, 1],

Z(t, x)[α] =
[
z1(t, x,α), z2(t, x,α)

]
, F

(
t, x,k

)
[α] =

[
F1(t, x,α), F2(t, x,α)

]
,

and to check (3.4) we must compute P
(
t, x, ε,Z

)
and Q(x,ν).

Let W = K[α]×C[α]× ε[α]× ν[α]. By definition

z1(t, x,α) = min
{
G(t, x,k, c, ε,ν) : (k, c, ε,ν) ∈W

}
, (5.1)

z2(t, x,α) = max
{
G(t, x,k, c, ε,ν) : (k, c, ε,ν) ∈W

}
, (5.2)

F1(t, x,α) = min
{
F(t, x,k) : k ∈ K[α]

}
, (5.3)

F2(t, x,α) = max
{
F(t, x,k) : k ∈ K[α]

}
, (5.4)

∀(t, x) ∈
∏2
j=1 Ij and α ∈ [0, 1]. The α-cuts of Q(x,ν) can be found as follows: ∀α ∈ [0, 1]

Q(x,ν)[α] =
[
Q1(x,α),Q2(x,α)

]
, Q1(x,α) = min {Q(x,ν)| ν ∈ ν[α]} , Q2(x,α) = max {Q(x,ν)| ν ∈ ν[α]} , (5.5)
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∀x ∈ I2 and α ∈ [0, 1]. Now for Z(t, x) to be a solution to the fuzzy initial value problem we need that
∂
∂tZ(t, x),

∂
∂xZ(t, x) and ∂2

∂x2Z(t, x) exist but also (3.4) must hold. To check (3.4) we must first compute
P(t, x, ε,Z). α-cuts of P(t, x, ε,Z) can be found as follows:

P(t, x, ε,Z)[α] =
[
P1(t, x,α),P2(t, x,α)

]
with

P1(t, x,α) = min
{
P(t, x, ε, z)| ε ∈ ε[α], z ∈ Z(t, x)[α]

}
,

P2(t, x,α) = max
{
P(t, x, ε, z)| ε ∈ ε[α], z ∈ Z(t, x)[α]

}
,

(5.6)

∀(t, x) ∈
∏2
j=1 Ij and α ∈ [0, 1].

Assume that P(t, x, ε, z) > 0, Q(x,ν) > 0 and the zi(t, x,α) i = 1, 2, has continuous partial derivatives
so

(zi)t + Pi(t, x,α)(zi)x +Qi(x,α)(zi)xx

is continuous for all t, x ∈
∏2
j=1 Ij and all α ∈ [0, 1]. Define

Γ(t, x,α) =
[
(z1)t + P1(t, x,α)(z1)x +Q1(x,α)(z1)xx, (z2)t + P2(t, x,α)(z2)x +Q2(x,α)(z2)xx

]
for all (t, x) ∈

∏2
j=1 Ij and all α. If for each fixed (t, x) ∈

∏2
j=1 Ij, Γ(t, x,α) defines the α-cut of a fuzzy

number, then will be said that Z(t, x) is differentiable and is written as

Zt[α] + P(t, x, ε,Z)[α]Zx[α] +Q(x,ν)[α]Zxx[α] = Γ(t, x,α)

for all (t, x) ∈
∏2
j=1 Ij and all α.

Sufficient conditions for Γ(t, x,α) to define α-cut of a fuzzy number are [7]:

(i) (z1)t(t, x,α) + P1(t, x,α)(z1)x(t, x,α) +Q1(x,α)(z1)xx(t, x,α) is an increasing function of α for each
(t, x) ∈

∏2
j=1 Ij;

(ii) (z2)t(t, x,α) + P2(t, x,α)(z2)x(t, x,α) +Q2(x,α)(z2)xx(t, x,α) is a decreasing function of α for each
(t, x) ∈

∏2
j=1 Ij; and

(iii) for (t, x) ∈
∏2
j=1 Ij,(
z1
)
t
(t, x, 1) + P1(t, x, 1)

(
z1
)
x
(t, x, 1) +Q1(x, 1)

(
z1
)
xx

(t, x, 1)

6
(
z2
)
t
(t, x, 1) + P2(t, x, 1)

(
z2
)
x
(t, x, 1) +Q2(x, 1)

(
z2
)
xx

(t, x, 1).

Now we can assume that the zi(t, x,α) have continuous partial derivatives, so

(zi)t + Pi(t, x,α)(zi)x +Qi(x,α)(zi)xx

is continuous on
∏2
j=1 Ij × [0, 1] for i = 1, 2. Hence, if conditions (i)-(iii) above hold, Z(t, x) is differen-

tiable.
Z(t, x) will be a BFS of the fuzzy Burgers equation if,

(a) Z(t, x) is differentiable;
(b) (3.4) holds for U(t, x) = Z(t, x);
(c) Z(t, x) satisfies the initial and boundary conditions.
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Since there is no specified particular initial and boundary conditions, then only is checked if (3.4) holds.
We will only say that Z(t, x) is a BFS (without the initial and boundary conditions) if Z(t, x) is differ-

entiable and
(Z)t + P(t, x, ε,Z)(Z)x +Q(x,ν)(Z)xx = F(t, x,k)

or the following equations must hold

(z1)t + P1(t, x,α)(z1)x +Q1(x,α)(z1)xx = F1(t, x,α), (5.7)
(z2)t + P2(t, x,α)(z2)x +Q2(x,α)(z2)xx = F2(t, x,α), (5.8)

for all (t, x) ∈
∏2
j=1 Ij and all α ∈ [0, 1]. If Z(t, x) is a BFS and it satisfies the initial and boundary

conditions we will say that Z(t, x) is a BFS satisfying the initial and boundary conditions. If Z(t, x) is not
a BFS, then we will consider the SS. At the end of this section we will present a sufficient condition for
the existence of the BFS, but now let us define the SS [18]. Let

U(t, x)[α] =
[
u1(t, x,α),u2(t, x,α)

]
.

Consider the system of Burgers equations

(u1)t + P1(t, x,α)(u1)x +Q1(x,α)(u1)xx = F1(t, x,α), (5.9)
(u2)t + P2(t, x,α)(u2)x +Q2(x,α)(u2)xx = F2(t, x,α), (5.10)

for all (t, x) ∈
∏2
j=1 Ij and α ∈ [0, 1]. We append to Eqs. (5.9) and (5.10) any initial and boundary

conditions. For example, if they were U(0, x) = C, then we add

u1(0, x,α) = c1(α), u2(0, x,α) = c2(α),

where C[α] =
[
c1(α), c2(α)

]
. Let ui(t, x,α) i = 1, 2 solve Eqs. (5.9) and (5.10) plus initial and boundary

conditions. If [
u1(t, x,α),u2(t, x,α)

]
defines the α-cut of a fuzzy number for all (t, x) ∈

∏2
j=1 Ij, then U(t, x) is the SS. Clearly if the BFS

satisfying the boundary conditions is Z(t, x), then Z(t, x) is also the SS, see [5, 17, Theorem 5.2]. As we
shall see the SS can exist when the BFS fails to exist.

Now we will present a sufficient condition for the BFS to exist such as Buckley and Feuring. Since
there are such a variety of possible initial and boundary conditions, so we will omit them from the
following theorem. One must separately check out the initial and boundary conditions. So, we will omit
the constants ci, 1 6 i 6 m, from the problem. Therefore, (3.3) becomes U(t, x) = G(t, x,k, ε,ν), so

Z(t, x) = G
(
t, x,K, ε,ν

)
.

Theorem 5.1. Assume Z(t, x) is differentiable.

(a) if

P(t, x, εi, z) > 0,
∂P

∂z
> 0 and

∂P

∂εi

∂G

∂εi
> 0, t, x ∈ I1 × I2 for i = 1, 2, . . . ,m, (5.11)

and if

Q(x,νl) > 0 and
∂Q

∂νl

∂G

∂νl
> 0, x ∈ I2 for l = 1, 2, . . . , e, (5.12)

and if
∂G

∂kj

∂F

∂kj
> 0 for j = 1, 2, . . . ,n, (5.13)

then BFS = Z(t, x).
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(b) If relations (5.11) does not hold for some i or relation (5.12) does not hold for some l, or relation (5.13) does
not hold for some j, then Z(t, x) is not a BFS.

Proof.

(a) For simplicity assume kj = k, εi = ε , νl = ν and ∂G
∂k < 0, ∂F∂k < 0, ∂P∂ε > 0, ∂G∂ε > 0, ∂Q∂ν < 0 and

∂G
∂ν < 0. The proof for ∂G∂k > 0, ∂F∂k > 0, ∂P∂ε < 0, ∂G∂ε < 0, ∂Q∂ν > 0 and ∂G

∂ν > 0 is similar and omitted. Since
∂G
∂k < 0, ∂G∂ε > 0 and ∂G

∂ν < 0, then from (5.1) and (5.2) we have

z1(t, x,α) = G (t, x,k2(α), ε1(α),ν2(α)) , z2(t, x,α) = G (t, x,k1(α), ε2(α),ν1(α)) ,

from (5.3), (5.4), and ∂F
∂k < 0 we have

F1(t, x,α) = F (t, x,k2(α)) , F2(t, x,α) = F (t, x,k1(α)) ,

since (5.6), ∂P∂ε > 0 and ∂P
∂z > 0 we have

P1(t, x,α) = P (x, ε1(α), z1(t, x,α)) , P2(t, x,α) = P (x, ε2(α), z2(t, x,α)) ,

from (5.5) and ∂Q
∂ν < 0 we have

Q1(x,α) = Q (x,ν2(α)) , Q2(x,α) = Q (x,ν1(α)) ,

for all α ∈ [0, 1], where

K[α] =
[
k1(α),k2(α)

]
, ε[α] =

[
ε1(α), ε2(α)

]
, and ν[α] =

[
ν1(α),ν2(α)

]
.

Now G(t, x,k, ε,ν) solves (3.2), which means

Gt + P(t, x, ε,G)Gx +Q(x,ν)Gxx = F(t, x,k)

for all (t, x) ∈
2∏
j=1

Ij, k ∈ J, ε ∈ H and ν ∈ D.

Suppose Z(t, x) is differentiable and P(t, x, ε, z) > 0 and Q(x,ν) > 0, so

∂tz1(t, x,α) + P1(t, x,α)∂xz1(t, x,α) +Q1(x,α)∂xxz1(t, x,α) = F1(t, x,α),
∂tz2(t, x,α) + P2(t, x,α)∂xz2(t, x,α) +Q2(x,α)∂xxz2(t, x,α) = F2(t, x,α),

for all (t, x) ∈
2∏
j=1

Ij and α ∈ [0, 1].

Hence, (5.7) and (5.8) hold and Z(t, x) is a BFS.

(b) Now consider the situation where (5.11) or (5.12) or (5.13) does not hold.
Let us only look at one case where ∂Q∂ν < 0

(
assume ∂G∂k > 0, ∂F∂k > 0, ∂G∂ε > 0, ∂P∂ε > 0, ∂P∂z > 0 and ∂G

∂ν > 0,
P(x, ε, z) > 0 and Q(x,ν) > 0

)
. Then we have

z1(t, x,α) = G (t, x,k1(α), ε1(α),ν1(α)) ,
z2(t, x,α) = G (t, x,k2(α), ε2(α),ν2(α)) ,
F1(t, x,α) = F (t, x,k1(α)) , F2(t, x,α) = F (t, x,k2(α)) ,
P1(t, x,α) = P (t, x, ε1(α), z1(t, x,α)) , P2(t, x,α) = P (t, x, ε2(α), z2(t, x,α)) ,
Q1(x,α) = Q (x,ν2(α)) , Q2(x,α) = Q (x,ν1(α)) ,
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then we have

∂tz1(t, x,α) + P1(t, x,α)∂xz1(t, x,α) +Q1(x,α)∂xxz1(t, x,α) = F1(t, x,α),
∂tz2(t, x,α) + P2(t, x,α)∂xz2(t, x,α) +Q2(x,α)∂xxz2(t, x,α) = F2(t, x,α),

which is not true, because

Gt

(
t, x,k1(α), ε1(α),ν1(α)

)
+ P
(
t, x, ε1(α),G

(
t, x,k1(α), ε1(α),ν1(α)

))
Gx

(
t, x,k1(α), ε1(α),ν1(α)

)
+Q

(
x,ν2(α)

)
Gxx

(
t, x,k1(α), ε1(α),ν1(α)

)
= F
(
t, x,k1(α)

)
,

Gt

(
t, x,k2(α), ε2(α),ν2(α)

)
+ P
(
t, x, ε1(α),G

(
t, x,k1(α), ε2(α),ν2(α)

))
Gxx

(
t, x,k2(α), ε2(α),ν2(α)

)
+Q

(
x,ν1(α)

)
Gxx

(
t, x,k1(α), ε1(α),ν2(α)

)
= F
(
t, x,k2(α)

)
.

Lemma 5.2. Assume Z(t, x) is differentiable.

(a) if

P(t, x, εi, z) > 0,
∂P

∂z
> 0, and

∂P

∂εi

∂G

∂εi
> 0, t, x ∈ I1 × I2 for i = 1, 2, . . . ,m, (5.14)

and if
∂G

∂kj

∂F

∂kj
> 0, for j = 1, 2, . . . ,n, (5.15)

then BFS = Z(t, x).

(b) If relations (5.14) does not hold for some i, or relation (5.15) does not hold for some j, then Z(t, x) is not a
BFS.

6. Examples

We consider the following examples from [1, 2, 19] and we added fuzzy parameters.

Example 6.1. We first consider the one-dimensional Burgers equation with variable coefficients as

Ut(t, x) + εU(t, x)Ux(t, x) = νUxx(t, x) + k (6.1)

with the initial conditions
U(0, x) =

c

2

(
1 − tanh

[cx
4

])
,

where ε = ν x ∈ [0, 1], t > 0, k ∈]0, J], ε ∈]0, 1] and c ∈ [0,L[ are constants.
To solve Eq (6.1) by means of the VIM, substitute in Eq. (4.2) by

RUn = −ε(Un)xx, NUn = εUn(Un)x,

and f(t, x,k) = k and obtain the following variational iteration formula:

Un+1(t, x) = Un(t, x) −
∫t

0
{(Un(s, x))s + εUn(s, x)(Un(s, x))x − ε(Un(s, x))xx − k}ds. (6.2)

Using (6.2), the approximate solutions Un(t, x) are obtained iteratively by substituting:

U0(t, x) = U(0, x) =
c

2

(
1 − tanh

[
c
x

4

])
,
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U1(t, x) = U0(t, x) + ε
c3

16
sech2

[
c
x

4

]
t+ kt,

U2(t, x) = U1(t, x) + ε2 c
5

128
tanh

[
c
x

4

]
sech2

[
c
x

4

]
t2 + εk

c2

16
sech2

[
c
x

4

]
t2 + ε3 c7

1536
tanh

[
c
x

4

]
sech4

[
c
x

4

]
t3,

...

and so on. The approximate solution takes the form U(t, x) ' Un(t, x), where n is the final step, which
gives the exact solution of Eq. (6.1) takes the form

U(t, x) =
c

2

(
1 − tanh

[
c

4

(
x−

(ε
2
)(
ct+ kt2))])+ kt.

Now we fuzzify F(t, x,k), Q(x, ε), and P(t, x, ε,G),

G(t, x,k, c, ε) =
c

2

(
1 − tanh

[
c

4

(
x−

(ε
2
)(
ct+ kt2))])+ kt.

Clearly
F(t, x,K) = K, Q(x, ε) = ε,

so that
F1(t, x,α) = k1(α), F2(t, x,α) = k2(α), Q1(x,α) = ε1(α), Q2(x,α) = ε2(α).

Also

G(t, x,K,C, ε) =
C

2

(
1 − tanh

[
C

4

(
x−

(ε
2
)(
Ct+Kt2))])+Kt,

therefore

zi(t, x,α) =
ci
2

(
1 − tanh

[
ci
4

(
x−

(εi
2
)(
cit+ kit

2))])+ kit,

for i = 1, 2 and C > 0, i.e., (C = (c1, c2, c3) also with c1 > 0), K[α] = [k1(α),k2(α)], C[α] = [c1(α), c2(α)],
and ε[α] = [ε1(α), ε2(α)].

Z(t, x) is differentiable because (zi(t, x,α))t + εi(α)zi(t, x,α)(zi(t, x,α))x − εi(α)(zi(t, x,α))xx for i =
1, 2 are α-cuts of K, i.e., α-cuts of a fuzzy number. Due to

P(t, x, ε, z) > 0,
∂P

∂z
> 0,

∂G

∂k
=
c2

16
ε sech2

(c
4
(
x−

ε

2
(ct+ kt2)

))
t2 + t > 0,

∂F

∂k
> 0,

∂P

∂ε
= z > 0,

∂G

∂ε
=
c2

16
sech2

(c
4
(
x−

ε

2
(ct+ kt2)

))(
ct+ kt2) > 0.

That is, (Z)t + εZ(Z)x = ε(Z)xx + K, a fuzzy number. So Theorem 5.1 implies the result that Z(t, x) is a
BFS, see Fig. 1, 2, and Table 1. We easily see that

zi(0, x,α) =
ci
2

(
1 − tanh

[
ci
x

4
])

for i = 1, 2, so Z(t, x) also satisfies the initial condition. The BFS that satisfies the initial condition may be
written as

Z(t, x) =
C

2

(
1 − tanh

[
C

4

(
x−

(ε
2
)(
Ct+Kt2))])+Kt

for all t > 0, x ∈ [0, 1].
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Table 1: Comparison of the solution u(t, x) with u1(t, x,α) and u2(t, x,α) for α = 0, ε = 1, c = 4 and k = 2.
u(t, x) u1(t, x,α) u2(t, x,α)

t�x 0.0099 0.0198 0.0297 0.0099 0.0198 0.0297 0.0099 0.0198 0.0297
0 2.1196 2.2404 2.3623 1.5198 1.5396 1.5594 2.8709 3.2391 3.5948

0.0198 2.0998 2.207 2.3427 1.5087 1.5285 1.5483 2.8404 3.2100 3.5679
0.0396 2.080 2.201 2.3232 1.4975 1.5173 1.5371 2.8098 3.1512 3.5407

Figure 1: The surfaces shows the fuzzy solution for α = 0 for (6.1), when c = 4, k = 2 and ε = 1.

Figure 2: The surfaces shows the fuzzy solution for α ∈ [0, 1] for (6.1), when c = 4, k = 2 and ε = 1.

Example 6.2. We consider a model partial differential equation described by

Ut(t, x) − εU(t, x)Ux(t, x) = 2k (6.3)

with the initial conditions

U(0, x) =
x

2ε
,

where x ∈ [0, 1], t > 0, k ∈]0, 2], ε ∈ [−2, 0[ are constants.
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Similarly we can establish an iteration formula in the form

Un+1(t, x) = Un(t, x) −
∫t

0

{
(Un(s, x))s − εUn(s, x)(Un(s, x))x − 2k

}
ds. (6.4)

We begin with an initial arbitrary approximation:

U0(t, x) = U(0, x) =
x

2ε

and using the iteration formula (6.4), we obtain the following successive approximations

U1(t, x) =
x

2ε
+
x

4ε
t+ 2kt,

U2(t, x) =
x

2ε
+
x

4ε
t+ 2kt+

x

8ε
t2 +

k

2
t2 +

k

4
t3 +

x

48ε
t3 +

k

2
t+

k

6
t3,

U3(t, x) =
x

2ε
+
x

4ε
t+ 2kt+

x

8ε
t2 +

k

2
t2 +

k

4
t3 +

11k
96
t4

+
x

16ε
t3 +

x

48ε
t4 +

x

192ε
t5 +

x

1152ε
t6 +

x

16128ε
t7 +

7k
240

t5 +
k

192
t6 +

k

2016
t7.

This procedure can, in principle, be continued as far as desired, and the approximation will converge to
its exact solution

U(t, x) = (kt2 − 4kt−
x

ε
)/(t− 2).

Since P(t, x, ε,G) > 0, for t ∈]0, 2[∪]4,∞[, ∂P
∂G > 0, ∂G

∂k = (t2 − 4t)/(t− 2) > 0, ∂F
∂k > 0, ∂P

∂ε < 0, ∂G
∂ε =

x/ε2(t− 2) < 0 for t ∈]0, 2[. That is, (Z)t − εZ(Z)x = 2K, a fuzzy number.
So Lemma 5.2 implies the result that Z(t, x) is a BFS see Figs. 3, 5, and Table 2. We easily see that

zi(0, x,α) =
x

2εi(α)

for i = 1, 2, so Z(t, x) also satisfies the initial condition. The BFS that satisfies the initial condition may be
written as

Z(t, x) = (Kt2 − 4Kt−
x

ε
)/(t− 2)

for all t ∈]0, 2[, x ∈ [0, 1].
∂P
∂ε < 0, ∂G

∂ε > 0 for t ∈]4,∞[ or P(t, x, ε,G) < 0, for t ∈]2, 4[, then there is no BFS Lemma 5.2, see Fig.
4 and Table 3. We proceed to look for a SS. We must solve for t ∈]4,∞[,

(u1(t, x,α))t − ε2(α)u1(t, x,α) (u1(t, x,α))x = 2k1(α),
(u2(t, x,α))t − ε1(α)u2(t, x,α) (u2(t, x,α))x = 2k2(α),

subject to ui(0, x,α) = ci(α)x/2εi(α) for i = 1, 2 and

K[α] =
[
k1(α),k2(α)

]
and ε[α] =

[
ε1(α), ε2(α)

]
.

By VIM, the solution is

u1(t, x,α) =
(
k1(α)t

2 − 4k1(α)t−
x

ε2(α)

)
/(t− 2), u2(t, x,α) =

(
k2(α)t

2 − 4k2(α)t−
x

ε1(α)

)
/(t− 2).

Now we show
[
u1(t, x,α),u2(t, x,α)

]
defines α-cut of a fuzzy number.



A. Harir, S. Melliani , L. S. Chadli, J. Math. Computer Sci., 21 (2020), 136–149 147

Thus we only need to check if ∂u1
∂α > 0 and ∂u2

∂α < 0. Since ui(t, x,α) are continuous and u1(t, x, 1) =
u2(t, x, 1), there is a region R contained in ]4,∞[×[0, 1] for which the SS exists and in ]4,∞[×[0, 1] − R
there may be no SS.

Since K and ε are triangular fuzzy numbers, hence, we pick simple fuzzy parameter so that k
′
1(α) =

ε
′
1(α) = λ and k

′
2(α) = ε

′
2(α) = −λ. Then, for the SS we need

∂u1

∂α
= λ
(
t2 − 4t− x/(ε2)

2
)
/(t− 2) > 0,

∂u2

∂α
= −λ

(
t2 − 4t− x/(ε1)

2
)
/(t− 2) < 0.

Therefore inequalities hold if
t2 − 4t− x/(ε1)

2 > 0 (6.5)

for t ∈]4,∞[, x ∈ [0, 1]. The inequality (6.5) holds if

0 6 x 6 1, t > 2 +

√
4 +

x

(ε1)2 for all α ∈ [0, 1].

So under the above assumptions we may choose

R =
{
(t, x)| 0 6 x 6 1, t > 2 +

√
4 +

x

(ε1)2 for all α ∈ [0, 1]
}

,

and the SS exists on R in form Eqs (6.6) see Fig. 4.

U(t, x) =
(
Kt2 − 4Kt−

x

ε

)
/(t− 2) (6.6)

for all t ∈]4,∞[, x ∈ [0, 1].

Table 2: Comparison of the solution u(t, x) with u1(t, x,α) and u2(t, x,α) for α = 0 t ∈ [0, 2[, ε = −1.
u(t, x) u1(t, x,α) u2(t, x,α)

t�x 0.0495 0.1980 0.3465 0.0495 0.1980 0.3465 0.0495 0.1980 0.3465
0 0.2005 0.8356 1.5314 0.1003 0.4178 0.7657 0.3008 1.2534 2.2971

0.0099 0.1980 0.8329 1.5284 0.0986 0.4160 0.7637 0.2957 1.2479 2.2911
0.0198 0.1955 0.8301 1.5254 0.0969 0.4141 0.7617 0.2906 1.2424 2.2851

Figure 3: The surfaces shows the fuzzy solution for α = 0 for (6.3), when k = 2 and ε = −1.
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Table 3: Comparison of the solution u(t, x) with u1(t, x,α) and u2(t, x,α) for α = 0 t ∈]2, 5], ε = −1.
u(t, x) u1(t, x,α) u2(t, x,α)

t�x 0.0495 0.1980 0.3465 0.0495 0.1980 0.3465 0.0495 0.1980 0.3465
2.0297 -264.04 -100.59 -61.70 -134.08 -50.21 -30.79 -402.24 -150.63 -92.46
2.0792 -265.94 -99.59 -61.12 -132.41 -49.58 -30.43 -397.24 -148.76 -91.30
2.1287 -263.44 -98.65 -60.55 -130.74 -48.96 -30.05 -392.24 -146.88 -90.15

Figure 4: The surfaces shows the fuzzy solution for α = 0, t ∈ [0, 5] \ {2} for (6.3), when k = 2 and ε = −1.

Figure 5: The surfaces shows the fuzzy solution for α ∈ [0, 1] for (6.3), when k = 2 and ε = −1.

7. Conclusion

The proposed strategy in this paper may be useful the coefficients, initial values and forcing terms
are fuzzy, for solving burgers equation. This strategy consists of two types of solutions: Buckley-Feuring
solution and Seikkala solution, using the VIM. And has been successfully applied to new theorem. we
proved in the first if BFsolution exists because if it does it is the same as the S-solution as shown in
Fig. 1 (for α = 0), Fig. 2 (∀α ∈ [0, 1]). However, if the BF-solution fails to exist as shown in Fig. 3
(for α = 0, t ∈]2, 5], x ∈ [0, 1]) we check if the S-solution exists as shown in Fig. 4 (for α = 0) and Fig. 5
(∀α ∈ [0, 1], and t ∈ [0, 2[, x ∈ [0, 1]). When the S-solution fails to exist we offer no solution to the fuzzy
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burger’s equation.
For further research we propose the study for fuzzy Burgers equations, by the using the conformable

differentiability concept [11, 12]. In addition, we propose to extend the results of the present paper and
to combine them with the results in [10] for Hybrid fuzzy differential equations.
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