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Abstract

In this paper, we show the stability of a system for Planar Vertical Take-Off and Landing (PVTOL) aircraft on time scales by
using a saturation function. This control technique on time scales is new and has successful results. Simulation results are also
shown to validate our theoretical claims in some well-known time scales.
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1. Introduction

Flight control is a very important control problem that appears in many applications such as quadro-
tors, helicopters, spacecraft, aircraft and so on. Even if it is interesting to consider a simple aircraft, the
complete dynamics of that aircraft might be very complex for the control purposes. In this article, we
focus on PVTOL aircraft, shown in Figure 1, is the Bell X-22A VjSTOL and the last aircraft to be manufac-
tured in New York, see [8]. There are several methods to control such a system in the literature, e.g., see
[9, 13, 14].

Figure 1: Bell X-22A VjSTOL.
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A time scale, denoted by T, is a nonempty closed subset of the real numbers, which was defined by
Stefan Hilger in his PhD thesis in 1988, see [10]. His main purpose was to unify the results for differential
and difference equations in one comprehensive theory and extend them for all other time scales. For
example, when the domain is the set of real numbers R, then the results are valid for ordinary differential
equations and derivative is defined by f ′(t) = lim

h→0

f(t+h)−f(t)
h . When the domain is the set of integers Z,

then the results are valid for difference equations and derivative is defined by ∆f(t) = f(t+1)− f(t), where
∆ is called difference operator. For general time scales, we use the notation f∆ and call it first delta-derivative
of f. Besides R and Z, some other well-known time scales are qN0 = {1,q,q2, · · · } for q > 1, hZ for h > 0,

N
1
2
0 = {n

1
2 n ∈ N0} and so on. For more details, interested readers can read the books [3, 4] written by

Bohner and Peterson in 2001 and 2003, respectively. In addition to that, for more information about the
control theory and oscillation theory (which is very important for control), one can see [1, 17–19].

This article considers the following system
x∆∆(t) = −u1(t) sin θ(t),
y∆∆(t) = u1(t) cos θ(t) − 1,
θ∆∆(t) = u2(t),

(1.1)

where x,y represent horizontal and vertical positions, and θ is the roll angle that the aircraft makes with
the horizon and t ∈ T. Here f∆∆ represents the second order delta derivative of f. The control inputs u1 and
u2 are respectively the thrust (directed out the bottom of the aircraft) and the angular acceleration (the
rolling moment) and -1 is the normalized gravitational acceleration. The control strategy for system (1.1)
is the saturation function Sε : R→ R defined by

Sε(f(t)) =


ε, f(t) > ε,
f(t), −ε 6 f(t) 6 ε,
−ε, f(t) < −ε,

(1.2)

where f : T→ R, ε > 0 and t ∈ T. In many cases, saturation functions are used to limit the input signals
to avoid damaging the actuators. When the input exceeds the limit, the output becomes constant.

This article is organized as follows. In Section 2, we give the basics of the time scale theory, which are
used in the proofs of our main results. Section 3 shows our main results about the stability of system (1.1)
and we provide simulation results for some certain time scales in Section 4. Finally, we have a conclusion
in the last section.

2. Time scale preliminaries

2.1. Basics of the Time Scale Theory
In this section, basic definitions and theorems are given in order for readers to understand the time

scale theory. For all these definitions and preliminaries, we refer [3] to readers.

Definition 2.1. For t ∈ T, the forward jump operator σ : T→ T is given by

σ(t) := inf{s ∈ T : s > t} for all t ∈ T,

while the backward jump operator ρ : T→ T is defined by

ρ(t) := sup{s ∈ T : s < t} for all t ∈ T.

Finally the graininess function µ : T→ [0,∞) is given by µ(t) := σ(t) − t, for all t ∈ T.

If sup T <∞, then Tκ = T\(ρ(sup T), sup T], and Tκ = T if sup T =∞. Suppose that f : T→ R is a
function. Then fσ : T→ R is defined by fσ(t) = f(σ(t)) for all t ∈ T.
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Definition 2.2. For any ε, if there exists a δ > 0 such that

|fσ(t) − f(s) − f∆(t)(σ(t) − s)| 6 ε|σ(t) − s|

for all s ∈ (t − δ, t + δ) ∩ T, then f is called delta (or Hilger) differentiable on Tκ and f∆ is called delta
derivative of f.

For the sake of the paper, when we say differentiable, we mean delta-differentiable throughout the
whole article.

Theorem 2.3 ([3, Theorem 1.16]). Let f : T→ R be a function with t ∈ Tκ. Then

a. if f is differentiable at t, f is continuous at t;
b. if f is continuous at t and t is right-scattered, then f is differentiable at t and

f∆(t) =
fσ(t) − f(t)

µ(t)
;

c. if t is right dense, then f is differentiable at t iff

f∆(t) = lim
s→t

f(t) − f(s)

t− s

exists as a finite number;
d. if f is differentiable at t, then

fσ(t) = f(t) + µ(t)f∆(t). (2.1)

Equation (2.1) is called the simple useful formula and we use it on the Lyapunov function to show the
stability of system (1.1).

Theorem 2.4 ([3, Theorem 1.20]). Let f,g : T→ R be differentiable at t ∈ Tκ. Then

a. the sum f+ g : T→ R is differentiable at t with

(f+ g)∆(t) = f∆(t) + g∆(t);

b. if fg : T→ R is differentiable at t, then

(fg)∆(t) = f∆(t)g(t) + fσ(t)g∆(t) = f(t)g∆(t) + f∆(t)gσ(t).

The following concepts must be introduced in order to define delta-integrable functions.

Definition 2.5 ([3, Definition 1.58]). f : T → R is called rd-continuous, if it is continuous at right dense
points in T and its left sided limits exist as a finite number at left dense points in T.

Theorem 2.6 ([3, Theorem 1.74]). Every rd-continuous function has an antiderivative. Moreover, F given by

F(t) =

∫t
t0

f(s)∆s for t ∈ T

is called an antiderivative of f.

Definition 2.7. A function p : T→ R is called regressive provided that

1 + µ(t)p(t) 6= 0 for all t ∈ Tκ.

The set of all regressive and rd-continuous functions is denoted by R = R(T; R). The set R+ of all
positively regressive function is defined by

R+ = {p ∈ R : 1 + µ(t)p(t) > 0 for all t ∈ Tκ}.
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Definition 2.8. If p ∈ R(T, R), then the exponential function ep(t, s) on time scales is defined by

ep(t, s) = exp
(∫t
s

Φµ(t)(p(τ))∆τ

)
,

where Φh(z) is the cylinder transformation given by

Φh(z) =

{
1
h log(1 + zh), if h 6= 0,
z, if h = 0.

Particularly if T = R then eλ(t, s) = eλ(t−s) while eλ(t, s) = (1 + λ)t−s when T = Z for a constant
λ ∈ R.

Now consider the system
ν∆(t) = Aν(t), (2.2)

where A is real constant n×n matrix.

Definition 2.9 ([3, Definition 5.5]). An n × n matrix-valued function A(t) on a time scale T is called
regressive provided I+ µ(t)A(t) is invertible for all t ∈ Tκ and we denote the regressitivity by A ∈ R.

The following lemma provides us a nice shortcut to determine the regresitivity of an n×n matrix A,
see [3, Section 5.1]

Lemma 2.10. An n× n matrix-valued function A(t) is regressive if and only if the eigenvalues λi(t) of A(t) are
regressive for all 1 6 i 6 n, i.e., 1 + µ(t)λi(t) 6= 0 for all t ∈ Tκ.

Finally, the following theorem shows us how to solve a linear dynamical system (2.2) on time scales
in case that A does not have n linearly independent eigenvectors.

Theorem 2.11 ([3, Theorem 5.35 (Putzer Algorithm)]). Let A ∈ R be a constant n× n matrix and t0 ∈ T. If
λ1, λ2, . . . , λn are the eigenvalues of A, then

eA(t, t0) =

n−1∑
i=0

ri+1(t)Pi,

where r(t) = [r1(t), r2(t), · · · , rn(t)]T is the solution of the initial value problem

r∆ =


λ1 0 0 · · · 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
...

. . . . . . . . . . . .
0 · · · 0 1 λn

 r, r(t0) =


1
0
0
...
0


and P-matrices P0,P1 · · · ,Pn are defined by P0 = I and Pk+1 = (A− λk+1I)Pk for 0 6 k 6 n− 1.

2.2. Stability theory on time scales
This section provides us the basic definitions and theorems for Lyapunov and other type of stabilities.

We use the conventions ~z = ~z(t) and V̇(t,~z) = [V(~z(t))]∆ throughout. Here, V : Rn → [0,∞) is called a
Lyapunov function defined as

V(~z) = V1(z1) + V2(z2) + V3(z3) + · · · ,

where each Vi : R→ R is continuously differentiable. We use chain and product rules in order to compute
V̇ . Even though the system is autonomous and V = V(~z), V̇ depends on t since the graininess function of
T is not necessarily constant. In order for the readers to understand the notion of stability on time scales,
we give the following definitions, see [2, 7, 11, 15, 20].
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Definition 2.12. A function φ : [0, r]→ [0,∞) is called a class of K if it is well-defined, continuous and strictly
increasing on [0, r] with φ(0) = 0.

Consider
~z∆ = f(t,~z), ~z(t0) = ~z0 t > t0, ~z ∈ D ⊂ Rn, (2.3)

where D is a compact set. In addition, it is assumed that f is continuous and that for system (2.3), the
conditions are satisfied under which its solution ~z = ~z(t, t0, ~z0) exists and and is unique for all t > t0 ∈ T.
Further, we assume f(t,~0) = ~0 ∈ D for all t ∈ T, t > t0 so that ~z = ~0 is a solution of equation (2.3).

Definition 2.13. The equilibrium solution ~z = ~0 of system (2.3) is called

(i) stable if for any ε > 0 and t0 ∈ T, there exists δ = δ(ε, t0) > 0 such that the condition ‖~z0‖ < δ

implies ‖~z(t, t0, ~z0)‖ < ε for all t ∈ T, t > t0;
(ii) attractive if

lim
t→∞ ‖~z(t, t0, ~z0)‖ = 0

holds for an initial condition ~z0 ∈ Rn;
(iii) asymptotically stable if it is stable and attractive;
(iv) exponentially stable if there exist constants α,d > 0 with −α ∈ R+ and K > 0 such that the condition

‖~z(t, t0, ~z0‖ 6 K(‖z0‖, t0) (e	α(t, t0))
d

holds for all t > t0 ∈ T, where ‖ · ‖ denotes the Euclidean norm on Rn, here K and α are the
so-called growth constants and 	α = −α

1+µ(t)α ;
(v) uniformly stable if for any ε > 0 there exists a δ = δ(ε) > 0, independent of t0, such that

‖~z0‖ < δ =⇒ ‖~z(t, t0, ~z0)‖ < ε, t ∈ T;

(vi) uniformly asymptotically stable if it is uniformly stable and there exists c > 0, independent of t0, such
that

‖~z0‖ < c =⇒ lim
t→∞ ‖~z(t, t0, ~z0)‖ = 0

uniformly in t0;
(vii) uniformly exponentially stable if it is exponentially stable and constant K can be chosen independently

of t0 ∈ T.

Notions of uniformity are only important for time-varying systems. Thus, for time-invariant systems,
stability implies uniform stability and asymptotic stability implies uniform asymptotic stability. In other
words, uniformity is a concept which guarantees that the equilibrium point is not losing stability, i.e.,
stability holds independently of t0 ∈ T, see [16, Section 4.4] and [12, Section 4.5] to distinguish the
definitions of stability and uniform stability.

Definition 2.14. A continuous function P : Rn → R with P(~0) = 0 is called

(i) positive definite (negative definite) on D if there exists a function φ ∈ K, such that φ(~|z|) 6 P(~z)(φ(~|z|) 6
−P(~z)) for ~z ∈ D;

(ii) positive semi-definite (negative semi-definite) on D if P(~z) > 0(P(~z) 6 0) for all ~z ∈ D.

Definition 2.15. A continuous function Q : [t0,∞)×Rn → R with Q(t, 0) = 0 is called

(i) positive definite (negative definite) on t0 ×D if there exists a function φ ∈ K such that φ(|~z|) 6 Q(t, x)
(φ(|~z|) 6 −Q(t, x)) for all t ∈ T, t > t0 and ~z ∈ D;

(ii) positive semi-definite (negative semi-definite) on t0 ×D if Q(t,~z) > 0 (Q(t, x) 6 0) for all t ∈ T, t > t0
and ~z ∈ D.
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The following theorem gives the stability criteria for equation (2.3) on time scales.

Theorem 2.16 ([11, Theorem 1]). If there exists a continuously differentiable positive definite function V in a
neighborhood of zero with V̇(t, x) negative semi-definite, then the equilibrium solution ~z = ~0 of equation (2.3) is
stable.

The following lemma provides us a criteria for uniform exponential stability of a linear system de-
pends only on the eigenvalues of its matrix, see [6, Theorem 3.2].

Lemma 2.17. Linear system (2.2) is uniformly exponentially stable if and only if x∆ = λx is uniformly exponen-
tially stable for λ ∈ spec(A), where spec(A) denotes the set of eigenvalues of a matrix A.

Throughout the paper, we assume that sup T = ∞ with a bounded graininess, i.e., lim sup
t>t0

µ(t) <

∞. Finally, the following lemma gives us the upper and lower exponential bounds for the circle minus
exponential function, see [5].

Lemma 2.18. Suppose lim sup
t>t0

µ(t) <∞ and α ∈ R+. Then

e−α(t−s) 6 e	α(t, s) 6 e−v(t, s) 6 e−v(t−s)

for all s, t ∈ T with t > s, where v ∈ R+ with −v ∈ R+
c (T, R) (R+

c (T, R) is the set of positively regressive
constants.)

3. Main results for stability

In this section, we provide our main results for asymptotic stability of system (1.1). Before the main
results, let us give the following lemma which helps us understand the procedure of the stability via the
saturation function (1.2).

3.1. Preliminary lemmas
Since we are dealing with long integral solutions, for simplicity, let

J1(t) =

∫t
t0

e−k1	−k2(τ, t0)

1 − µ(τ)k2
∆τ,

J2(t) =

∫t
t0

e−k2	−k3(τ, t0)

1 − µ(τ)k3
J1(τ)∆τ,

J3(t) =

∫t
t0

e−k3	−k4(τ, t0)

1 − µ(τ)k4
J2(τ)∆τ,

where −ki ∈ R+, k1 > k2 > k3 > k4 > 0 for i = 1, 2, 3, 4 and (p	 q)(t) = p(t)−q(t)
1+µ(t)q(t) , t ∈ Tκ. Throughout

the article, we assume that the integrals J1(t), J2(t) and J3(t) have finite limits as t → ∞. We use these
integrals for the solution of the system in the following lemma.

Lemma 3.1. Consider the following system
ξ∆1 (t) = k2ξ2(t) + k3ξ3(t) + k4ξ4(t) + u(t),
ξ∆2 (t) = k3ξ3(t) + k4ξ4(t) + u(t),
ξ∆3 (t) = k4ξ4(t) + u(t),
ξ∆4 (t) = u(t),

(3.1)

with the control input

u(t) = −k4S ε
k4
(ξ4) − k3S ε

2k3
(ξ3) − k2S ε

4k2
(ξ2) − k1S ε

8k1
(ξ1), (3.2)

where S is defined by (1.2), ki, ε > 0 and −ki ∈ R+ for i = 1, 2, 3, 4. Suppose also that µ(t) 6 k and t > t0, where



Ö. Öztürk, H. M. Güzey, J. Math. Computer Sci., 21 (2020), 198–212 204

k = min
{

16
225k4

, 8
49k3

, 4
9k2

, 9
10k1

}
. Then system (3.1) with (3.2) is uniformly exponentially stable and therefore

uniformly asymptotically stable.

Proof. First note that there is no singular solution of the second kind, i.e., there does not exist a finite
T > t0 such that

lim
t→T−

ξi(t) =∞
for T , t0 ∈ T since the control law (3.2) is bounded. Now, we start from the last equation of system (3.1).
By plugging (3.2) into the last equation of system (3.1), we have

ξ∆4 (t) = −k4S ε
k4
(ξ4(t)) − k3S ε

2k3
(ξ3(t)) − k2S ε

4k2
(ξ2(t)) − k1S ε

8k1
(ξ1(t)).

Define a Lyapunov function V4(t, ξ4) = ξ
2
4(t) for t ∈ T. Then by using the product rule on time scales and

the simple useful formula for all |ξ4(t)| >
ε
k4

, we get

V̇4 = ξ∆4 (t)(ξσ4 (t) + ξ4(t)) = 2ξ∆4 (t)ξ4(t) + µ(t)(ξ
∆
4 (t))2

6 2
(
−ε+

ε

2
+
ε

4
+
ε

8

)
|ξ4(t)|+ µ(t)

(
ε+

ε

2
+
ε

4
+
ε

8

)2

because k4S ε
k4
(ξ4(t)) · ξ4(t) = ε|ξ4(t)| for t ∈ T. Hence, since for |ξ4(t)| >

ε
k4

and µ(t) 6 16
225k4

, t ∈ T, we
have

V̇4 6 −
ε

4
|ξ4(t)|+ µ(t)

225
64
ε2 6 −ε2

(
1

4k4
− µ(t)

225
64

)
6 0.

It follows that V is negative semi definite for |ξ4(t)| >
ε
k4

and µ(t) 6 16
225k4

, t ∈ T. Therefore, there exists
a t1 > t0 such that |ξ4(t)| is bounded for all t > t1, i.e. |ξ4(t)| 6

ε
k4

. Then the controller u turns out to be

u(t) =− k4ξ4(t) − k3S ε
2k3

(ξ3(t)) − k2S ε
4k2

(ξ2(t)) − k1S ε
8k1

(ξ1(t)) (3.3)

for all t > t1 on time scales. Now by plugging (3.3) into the third equation of (3.1), we have

ξ∆3 (t) = −k3S ε
2k3

(ξ3(t)) − k2S ε
4k2

(ξ2(t)) − k1S ε
8k1

(ξ1(t)).

Define a Lyapunov function V3 as
V3(t, ξ3) = ξ

2
3(t), t > t1.

With the same procedure, we have

V̇3(t, ξ3) 6 −ε2
(

1
8k3

−
49
64
µ(t)

)
6 0

for |ξ3(t)| > ε
2k3

and µ(t) 6 8
49k3

, t > t1, i.e. V3 is negative semi definite. Therefore, there exists a t2 > t1
such that |ξ3(t)| 6 ε

2k3
for t > t2. Then the control input u and the second equation of system (3.1) end

up with

u(t) = −k4ξ4(t) − k3ξ3(t) − k2S ε
4k2

(ξ2(t)) − k1S ε
8k1

(ξ1(t))

and
ξ∆2 (t) = −k2S ε

4k2
(ξ2) − k1S ε

8k1
(ξ1),

respectively for t > t2 ∈ T. Continuing with a similar procedure yields us that there exists a large t3 ∈ T

for t3 > t2 > t1 such that |ξ4(t)| 6
ε
k4

, |ξ3(t)| 6 ε
2k3

, |ξ2(t)| 6 ε
4k2

and |ξ1(t)| 6
ε

8k1
for µ(t) 6 k and t > t3,

where k = min{ 16
225k4

, 8
49k3

, 4
9k2

, 9
10k1

}. Hence, the control input u finally ends up with

u(t) = −k4ξ4 − k3ξ3 − k2ξ2 − k1ξ1 (3.4)
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for t > t3 and µ(t) 6 k. By using the updated control input (3.4), we have that system (3.1) turns out to
be

ξ∆(t) = Aξ(t), (3.5)

where ξ = [ξ1 ξ2 ξ3 ξ4]
T and

A =


−k1 0 0 0
−k1 −k2 0 0
−k1 −k2 −k3 0
−k1 −k2 −k3 −k4


for µ(t) 6 k, t > t3. System (3.5) is a simple linear dynamical system and can be solved by using Theorem
2.11 since the eigenvalues λi = {−k1,−k2,−k3,−k4} of A satisfies 1 − µ(t)ki > 0 for all i = 1, 2, 3, 4, i.e.,
A ∈ R+. Therefore, the general solution of system (3.5) is

ξ(t) = eA(t, t0)ξ0 = [e−k1(t, t0)P0 + e−k2(t, t0)J1(t)P1 + e−k3(t, t0)J2(t)P2 + e−k4(t, t0)J3(t)P3]ξ0,

where ξ0 is any arbitrary constant vector, P0 = I4×4, and P1 through P3 are constant matrices that can
easily be calculated by the formula given in Theorem 2.11. Then by Lemma 2.18 and the definition of the
uniform exponential stability, we have that system (3.1) with the controller (3.2) is uniformly exponentially
stable. In addition to that, by Theorem 2.2.5 in [15], it follows that system (3.1) is uniformly asymptotically
stable. This completes the proof.

Now, by using Lemma 3.1, we obtain the following lemma, which proves the uniform asymptotic
stability of chain of integrators of four dimension.

Lemma 3.2. Consider the chain of integrators
z∆1 (t) = k2z2(t),
z∆2 (t) = k3z3(t),
z∆3 (t) = k4z4(t),
z∆4 (t) = u(t),

(3.6)

with the control input

u(t) = −k4S ε
k4
(z4(t)) − k3S ε

2k3
(z4(t) + z3(t)) − k2S ε

4k2

(
z4(t) +

(
1 +

k3

k4

)
z3(t) + z2(t)

)
− k1S ε

8k1

[
z4(t) +

(
1 +

k3

k4
+
k2

k4

)
z3(t) +

(
1 +

k2

k3
+
k2

k4

)
z2(t) + z1(t)

]
, (3.7)

where S is defined by (1.2), −ki ∈ R+, and k1 > k2 > k3 > k4 > 0 for i = 1, 2, 3, 4. Then system (3.6) with the
controller (3.7) is uniformly asymptotically stable.

Proof. Consider the following transformation:
ξ1(t) = z4(t) +

(
1 + k3

k4
+ k2
k4

)
z3(t) +

(
1 + k2

k3
+ k2
k4

)
z2(t) + z1(t),

ξ2(t) = z4(t) +
(

1 + k3
k4

)
z3(t) + z2(t),

ξ3(t) = z4(t) + z3(t),
ξ4(t) = z4(t).

Then, we have that system (3.6) is transformed into the following system:
ξ∆1 (t) = k2ξ2(t) + k3ξ3(t) + k4ξ4(t) + u(t),
ξ∆2 (t) = k3ξ3(t) + k4ξ4(t) + u(t),
ξ∆3 (t) = k4ξ4(t) + u(t),
ξ∆4 (t) = u(t),

(3.8)
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where controller (3.7) is also turned into

u(t) = −k4S ε
k4
(ξ4(t)) − k3S ε

2k3
(ξ3(t)) − k2S ε

4k2
(ξ2(t)) − k1S ε

8k1
(ξ1(t)). (3.9)

Therefore, applying Lemma 3.1 for system (3.8) with (3.9), the assertion follows.

In the next two subsections, we show the asymptotic stability of system (1.1) by dividing it into
subsystems and then each subsystem is shown to be asymptotically stable. In other words, we first
control the vertical position y and make it stable. Then, we deal with the stability of the roll angle and
horizontal position by using the lemmas provided in the previous sections .

3.2. Stability of the vertical position
This section shows us the asymptotic stability of the subsystem y of system (1.1). Please note that the

controller v1 is not given in the theorem, it is determined in the proof by using the same process as in
Lemma 3.2.

Theorem 3.3. Consider the subsystem

y∆∆(t) = u1(t) cos θ(t) − 1 (3.10)

with the controller
u1(t) =

v1(t) + 1
cos(Sπ

2
(θ(t)))

, (3.11)

where S is the saturation function and v1 is to be determined later. Then system (3.10) is uniformly asymptotically
stable.

Proof. Let us consider subsystem (3.10) and the controller input (3.11). Here, we assume that there exists
a finite T such that |θ(t)| 6 1 < π

2 for t > T (to be proved next section). Then, by using controller (3.11),
we have y∆∆ = v1(t) and rewriting this as a system gives us:{

y∆1 (t) = c2y2(t),
y∆2 (t) = v1(t),

(3.12)

where y1 = c2y and y2 = y∆ for positive constant c2 and −c2 ∈ R+. Now by using the same argument as
in Lemma 3.2, we can determine the controller v1 as

v1(t) = −c2S 1
2c2

(y2(t)) − c1S 1
4c1

(y1(t) + y2(t)) (3.13)

for c1 > c2 > 0, and −c1 ∈ R+ for t > T , which implies that system (3.12) is uniformly asymptotically
stable. Therefore, the assertion follows.

3.3. Stability of the roll angle and horizontal position
In this section, we show the asymptotic stability of the subsystem including the roll angle θ and the

horizontal replacement x. Therefore, consider the subsystem{
x∆∆(t) = −u1(t) sin θ(t),
θ∆∆(t) = u2(t).

(3.14)

Plugging controller (3.11) into subsystem (3.14) yields us{
x∆∆(t) = −(v1(t) + 1) tan θ(t),
θ∆∆(t) = u2(t),

(3.15)
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where v1 is defined by (3.13). Next, we take subsystem (3.15) into account with the controllers v1 and u2
and determine the stability of the system by using stability theorems given in Section 2.2 and lemma in
Section 3.1. Note that system (3.15) is a perturbed time scale system, so we give the following lemma to
work on stability for such systems on time scales.

Lemma 3.4 ([2, Theorem 3.5]). Suppose that the equilibrium point β = 0 of system β∆(t) = A(t)β is uniformly
exponentially stable with growth constants K and α. Suppose also that the perturbing term F of

β∆(t) = A(t)β+ F(t,β), (3.16)

where F(t, 0) = 0, satisfies the growth rate condition

‖F(t,β)‖ 6 P(t, ‖β‖), t ∈ T, β ∈ Rn,

where P,Q : T×R+ → R+ are rd-continuous functions satisfying

0 6 P(t,β) − P(t, ζ) 6 Q(t, ζ)(β− ζ), t ∈ T, β > ζ > 0, (3.17)

where P(t, 0) = 0 for all t ∈ T and ∫∞
t0

Q(s,m)

1 −αµ(s)
∆s <∞ (3.18)

for all (t0,m) ∈ T× [0,m0], where m0 > 0. Then the equilibrium point β = 0 of perturbed system (3.16) is
uniformly asymptotically stable.

Next, we use Lemma 3.4 to show the stability of a specific perturbed system, which is used for the
following results.

Theorem 3.5. The perturbed system ξ∆(t) = Aξ(t) + f(t, ξ) is uniformly asymptotically stable, where

A =


−1 0 0 0
−1 −1 0 0
−1 −1 −1 0
−1 −1 −1 −1

 ,

f(t, ξ) =


3v1(t) tan(ξ3 − ξ4)(t) + 3(tan(ξ3 − ξ4)(t) − (ξ3 − ξ4)(t))
v1(t) tan(ξ3 − ξ4)(t) + (tan(ξ3 − ξ4)(t) − (ξ3 − ξ4)(t))

0
0


for |(ξ3 − ξ4)(t)| 6

1
8 , t ∈ T and A ∈ R+.

Proof. First note that the matrix A is the special case of the matrix A in Lemma 3.1, i.e., ki = 1, i =
1, 2, 3, 4 and we have already shown that non-perturbed system ξ∆(t) = Aξ(t) is uniformly exponen-
tially/asymptotically stable. Therefore, we only show ξ∆(t) = Aξ(t) + f(t, ξ) is also uniformly asymptot-
ically stable. To do this, we use Lemma 3.4. First note that

|tan(ξ3 − ξ4)(t) − (ξ3 − ξ4)(t)| 6
(ξ3 − ξ4)

2(t)

6

for (ξ3 − ξ4)(t) ∈
[
−1

8 , 1
8

]
, t ∈ T. Also, since y(t) is uniformly asymptotically stable, we can choose a

large finite time T ∈ T such that |v1(t)| 6
1

84 for t > T , t ∈ T. Then

‖f(t, ξ)‖2 6

(
5

5292
+

10
36

+
20

3024

)
(ξ3 − ξ4)

4 +

(
5

5292
+

20
4032

)
(ξ3 − ξ4)

2
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6 L(|ξ3|+ |ξ4|)
2 6 4L

(
|ξ1|

2 + |ξ2|
2 + |ξ3|

2 + |ξ4|
2) = P(t, ‖ξ‖)

for L ≈ 0.291 and |v1(t)| 6
1
84 , t > T . Note also that condition (3.17) is satisfied for Q > 1, say Q(t, ζ) =

2. Observe also that condition (3.18) is satisfied because J1(∞) < ∞ for k1 = k2 = 1. Therefore, by
Lemma 3.4, we have that our perturbed system is uniformly asymptotically stable. This completes the
assertion.

Finally, the following last theorem shows us the stability of the roll angle θ and horizontal position x
for system (1.1).

Theorem 3.6. System (3.15) with control input

u2(t) = S 1
12

(
−θ∆(t)

)
+ S 1

24

(
(−θ− θ∆)(t)

)
+ S 1

48

(
(x∆ − 2θ− θ∆)(t)

)
+ S 1

96

(
(x+ 3x∆ − 3θ− θ∆)(t)

)
(3.19)

is uniformly asymptotically stable.

Proof. Consider system (3.15) with the controller (3.19). Making the change of variable γ = −θ and
v2 = −u2 for all t ∈ T transforms system (3.15) into{

x∆∆(t) = γ(t) + (tanγ− γ)(t) + v1(t) tanγ(t),
γ∆∆(t) = v2(t).

(3.20)

Rewriting system (3.20) as a system of first order dynamic equations on time scales gives:
x∆1 (t) = x2(t),
x∆2 (t) = γ1(t) + (tanγ1 − γ1)(t) + v1(t) tanγ1(t),
γ∆1 (t) = γ2(t),
γ∆2 (t) = v2(t).

Then by the following transformation
ξ1(t) = x1(t) + 3x2(t) + 3γ1(t) + γ2(t),
ξ2(t) = x2(t) + 2γ1(t) + γ2(t),
ξ3(t) = γ1(t) + γ2(t),
ξ4(t) = γ2(t),

for all t ∈ T, we have:
ξ∆1 (t) = ξ2 + ξ3 + ξ4 + v2 + 3v1 tan(ξ3 − ξ4) + 3(tan(ξ3 − ξ4) − (ξ3 − ξ4)),
ξ∆2 (t) = ξ3 + ξ4 + v2 + v1 tan(ξ3 − ξ4) + (tan(ξ3 − ξ4) − (ξ3 − ξ4)),
ξ∆3 (t) = ξ4 + v2,
ξ∆4 (t) = v2.

(3.21)

Note that system (3.21) is very similar to system (3.1) but there is an additional perturbed term. We
complete the proof with two claims. First, we claim that solutions of system (3.21) enter a bounded region
after a finite time. And in the second claim, we prove that system (3.21) is uniformly asymptotically stable
in that region region.

Claim 1: We claim that using the control input v2 = −S 1
12
(ξ4(t))−S 1

24
(ξ3(t))−S 1

48
(ξ2(t))−S 1

96
(ξ1(t)) gives

us that the solutions of system (3.21) enter a bounded region X defined by

X =

{
(ξ1, ξ2, ξ3, ξ4) : |ξ1(t)| 6

1
96

, |ξ2(t)| 6
1
48

, |ξ3(t)| 6
1

24
, |ξ4(t)| 6

1
12

, t ∈ T

}
after a finite time on T.
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Proof of Claim 1: By a similar discussion as in Lemma 3.1, we can have a large T1 ∈ T such that |ξ3(t)| 6 1
24

and |ξ4(t)| 6
1
12 for t > T1. Now, let us show that the other component functions ξ1 and ξ2 stay bounded

after a finite time. First note that | − γ1| = | − γ| = |θ| = |ξ4 − ξ3| 6 1
8 , i.e., |θ| is bounded for T1 > t.

Therefore, | tan(ξ3 − ξ4) − (ξ3 − ξ4)| 6
66
105 and | tan(ξ3 − ξ4)| 6

12
100 for t > T1. In addition to that, we can

choose an upper bound for v1(t) for t > T1 because y(t) is asymptotically stable. Therefore, one can have
|v1(t)| 6

1
84 for t > T1. In the light of all this information, now let us prove that ξ2 and ξ1 are also bounded

after a finite time. Since ξ3 and ξ4 are bounded by 1
24 and 1

12 for t > T1, we have that the control input v2
turns out to be

v2(t) = −ξ4 − ξ3 − S 1
48
(ξ2) − S 1

96
(ξ1)

for t > T1 by the definition of the saturation function. Then the second equation of system (3.21) becomes

ξ∆2 (t) = −S 1
48
(ξ2) − S 1

96
(ξ1) + v1 tan(ξ3 − ξ4) + (tan(ξ3 − ξ4) − (ξ3 − ξ4))

for t > T1 ∈ T. Hence, set a Lyapunov function V2(t, ξ2) = ξ
2
2(t) for t > T1. Then by the product rule and

the simple useful formula (2.1) on time scales, we have

V̇2(t, ξ2) = ξ
∆
2 (2ξ2 + µ(t)ξ

∆
2 ),

6 2
[
−1
48

+
1

96
+ v1 tan(ξ3 − ξ4) + (tan(ξ3 − ξ4) − (ξ3 − ξ4)

]
|ξ2|

+ µ(t)

(
1

48
+

1
96

+ v1 tan(ξ3 − ξ4) + (tan(ξ3 − ξ4) − (ξ3 − ξ4)

)2

6 0

for µ(t) 6 16
225 and |ξ2(t)| > 1

48 , t > T1. Therefore, it follows that there exists a finite T2 > T1 such that
|ξ2(t)| 6 1

48 for t > T2. Hence, the updated control input v2 and the first equation of system (3.21) become

v2(t) = −ξ4(t) − ξ3(t) − ξ2(t) − S 1
96
(ξ1(t)),

ξ∆1 (t) = −S 1
96
(ξ1(t)) + 3v1 tan(ξ3 − ξ4)(t) + 3[tan(ξ3 − ξ4)(t) − (ξ3 − ξ4)(t)].

Similarly, define a Lyapunov function V1(t, ξ1) = ξ
2
1(t). Then taking the derivative of V1, we have

V̇1(t, ξ1) = ξ
∆
1 (t)(2ξ1(t) + µ(t)ξ

∆
1 (t)) 6 0

for all |ξ1(t)| >
1
96 , t > T2, i.e., V1 is negative semi-definite. Therefore, it follows that there exists a finite

T3 > T2 such that |ξ1(t)| 6
1
96 for µ(t) 6 16

225 , t > T3. Therefore, we have proved that |ξ4(t)| 6
1
12 , |ξ3(t)| 6

1
24 , |ξ2(t)| 6 1

48 , and |ξ1(t)| 6
1
96 for t > T3, i.e., solutions of system (3.21) enter the domain X for t > T3.

Thus, the control input turns into

v2(t) = −ξ4(t) − ξ3(t) − ξ2(t) − ξ1(t)

so that the overall system (3.21) turns out to be
ξ∆1 (t) = −ξ1 + 3v1 tan(ξ3 − ξ4) + 3(tan(ξ3 − ξ4) − (ξ3 − ξ4)),
ξ∆2 (t) = −ξ1 − ξ2 + v1 tan(ξ3 − ξ4) + (tan(ξ3 − ξ4) − (ξ3 − ξ4)),
ξ∆3 (t) = −ξ1 − ξ2 − ξ3,
ξ∆4 (t) = −ξ1 − ξ2 − ξ3 − ξ4,

(3.22)

for µ(t) 6 16
225 , t > T3. So the proof of claim 1 follows.

Claim 2: System (3.22) is asymptotically stable on X.

Proof of Claim 2: By Theorem 3.5, we have that the perturbed system (3.22) is uniformly asymptotically
stable. This implies that system (3.21) with v2(t) = −S 1

12
(ξ4) − S 1

24
(ξ3) − S 1

48
(ξ2) − S 1

96
(ξ1) is uniformly

asymptotically stable for µ(t) 6 16
225 , t > T3. Note that (3.21) is a transformed version of (3.20) and system

(3.20) is transformed system of our main system (3.15). Therefore, the asymptotic stability of system (3.15)
with controller (3.19) follows.
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4. Simulation results

In this section, we simulate our main results for time scales Pa,b and in R.

Proposition 4.1. Let f : T→ R and

T = Pa,b =

∞⋃
k=0

[k(a+ b),k(a+ b) + a]

with a,b > 0. Then

σ(t) =

{
t, if t ∈

⋃∞
k=0[k(a+ b),k(a+ b) + a),

t+ b, if t ∈
⋃∞
k=0{k(a+ b) + a},

µ(t) =

{
0, if t ∈

⋃∞
k=0[k(a+ b),k(a+ b) + a),

b, if t ∈
⋃∞
k=0{k(a+ b) + a},

and the derivative of f is defined by

f∆(t) =

 lim
s→t

f(s)−f(t)
s−t , if t ∈

⋃∞
k=0[k(a+ b),k(a+ b) + a),

f(σ(t))−f(t)
µ(t) , if t ∈

⋃∞
k=0{k(a+ b) + a}.

Example 4.2. Consider system (1.1) with T = Pa,b for a = 0.01 and b = 0.07. The initial conditions are
x1 = 12, y1 = 13 and x2 = y2 = θ1 = θ2 = 0.1. The constants in v1 are c1 = 10 and c2 = 15.

The next example shows us how the control inputs v1 and u2 change over time in different time scales.

Example 4.3. We consider the same parameters as in Example 4.2 with T = Pa,b, and T = R. The first
3 figures are the controller signals u2 and v1 when T = Pa,b. The first and the second pictures in Figure
2 show the zoomed version of the third picture in Figure 2. Finally, the following figure shows how the
controller changes over time when T = R. Similarly, the first and second pictures in Figure 3 show the
zoomed version of the last picture in Figure 3.
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Figure 2: Controller signals when T = Pa,b.

Figure 3: Controller signals when T = R.
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5. Conclusion

This paper deals with the control of PVTOL aircraft on time scales with bounded graininess µ and
sup T =∞. We have used the saturation function control tool to control such a system and have successful
results for the asymptotic stability. Another observation is how the controllers react when we choose
different time scales as in Example 4.3. Note that when we compare the continuous time controller signal
figures with Pa,b counterparts, it is obvious that there is much more chattering in continuous time than
Pa,b. Having too much chattering in control signal is not good for real time applications because it harms
the actuators such as dc motor or the gears. Therefore, the chattering which is the main drawback of the
saturation based controllers are fixed by designing the controller in Pa,b time scale.
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(2001). 1, 2.1, 2.3, 2.4, 2.5, 2.6, 2.9, 2.1, 2.11

[4] M. Bohner, A. Peterson, Advances in dynamics equations on time scales, Birkhäuser, Boston, (2003). 1
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