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Abstract

This work investigates the derivations of n-dimensional complex evolution algebras, based on the rank of the structural
matrix. The spaces of the derivations of evolution algebras under three different conditions that make the rank of the structural
matrix equals to n — 2 are investigated.
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1. Introduction

In Tian [13], a new kind of algebra which is called evolution algebras was introduced as a type of
genetic algebra that makes possible to deal algebraically with the self-reproduction of alleles in non-
Mendelian genetics. According to the author and [9], evolution algebras also constitute a fundamental
application between algebra, dynamic systems, Markov processes, Knot Theory, Graph Theory and Group
Theory.

In between algebras and dynamical systems, evolution algebras are presented as a new field connected
with both previously mentioned fields and they could be defined algebraically, their structure has a
table of multiplication, which satisfies the conditions of commutative Banach algebra as non-associative
Banach algebra in general; dynamically, they represent discrete dynamical systems [5]. Evolution algebras
have the following elementary properties: Evolution algebras are not associative, in general; they are
commutative, flexible, but not power-associative, in general; direct sums of evolution algebras are also
evolution algebras; Kronecker products of evolution algebras are also evolution algebras [13]. Remarkably;,
evolution algebras are not considered as a well-known class of non-associative algebras, for instance, Lie,
alternative and Jordan algebras, since they are not defined by identities. Therefore, the research on these
algebras follows different paths [3, 4, 14].
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For any algebra, the space of all its derivations is Lie algebra with respect to the commutator mul-
tiplication. In the theory of non-associative algebras, particularly, in genetic algebras, the Lie algebra of
derivations of a given algebra is one of the important tools for studying its structure [2, 6, 7, 11-13]. In
this regard, the system of equations that describe the derivations of evolution algebras have been posed
in [13]. Notably, there are several genetic interpretations of derivation of genetic algebra which have been
given in [8, 10].

The space of derivations of evolution algebras for non-singular matrices and when rank of the struc-
tural matrix equals to n — 1 were described in [1]. The purpose of the present study is to investigate the
derivations of n-dimensional complex evolution algebras, based on certain conditions which cause the
structural matrix to have rank equals to n — 2. This paper is organized as follows. Section 2 highlights
the definitions and facts about evolution algebras, derivations and related result. Section 3 investigates
the derivation of evolution algebras based on certain conditions which cause the structural matrix to have
rank equals ton — 2.

2. Preliminaries

In this section, definitions, and related known result about evolution algebras and the derivation are
recalled.

Definition 2.1. Let E be a vector space over a field K with a basis {ej, e2, ...} and a multiplication rule -

such that
e e = 0 I
v ) Zm Aik€m, 1:]
Then, E is called evolution algebras.

Accurately, the basis {ej, e, ...} is called a natural basis and the matrix A = (aij){szl is denoted as
the structural matrix of the finite-dimensional evolution algebras E. Accordingly, the evolution algebras
are commutative, and this fact denotes that evolution algebras are flexible. The rank of the structural
matrix of finite-dimensional evolution algebras does not depend on the choice of natural basis since
RankA = dim(E - E).

Definition 2.2. The derivation of algebra E is a linear operator d : A — A such that
diu-v) =d(u)-v+u-d(v), forall u,veA.

It is recognized that for any algebra, the space Der(E) of all derivations is a Lie algebra with the
commutator multiplication. In [13], it was illustrated that the space of derivations of evolution algebras E
can be described as follows:

n
Der(E) = {d S ETLd(E) | Ay di]' -+ akidij = O, for i 7é j,‘ 2(1]'1'_d1'_1" = Z akidjk} ’
k=1
where d be a derivation of evolution algebras E with natural basis {ey, ..., en}and d(ei) = Z;‘:1 dijej, 1 <
i< n

Theorem 2.1 ([10]). Let d : E — E be a derivation of evolution algebra E with non-singular evolution matrix in
basis (e1,...,en). Then, the derivation d is zero.

n—1
Theorem 2.2 ([10]). Let enen = Z by (exex) and by, #0, bg # 0 for some 1 <p # q < n. Then, d = 0.

k=1
Theorem 2.3 ([10]). Let enen, = b(ejeq), b # 0. Then, derivation d is either zero or it is in one of the following
forms up to basis permutation:

5

77,1<S<nfland62:*bd2 ;
ons 1

n/

(i) Dy where, d11 =
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_ zm—k 5
(11) D2 w”lere, dzzzzkifldllldll :m, 1 <k<m<n—1a1’ld 62:—bd
(iii) D3 where, d1; = & and & = —bd%n.
where Dy, 1 = 1,3 in the following forms:
diq 0 0 0 0 dln
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2dy 0 o | (D)
0 0 0 0 oan=s—14, 0
—bdy, O 0 0 0 iy
dy 0 0 0 0 0 0 din
0 dy» 0 0 0 0 0 0
0 0 2k—ldy 0 0 0 0 0
0 0 0 2dy; 0 0 0 0
0 0 : : Do (D2)
0 0 0 0 2m=kq;; 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
—bdy, O . 0 0 0 0 0 dyg
di1 0 0 0 0 0 din
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 i, 0 0 0 (D3)
0 0 0 0 i 0 0
0 0 0 0 0 dyp 0
—bdy, O 0 0 0 0 dp
Theorem 2.4 ([10]). Let evolution algebras has a matrix A = (aij)igij<n it the natural basis ey, ..., en such

that enen = 0 and RankA = n — 1. Then, derivation d of this evolution algebra is either zero or it is in one of the

following forms up to basis permutation:

n—1

where Z Qixdkn =0,1<i<n—1,

k=1

o -

0
0
0
0 0
0 0
O zndll kTLl
0 0
0 0

0 din
0 dnfln '
0 0
0 0
0 0
0 dk+ln

(D4)

(Ds)
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where ditin = Lin (2,1,%—1) dnn, aii41 #0, k+1<ig<n—-2,1 <k<n-—1and dxi1n € C.

Aiitl
It is noticeable that the aforementioned theorems describe the derivations of n-dimensional complex
evolution algebras depending on non-singular structural matrix and the rank of the structural matrix that
equals to n — 1 which were investigated in [1]. In the next section, three different cases, which make the
rank of the structural matrix equals to n — 2 are going to be described.

3. Derivations of evolution algebras

In this section, some auxiliary results should be illustrated about the derivation of evolution algebras
when the rank of the structural matrix equals to n —2. Accordingly, we will be ready to begin investigating
the derivation of evolution algebras.

According to the definition of derivation of evolution algebras, it is easy to see that deie; +ejde; =0

n
and de% = 2de% forall1 <i#j<n. Letdex = Z dyiei. Then, the following is obtained:

i=1
dije; + djief =0, (3.1)
de? =2dye? forall1 <i#j<n (3.2)

Plainly, e%,...,e%_, should be linearly independent since RankA = n —2. As consequence of performing
a suitable basis permutation, e? can be rewritten as follows:

n—2
e?=) byei, by,...,bnoeCicn—1n}. (3.3)
k=1

Now, (3.2) indicates that 2d;; is an eigenvalue of d for all 1 <i <n —2. Therefore, spec(d) 2 {2dy1,2d2y, ...,
2dn_on—2} is verified. In addition, (3.1) fulfills that di; = dj; =0 forall 1 <1i#j <n—2. Let us replace i
by n and n —1 in (3.1) separately, whereupon the following is established:

dmje} + djmer, =0, m€{n—1,n}, (3.4)
n—2
(dn—15+ djn—lbj)e)2 + Z djn_1bkex =0, (3.5)
k=1,k#j
n—2
(dnj + djnbs)ef + > djnbyef =0. (3.6)
k=1,k#j

Consequently, (3.5) and (3.6) result that dj, by =0, dnj +djnb; =0, djn—1bx =0and dn_15 + djn_1b; =0
forall1<k#j<n—2.

It can be observed from (3.3) that there are different possible values for by. Therefore, (3.3) can be
rewritten by different formulations. In this work, we are going to consider three different values for by,
which are used as one of a main conditions in the following theorems. In this regard, we introduce the
following example.

Example 3.1. Let E be an evolution algebras with the following structural matrix

aj; aig ... ... Q15 Qie
ap; QA ... ... Q25 Qp

A — az; azxz ... ... QAz5 Q¢ )
g1 Q42 ... ... Q45 Q46
as1 Aas2 ... ... Qs5 Qs

g1 A2 ... ... Qg5 Qgp
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that has rank n — 2.
As discussed, e% and e% can be rewritten as arbitrary linear combination. For instance, the following
is obtainable:

(i) Let eé = ble% + b3€§ and e% = bze% + b4eﬁ such that by # 0 for all i € {1,2,3,4}, which means that
ez = bi(ajje; + -+ ajees) + bz(azie; + -+ - + azees) and ez = by(anier + - + azes) + balaser +
-+ + ayg6ee). This satisfies the rank of the structural matrix A and illustrates the main condition of
Theorem 3.1.
(ii) Let eé = ble% and eg = bZe% such that b; # 0 for all i € {1,2}, which means that eé = bi(aj1e; +
-+ ajeeq) and eg = bo(azier + - - - + axgeq). This satisfies the rank of the structural matrix A and
illustrates the main condition of Theorem (3.2).
(iii) Let e% = eg = 0, which means that ag; = --- = a¢¢ = 0 and as; = --- = as¢ = 0. This satisfies the
rank of the structural matrix A and illustrates the main condition of Theorem 3.3.

Theorem 3.1. Let E be an evolution algebras with structural matrix A that has rank n— 2 such that €, # e*_,
and

EAN)

SN 2bmed, by#0,by#0, 1<x#y<n, i=n—1

Then, the derivation d is zero.

Proof. Based on (3.5), (3.6) and meaning of assumption, djnb, = 0, djnbgq = 0, djn_1bx = 0 and
djn—1by = 0 forall1 < j # p < n—2 can simply be obtained. Now, dn_15 + djn_1b; = 0 and
dnj + djnb; = 0 follow that dj, =0, dnj =0, dn—1; = 0 and djn,—1 = 0 for all 1 < j < n—2, whereby
indicates that d = diag{di1, d, ..., dnn}. On the other hand, (3.2) gives that 2d,,,, and 2d,,_1n—1 are also
eigenvalues of d. Hence, spec(d) ={d11,d2, ..., dnn} ={2d11,2d, ...,2dnn}, which can only be satisfied
if d =0. O

Theorem 3.2. Let E be an evolution algebras with structural matrix A that has rank n — 2 such that €2, =
b1e%,b1 #0, 631—1 = bzeg,bz #0and (din #0, or dyn_1 # 0). Then, the derivation d can be expressed in one
of the following forms:

(i) d=0,ifdin =don—1=0;

(i) D1, where dy = din = -, 85 = —b1d},, and 87 = —byd3

2n (q+1 n—1s
(1 Zk k1+1 1—2om m1+1

(iii) D2, where dz; = Zkk?ﬁ/ dsz = W@L din = zmﬂfﬁ, dktik+1 = (Tdn,
8 = —b1d?, and 82 = —byd3,, 4;
(iV) Dg, where d11 = 52, d22 = 51, 52 = —b1 d%n and 5% b2d2n 1+

51
om—(s—1)_1”

For more information see Appendix.

Proof. Let e2 = bl(e%),bl # 0 and 631—1 = bz(eg),bz # 0. Now, (3.1) indicates the following: dj,, = 0 for
allj €{2,...n—1}, dn1 = —b1din, djn—1 =0forallj € {2,...n—2}U{n}and dp_12 = —bady 1. Insertion
n—1 and n instead of i in (3.2) independently, the following can be established:

2bjdired = byde? = d(bre?) = de? = 2dnne? =2dnnbied,

2bydypes = byd(e3) = dboes = de?, | =2dn_1n_1€% | =2dn_1n_1b2e3.

This means that di; = dnn and dx; = dy—1n—1. Again, by using (3.2), the following is deduced:

n—2
aii(direr + dinen) + ajp(dazez +don—1€n—1) + Z aijdjjej + ain—1(—badon_1€2 + dozen_1)
j=3
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n
+ ain(—bidine; + diien) = de% = 2dﬁe% =2d;; Z aije;.

i—1
Which implies the following:

ai1(2dii — di1) = —aindinby, 3.7)

ain(2di; —dq1) = alldln, (3.8)

ai2(2dii — d22) = —ain—1dan-1b2, (3.9)

ain-1(2dii —d) = 2d2n 1 (3.10)

ag;(2ds; — djj) = 3.11)

foralll<i<n—-2and3<j<n—2

Let dln = dyn1 = 0. Then, d = {di1,d2...,dn_2n—2} Whereby indicates that d = 0. Assume that
both of di,, and dyn,_; are not equal to zero. Thus, the set of all eigenvalues of d is given by spec(d) =
{ds3, ..., dn_2n—2, 01, 02, B1, B2}, where oy = dpp + 81, B1 =dp — 81, 8 =—bad3, ;, o =d11+ 8, B2 =
di1 — 0o, 5% = —bld%n. Let A € spec(d) be such that [A| = max{|ot{|, |o2l, |B2l,1B2l,1d33], ..., |dn_2on_2|}. If
A €{dss, ..., dn—2n—2}, then 2A is also an eigenvalue, which contradicts module maximality of A. Therefore,
A=, A =1, A = x or A = 3, are obtained. Evidently, (3.7), (3.8) and (3.9), (3.10) follow that a;; =0
(aj2 = 0) if and only if ain, =0 (ain—1 =0). Let ai; # 0 and (aiz # 0). Then, multiplying (3.7) in (3.8) and
(3.9) in (3.10) implies that (2d;; — d11)2 = —bld%n and (2di; — dzz)z == _bzd%nfl or 2di; = dyp £ 61 and
2d;; = dy1 £ &, respectively. Hence, for these i we have

1
2
Now, several cases are going to be examined.

Case 1. Let xjx231B2 # 0 such that o1 + 31 # 0and oy + B2 # 0. Clearly, &1 + 1 = 2d2p, o + B2 =
2dy; and 2dj1,2dp € spec(d) such that &1 + 31, %2 + B2 & {x1, B1x2, B2}. This means that there exist i;
and j; such that dj;;, = oy + 31 and di;;, = & + B2. Then, 2d;,i,,2d;,5, € spec(d), which implies that

1 1
dii = 71, dyi = f31, it = s or dij = EBZ' (3.12)

2

Zdilil = djzjz/ 2di]i] = diziz for some iz,jz or 2d]‘1j1 S {O(l, Bl} and Zdilh S {(Xz, Bz} If 2(1)'1)'1 = djzjz and
2d;,i, = di,i,, then the same process can be repeated until the following is obtained:
14 212 p p g
Zkld)'l)'l =...= Zdjkljkl € {o,P1} forsome 1 <k <n—4,
2k2dilil = = Zd)k i, € {otp, B2} forsome 1 < ky < n—4.

Therefore, 2% (7 + B1) € {a1, B1} and 252 (o + B2) € {2, B2} for some 1 < ky, ko < n — 4 are obtained. For
this, it can be possible to assume that 2K1 (o1 4+ B1) = o and 2%2(axp + B2) = xa. Thereby, the following can
be concluded:

(051 X1 x1 1

Ao = 51 Qi = g D = 50 B =—(1= 57)aa,
X X2 X2 1

d11 = W, dilil = E,..., i'kzi'kZ - 7/ 62 - _(1 - 2k2 )(X‘ZI

IB1] < lotrl, IB2] < |otp| and 2B # 2"ty forany r,s € Z,m =1,2.
Let di < --- < dm and di41 < --- < dp be the possible non-zero values of [ds3],...,|dn—2n—2|
Evidently, it is recognized that

lova | loaa| oz %]
leln'/T/E/' 7}C{dl/ "/dp}'

It is observable that {2d33, ...,2dn—2n—2} C spec(d)}. Therefore, we deduce 2d,...,2d, € {dy,..., dp, 1],
IB1l, [eal, [B2l}. Accordingly, 2d, < [ (2dm < ||) and d; = % (d; = %2) are verified, which

iy dkg Tky Tky
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means that d, = |°§2|, and dm, = M . Now, there is only pos51ble one eigenvalue dj, j, = 5 (di, i, = )
with module dy, (dy). Actually, 1f we have |dii| = dm, dii # S S (ldil = 32, dii # 3*) for some i, then

o1 # 2dii € spec(d) (ap # 2dii € spec(d)) and [2dii] = || (12dii| = |eta]). Thus, there exists j such that
dj; = 2di; and 2d;; must be in spec(d) and [2d;;] = 2[e| > || [2d;5] = 2|axp|, which is a contradiction.
Since there is only one eigenvalue d]k i, = % (dikzikz = %) with module %Iocll (%Ioczl), one obtains that
there is only one eigenvalue d, 1 (d,,_1) of module %oq (%oq) and etc. By applying the same process
to [B1] and [B2|, we obtain that there exist at most only one eigenvalue with module %[51 (%[32) and etc.
Hence,

S

(dss, -, dn 22\ (0 = Jlret 50
j=1

i=1

or

{das, ..., dn-2n 2} \ {0} = U{Zloq}U{ZJ o} U{ZH B} U{ﬁﬁz}
i=1 ji=1

Case 1.1. Let{dss,...,dn_on 2} \{0} = LJ{z1 o1} U{z) oz }. Then, from (3.12) for these i such that aj,, #0

and ain_1 # 0 we obtain 2diy; = and 2d o= ocz for different value of i. Accordingly, (3.8) and (3.10)
make aj; = dh‘j“ ain and ajpp = %Tilfzam—l Thereby, it indicates that 1%, 20 and nth, (n—1)™ columns
of the structural matrix A are collinear, respectively. Thus, the RankA = n —2 is satisfied, i.e., all the other

columns of the structural matrix A should be non-zero and linearly independent.

Assume that we have s —2 and v —2 zeros belong to {d33,... dmmt and {dmi1ma1, .-, dn_on_2},
respectively. Consequently, {dii};,_3 C {0} and {du}n ma1 €10} dss < [dsyisq1] < [dsqasqal < -0 <
|[dmml and dgq < ldg+1q+1] < ldgr2qr2l < - < ldn—2n—2| where q = (s —2) (m+1) 4+ 1 are obtained.
For this, (3.11) indicates that a;; = 0 if the following is satisfied: 3 <i<sands+1<j<ms+1<
i<mand3<j<sm+l<1 qandq+1<]<n 2,g+1<i<n—2andm+1<j<q3<1i<
sandq+1<j<n—2s+1<i<mand m+1<j<q.

Given that the ds 1541 # 2dn, dg+1g+1 # 2di; for all 3 < 1 < n— 2. Therefore, (3.11) implies that
aig+1 = 0 and ais1 = 0 for all 3 < i < n —2. This means that dqy1q4+1 = 2d22 and ds 1541 = 2d11.
Otherwise, we obtain (q + 1) and (s + 1)™ columns are equal to zero, which contradicts RankA =n —2.

Now, {ds;1s+41,--.,dmm} and {dq+1g+1/---,dn—2n—2} do not contain equal elements are going to be
shown. Suppose that there exist equal elements namely dq 2442 and ds 2542 are equal to dqi1q+41
and dg41s41, respectively. Firstly, let us start when dsi154+1 = ds42s42. Certainly, ds 2542 # diy for all
3 <i<n—2,and hence a5 » = 0 for all 3 < i < n—2is deduced. Therefore, the column (s +2)™ should
be either zero or collinear to the column (s + 1) of the structural matrix A, which is a contradiction.
Suppose that dj; is equal to dj 1541 for some s +2 < j < m—1. Then, 2d;; —dj; =0ifand only if i =j —1
and therefore (3.11) implies that aj; = 0 for all i # j — 1. In the same manner, 2d;; — dj11541 = 0 if and
only if i = j —1 and therefore (3.11) yields that ajj;1 = 0 for all i # j — 1. This makes the columns jth
and (j + 1) are collinear or at least one of them is zero, which contradicts RankA = n — 2. By using the
same process on {dq41q+1,---,dn—2n—2}, one can show that all elements have different values. Hence,
there are no equal elements among {ds1s41,..., dmm} and {dq+1q+1,...,dn—2n—2}. Furthermore, we
immediately conclude that om—(a-1)g,, = zmi(qil)ildq+1q+l = .. =2dmm = o and 2" (st g, =
on—(s+1) 1ds+1s+1 = -+ = 2dn_2n—2 = . After simple calculation, we obtain that dy» = 21“7(2711)_1,
dip = W Fmally, the structural matrix A should be in A; form (see Appendix).

The derivation of evolution algebras should be in the form D; with dy = 21“7(2711)71, and d;; =

52
s 1
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Case 1.2. Let{ds3,...,dn_on—2}\{0} = U{ 1} U{ZJ o) U {211 B1} U { [32}. To begin, assume that
i=1

=1 j1=1

T1 S1
1 1
{dzs, ..., dy1q) = U {Eﬁl}, {dy, 1k 41/ - -+, dik) = U{g(xl},
.1_ ~
S2 1
{dk+1k+1/ cee m1 m1 Ul{ BZ}/ {dm1+1m1+l/ sy dmm} = LJl{ZJ(XZ}
j1 )=

and dpjpimy1 = -+ = danan = 0 such that [d33| < -+ < |di i, |, [dig 4141 < - < dikl, [kl <
< |dm1m1|r |dm1+1m1+1| < |dmm|
Accordingly, 2di; — dj; # 0 for all 1 < i< nsuchthatj e {3,k+1}is deduced. According to (3.11)
and the following facts: ain, = biaig and Qin_1 = baajp, we conclude that aiz and aix 1 have to be zero
for all 1 < i < n. Moreover, the remainder of columns of the structural matrix A should be non-zero and
linearly independent, i.e., RankA = n — 2 is satisfied. Similarly, as in Case 1.1, we get that d4s4 # d33 and
so on. Hence,

di i, = 2dk, 1k, 1 = -+ = 2K 3dg;, (3.13)
3
At (3.14)

dmlml = 2dm1—1m1—1 =...=2M
This means a;_1; #0 and aj; =0(i#j—1)forall4 <j<kjand (k+1)+1< ) my.

Now, it is recognized that dy,1x,+1 and dm,4+1m,+1 are in form 211 1 and 252 oy, respectively. On the
other hand, 2d;; — dj; # 0 for all 3 <1 < n—2 such that j € {k; +1, my + 1}. Thereby, dy, 411,41 = 2d2
and dm,+1m,+1 = 2d11 are inferred. Otherwise, the columns (k; + 1) and (m; + 1) become zero, which
contradicts RankA = n — 2. By using the same way used in Case 1.1, the following can be concluded:

dik = 2dy 11 = - =28 M dy i 1 =28 Ny, (3.15)

dmm =2dm—1m-1 =" =2 ™dn 1m 41 = 2™ ™My (3.16)

This means a;_1; #0 and aj; =0(i#j—1)forallki+1<j<kand (m;+1)+1<j<m.
Furthermore, from (3.11) and (3.12), we obtain that a;; =0 forall1 <i<mand m+1<j<n—2

In addition, we have an; = by Cll] and a,_ 1] = boay;. This leads to the inference that an; = an,_1; = 0 for

m+1 <j <n. Hence, dy,, = 2[51, dyx = zoq, dmym, = %(52 and dyym = %ocz. From (3.8), (3.10) and (3.12),

d d d
the following can be found: ay,n—1 = BlZiL d; a2 #0, agn—1 = (xlz" d; a2 #0, amn = ﬁamll #£0,

Amn = d dll am1 # 0.
Now, (3.13), (3.14), (3.15), (3.16) and simple calculation imply the following: dy = zkéﬁ' dsz =

(1_2k7k1+1 52 (1 om-— m1+1 h f h 1 h 1
Zkli,sdzz, di; = T dyx+1k+1 = lel Therefore, the structural matrix A should
be in A, form (see Appendix).

Case 2. Let 1310232 # 0 such that oy = —f1 and o = —f,, i.e.,, di3 = dxp = 0. Noticeably, it is

impossible of presence zero element among {ds3,...,dn_2n—2}. To achieve this, suppose that we have
zero element among {d33, ..., dn_2n_2}. Then, (3.7), (3.8), (3.9) and (3.10) show that the 1%, 24, (n —1)th
and n'" columns should be zero, which is a contradiction. Therefore, 0 ¢ {dﬁ}g;g is obtained. Now,
consider di < --- < dp and dp41 < --- < dn are the possible non-zero values of [ds3),...,|dn—2n—2l.
As conclusion of {2d33,...,2dn—2n—2} C spec(d), we conclude that 2dy,...,2dm, € {dy,..., dm, 1], |2}
Moreover, accordance with all these values which are not equal to zero, the following is derived:

|0(1| = 2dp,dp = 2dp,1,...,d2 = 2d1, |0(2| = 2dm, dm = defl,. . .,dp+2 = 2dp+1.
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By performing the same way which used in the Case 1.1, we deduce that =10y and +1«, are all possible
eigenvalues with modules d,, and d.,, respectively, and thus for all the other eigenvalues. Hence,

s1
{d33,...,dn—2n—2}\{0} C U > (Xl} U{_ﬁ 1} U{le o} U{ E o).
=1 =1 j1=1 j2=1
Let Jou, oo & {ds3,...,dn—2n—2} and —1op, —1or & {d33,..., dn—on—2}. Then, (3.8), (3.10) and (3.12)
indicate that 1(5t), 2nd) " (n — 1)(t") apnd (n)(th) are zero columns, which contradicts RankA = n — 2.
Hence, there exists k1, ko such that dklkl’ € {%oq,—%oq} and dy,x, € {%ocz,—%ocz} forall 3 <k, ko <n—2.

2
Now, suppose that {ds3,...,dpp} \{0} 2 U { ocl} {dps1p+1s--or dmm}\{0} D U {%ocz} and —%oq, —%ocz
1= 1 i=1
¢ {ds3,...,dn_2n_2}. Based on (3.8), (3.10) and (3.12), we immediately conclude that the 1%,2"* and (n —
1)™ (n)™ columns of the structural matrix A are linearly dependent Thus, the ﬁrst and second columns
of the structural matrix A can be expressed as follows: ai; = d1 Ain, Aip = dz ~Qin—1 foralll <i<n.
Accordingly, RankA = n — 2 is satisfied , i.e., the remainder columns of the structural matrix A are linearly
independent and non-zero. However, assumption shows that there exist dpp = 2%10‘1' dinm = 2%2“2- On
the basis of this fact and (3.11), the pth and mth columns must be zero columns, which is a contradiction to

s1
RankA = n — 2. By applying the same process on {ds3, ..., dpp} \ {0} 2 U {—%oq}, {dps1p+1s-- s dmmt\

{0} U {— ocz} and 1 2%, 5 Loy & {d33,...,dn_on_2}, we deduce a contradiction to RankA =n — 2.

S1 ™
1 )
Suppose that {ds3, ..., dn—2n—2}\{0} = U 211 o1} U {212 o1} U {2J1 s} U {E s }. Then, there exists
i1=1 j1=1 j2=1
dpp = 5501, dpyp; = —55 04, dg1q, = —57 &2 and dq]q] = 5+ . So, (3.11) indicates p't, pth, gt and gt
columns must be zero, which contradicts RankA = n — 2. Hence, this case is impossible.
Case 3. Let yxp # 0 such that 1 = o =0ie. dyy =6 and dyp =61. Letd) < --- < dm and dim 1 <
-+ < dp be the possible non-zero values of |da3), .. .,|dn—2n—2|. Plainly, 2dy,...,2d, € {dy,...,dp, 1], [ea]}.
Based on these values which are non-zero, we obtain that

loi] = 2dm, dm = 2dm—1,...,d2 = 2d1, |og| =2dp,dp =2dp_1,...,dms2 = 2dmy1-

To avoid repetitions, we refer that applying the same argument used in proof Case 1.1 in order to prove
that there is only one eigenvalue 5! with module d,, can be reusable again. Hence,

1 1 1 1 1 1 1 1
spec(d) :{zip 2“2/ X2, 57— 2TT‘L /~"/§(X11 (Xl}, spec(d) :{OI Zi.p(x 2062/ X2, =— 2m /'--/E(Xl/ (X‘l}'
By performing a suitable basis permutation, we assume that |ds3] < -+ < [dmml|,  |dmyimii] < -0 <

|dn—2n—2|. Now, assume that there exist s —2 and r — 2 zeros among {ds3, ..., dmm}, {dm+1m+1,---, dn—2},
respectively. Then, {di;};_3 C {0} and {dii}y .1 C {0}, dss < |dsq1s41] < [dsias42l < -+ < [dmml

and dgqq < ldg+1g+1l < ldge2qe2l < -+ < [dn2n2| where g = (r—2) — (m+1) +1 are deduced.
Consequently, (3.11) makes ai; = 0 if the following is satisfied:
1<i<sands+1<j<m, s+1<i<mandl<j<sm+1I<i<gandq+1<j<n—-2, q+1<

i<n—2andm+1<j<q, I<i<sandg+1<j<n—2 s+1<1 mandm+1<) q.

Now, accordance with dg1g+1 # 2dii and dgj1541 # 2dii forall s+1<i<m,q+1<i<n—-2and
(3.11), one can see that ais 11 =0 ajg41 =0foralls+1<i<n—2,q+1<1i<n—2 respectively. Thus,
the rank of the structural matrix A is satisfied, i.e., the other columns should be non-zero. By following the
same process that used in Case 1.1, one shows that {ds1541,..., dmm}tand {dq11q+1,--.,dn—2n 2} do not
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contain equal elements. Therefore, {ds1541,..., dmm}and {dqt1q+1, ..., dn—2n—2} have distinct elements.
In addition, (3.11) follows that aj7 = ain =0, app = ajn_1 =0foralls+1 <i<m,s+1<i<n—-2
respectively. Hence, the structural matrix A should be in in A3 form (see Appendix).

Note that in a symmetrical case such that ¢; = 0,31 # 0 and «; = 0,2 # 0. One can obtain in a
similar way that d is in the form D3 with dy; = —9; and dy; = —9.

O

Theorem 3.3. Let E be an evolution algebras with structural matrix A that has rank n — 2 such that ei = ei—l =
0. Then, the derivation d equals to zero or in one of the following forms:

@)
0 ... 0 ding din
0 ... 0 dnon1 dnoon |- (D)
0 ... 0 dnin—1 dn-1n
0 0 dnnfl dnn

n n
where Z aikdkn,1 = 0, Z aikdkn = OfOT all 1 <ign —2,‘

k=1 k=1
(ii)
Z%l 0 0 0 0 0 dina din
0 e X 0 0O 0 ... 0 dkn—l dkn
0 e O W .o 0 0 . e 0 dk+1n71 dk+1n
0 0 0 B 0O 0 dmno dmn |’ (Ds)
0 0 0 00 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 dn—ln—l dn—ln
0 0 0 0 0 0 dnn—l dnn
where
1 o4 .
ditin = T <am <F - dnn) - ain—ldn—1n> , 1<ig<k—1,

1 B .
dipin—1 = d (am—l <2ml - dn—ln—1> - aindnn—l) , k+1<i<m—1,din1,din €C
1+

foralll<i<m;

(iii)

0 ... 0 0 ... 0 0 0

oo : : : 0

0 ... 0 0 ... 0 0 0

0O ... 0 Mﬁ 0 dk+1n—1 dk+1n , (D6)
0 0 0 % dnon-1 dn-2n

0 0 0 dn-1n-1 dn-1n

0 0 0 0 dnn—l dnn
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where

d _ @in-1(2dii —dn—1n-1) + Qindnn-1 0
itIn—1 = , Qiit1 70,
aii+1

ain(2dii — dnn) + ain—1dn—1n

di+1n: ’ aii+]7éo, k+1<l<n_2/ 1<k<n_1/

Aii+1
and dyy1n—1, d41n € C.

Proof. Let €% = eflfl = 0. Then, (3.1) implies that d,; = 0 and d,,_1; =0 forall1 <j <n—2. Now, a
derivation of this case based on the possible eigenvalues are going to be described. To begin, the set of all

eigenvalues of d is given by spec(d) ={d11,..., dn—2n—2, @, B} where

1

X = E(\/(dnflnfl - dnn)z + 4dn71nfldnn + dnflnfl + dnn)/
—1

B=—(/(dn1n 1~ dnn) +4dn 1n1dnn +dnin1+ dun).

Case 1. LetA € {d11,...,dn—2n—2}. Since spec(d) D {2d11,2dp2,...,2dn—2n—2}, we obtain that 2A € spec(d).
This implies that A = 0, which means that dj; = --- = dn_on-2 == =0and d(e;) = din_1en_1+

n n
dinen forall 1 < i < n—2. Now, (3.2) yields Z aijdjnen = 0 and Z aijdjn_1en_1 =0forall 1 <i<
j=1 j=1
n — 2. Therefore, the two vectors (din, ..., dnjzn, dn_1n,dnn), (dln_Jl, voo, dnoon—1,dn—1n—1,dnn_1) are
roots of homogeneous linear system of equations Ax = 0 and Ay = 0, respectively. Obviously, if the first
n — 2 columns are linearly independent, then d = 0. To obtain non-zero deviation, consider the first n — 2
columns of the structural matrix A are linearly dependent and denote the new matrix by (A4). Hence, d
is represented by Dj.

Case 2. Let A € {d11,...,dn2n2}. Then, A= #0o0or A= #0. Let dy < --- < dp,, dp, 41 < --- < dp
be the possible non-zero values of |dy1l,...,|dn—2n—2|. Clearly, {2dy1,...,2dn—2n—2} C spec(d), which in-
dicates that 2dy,...,2dy,,2dp,41,...,2dp € {dy,...,2dp,, dp,41,-..,dp, [, |B]}. Accordingly, we conclude
that x| = 2dp,, dp, = 2dp,—1,...,d2 = 2dy, [B| =2dp,dp =2dp_1,...,dp,+2 = 2dp,4+1 provided that all
eigenvalues are in the form « or 3, and |« = 2d;,, dp = 2d},—1,...,d2 = 2d; when all eigenvalues are in
the form . In the same manner which used in Case 1.1, one can show that there exists one eigenvalue %oc
(%[3) with module d;, (dp) and so on. Hence,

R

o o o
spec(d) :{2?,...,5,@} or spec(d) =1{0, ﬂ""’i’o‘}’

k3 o B B 04 ) B

Zpl,...,z,oc,z—p,...,z,ﬁ} or spec(d) :{0,2?,...,5,0927),...,5,

spec(d) = { B}

By performing an appropriate basis permutation, we assume that [dy1| < -+ < [dkk| < ||, |dk1x+1] <
- < |dn_on_2| < |Bl- Now, (3.2) follows that Z)T‘;lz aijdjje; + ZJT‘:1 aijdjn_1en—1 + 2?21 aijdjnen =
d(e%) = Zdii(e%) =2d;; Z]T‘:l aije;. This means the following:

n n
Z aijdjn = 2diiGin, Z aijdjn—1 = 2diiain—1, (3.17)
j=1 j=1

aij (2(111 — d]')') = 0, fO?’ all 1 < i,]' <n-— 2. (318)

Case 2.1. Let
S 1 T 1
{di1, ..., dik} = 'L-J(){Zi of, {dkt1k41,---,dmm} = ,UO{ZJ' Bl
i= j=
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and dmyim4+1 = -+ = dn_2n—2 = 0. Accordingly, (3.18) follows that aj; = 0if 1 <i < kand k+1 <
j<m 1<i<kandm+1<j<<n—-2 k+1<i<mandl <j<k k+1<1i<< mand
m+1 < j < n—2. The consequence of using di; # 2d;; forall k+1 <i<n—-2,j € {1,k+1} and
(3.18) is that ajxq = aj; = 0 for all k+1 < i < n—2. Therefore, the 165 and (k + 1)t columns of
the structural matrix A are zero. Thus, RankA is satisfied, i.e., the other columns must be non-zero and
linearly independent. The used method for proving existence of different elements in Case 1.1 can be
repeated to show that dyy, ..., dn_2n—> are different elements. Therefore,

_ sz(kJrl

die = 2di 1-1,--.,doo =25'dyy, dmm =2dm-1m-1,---, driokio Vi 111

From (3.18), we obtain aj; = 0 forall 1 < i < m, j # i—1. Hence, dxx = 5 and dimm = % and so
dii = 5 and di; = 2?[{1 forall 1<i<k, k+1<1i<m,respectively. Finally, the structural matrix A
should be in the following form:

0 ain 0 0 0 0 0 0 Ain—1 ain

0 0 .o Ax—1k 0 0 e 0 0 e 0 Ax—1n—1 Ax_—1n

0 0 0 e 0 0 e 0 Axn—1 Qxn

0 0 0 0 Ak +1k+2 0 0 Oak+1n—] Ak+1n

o 0 .. 0 0 0 o Qmim 0 0 min1  Qmin (As)
0 0 0 0 0 0 0 Am—-In-1 Gm-1In

0 0 s 0 0 0 s 0 Am+im+1 .- Am+1n-2 Am+in—1 Am+4n

0 0 e 0 0 0 e 0 An-—2m+1 e An-—-2n-—-2 An_—2n—1 an-—2n

o o0 .. 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Now, consider the M x M sub matrix Ay = (aij)m+1<ij<n—2 Of the structural matrix A where M =
(m—2) = (m+1)+1). It is easy to see that (3.18) implies

Qmtim4l --- Qmiln-2 dmtin—1 0
. . : — ,
Qn-2m+1 --- Qn-2n-2 dn-2n1
Qmilm+l --- CGmiln-2 dmt1n
) . . _ ,
an—2m+1 ... Qn-2n-2 dn—Zn 0

and aiiy1difin—1+ ain—1dn—1n-1 = 2dii@in—1, Qii+1dit1n + QGindnn = 2djiain foralll <i< k-1,
k+1<1i<m~—1, respectively and ajndnn—1 = ajn—1(2dj; —dn—1-n—1), Gjn—1dn—1n = ajn(2dj; — dnn)
for all j € {k, m}.

Now, we already know that these columns of the sub matrix Ay, are linearly independent, which
signifying that djyin=---=dn2n =0 and dni1n-1="--=dn_on_1 =0.Based on ai; 11di;1n_1 =
(2dis —dn—1n—1) and aji+1di11n = (2diy — dnn ), one readily derives the following:

1 o .
ditin = G (ain (F - dnn) - ain—ldn—ln) , I<igsk—1
1

and

1 B
d; 1= in1 | —— —dn—1n-1) —aindnn-1), k+1<i<m-1.
i+In—1 Qi1 (aln 1 (Zml n—In 1> Ainlnn 1) + 1 m

Hence, the derivation d of this sub case is in the form Ds.
S
1
Case 2.2 Let {dy,...,dn—on—}\{0} = U{E a}. In the same manner that used in the previous sub case,

i=1
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we can show that the structural matrix A should be in the following form:
an ajk-1 0 0 0 0 in—1 ain
ax1 akk-1 0 0 0 0 Gkn—1 Qkn
0 0 0 axyiks2 0 Qktin-1 Qkiln A
. . . (Ae)
0 00 0 An-—2n—2 Qan-—2n—-1 0an-2n
0 0 00 0 0 0 0
0 00 0 0 0 0
Whereupon, the derivation d of this sub case is in the form Ds. O
Appendix
di 0 0 0 0 0 0 0 0 0 din
0 dp 0 0 0 0 0 0 0 dym1 O
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2dy 0 0 0 0 0 0
0 0 0 0 0 X 0 0 0 0 0 (D1)
0 0 0 0 0 0 0 0 0 0 0 !
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2dy 0 0 0
0 0 0 0 0 0 0 0 Y 0 0
0 —bydgn_1 O 0 0 0 0 0 0 dy 0
—bidin 0 0 0 0 0 0 0 0 0 dn
where X = 2m~(s—1—1q,, y = pn—la+l)=1q,,
dn 0 0 0 0 0 0 0 0 0  din
0 dy 0 0 0 0 0 0 0 dymq O
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 X 0 0 0 0 0 0
0 0 0 0 0 dy 0 0 0 0 0
(Ds)
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Y 0 0 0
0 0 0 0 0 0 0 0 0 dy 0 0
0 —bydin1 O 0 0 0 0 0 0 dp 0
—bidin 0 0 0 0 0 0 0 0 0 dn

d
WhereX: Zm*%’ Y:

11
2(n—2)—(r—2+1) *
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