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Abstract

In this paper, we introduce both the generalized degenerate Gould-Hopper based degenerate Stirling polynomials of the
second kind and the generalized degenerate Gould-Hopper based fully degenerate Bell polynomials. We study and investigate
multifarious properties and relations of these polynomials such as explicit formulas, differentiation rules and summation for-
mulas. Moreover, we derive several correlations with the degenerate Bernstein polynomials for these polynomials. Furthermore,
we acquire several representations of the generalized degenerate Gould-Hopper based fully degenerate Bell polynomials via not

only the fully degenerate Bell polynomials but also the generalized degenerate Gould-Hopper based degenerate Bernoulli, Euler
and Genocchi polynomials.
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1. Introduction

The Gould-Hopper polynomials are defined via the following Mac Laurin series expansion (see [1, 11,
14]):

- H(]) i _ xt+ytj 1.1
Y HP ey = ety (1.1)
n=0 ’

where j € IN with j > 2. Upon setting j = 1, the Gould-Hopper polynomials reduce to the representation
of the Newton binomial formula. Also, choosing j = 2 in (1.1), we obtain the familiar Hermite polynomials
denoted by H, (x,y) (cf. [2, 10, 13, 17, 28, 33, 34, 37]).
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The Gould-Hopper polynomials and Hermite polynomials have been used to generalize diverse spe-
cial polynomials such as Bernoulli, Euler, Bell and Genocchi polynomials (see [2, 10, 11, 13, 14, 17, 28,
33, 34]). For instance, Araci et al. [2] introduced a novel concept of the Hermite based Apostol-Genocchi
polynomials and investigated several general symmetric identities and implicit summation formulas aris-
ing from different analytical means and series manipulation procedure. Duran et al. [13] considered
Hermite based poly-Bernoulli polynomials with a q-parameter and gave some properties and relations
of them. Duran et al. [14] defined the Gould-Hopper based fully degenerate poly-Bernoulli polynomi-
als with a g-parameter and provided some of their multifarious basic formulas and properties includ-
ing both addition and difference rule properties. Duran et al. [11] considered generalized degenerate
Gould-Hopper polynomials, generalized Gould-Hopper based degenerate central factorial numbers of
the second kind and generalized Gould-Hopper based fully degenerate central Bell polynomials via the
degenerate exponential functions and then provided several formulae and correlations for these polyno-
mials and numbers related to not only the degenerate Bernstein polynomials but also the Gould-Hopper
based fully degenerate Bernoulli, Euler and Genocchi polynomials. Khan [17] defined degenerate Hermite
poly-Bernoulli numbers and polynomials and gave some properties and relations. Kurt et al. [28] consid-
ered Hermite based Genocchi polynomials. Ozarslan [33] introduced a unified family of Hermite based
Apostol-Bernoulli, Euler and Genocchi polynomials and proved a finite series relation between this unifi-
cation and 3d-Hermite polynomials. Pathan [34] introduced a new kind of generalized Hermite-Bernoulli
polynomials and attained some implicit summation formulae and symmetric relations.

For A € C, the A-falling factorial (x)n,)\ is defined by (see [3-14, 16, 17, 20-23, 25, 27, 28, 34])

(X)yr = { ?L(x Ax—2A) - (x—(n—1)A), 2 - (1), 2,..., (1.2)

In the case A = 1, the A-falling factorial reduces to the familiar falling factorial (x),, (see [3-14, 16, 17, 20—
23,25, 27,28, 31, 33])
X))y =x(x—1)---(x —m+1).

The Stirling numbers of the first kind S; (n, m) are defined by means of the falling factorial as follows
n
(X)p =D Si(nm)x™,
m=0

cf. [3, 12, 31, 33] and see also references cited therein.
The A, difference operator is defined by (see [10, 11, 14, 31])

Arf(x) = %(f(x FA) —f(x)), A#£O.

The following Lemma will be useful in the derivation of several results.

Lemma 1.1 ([10, 11, 14, 31]). The following elementary series manipulation hold:

0o 00 o |[n/j]
> Y Akn)=> Y A(kn-—ijk), (1.3)
n=0k=0 n=0 k=0

where |-| is the Gauss notation, and represents the maximum integer which does not exceed the number in the
square brackets.

The degenerate exponential function ej (t) for a real number A is given by (cf. [3, 5, 7, 10-14, 16, 17, 20—
23, 25, 27])
ex (t) = (1+At)* and e}\ (t) =ex (1). (1.4)
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It is readily seen that limy_,geX (t) = et

[3,5,7,10-14, 16, 17, 20-23, 25, 27])

. From (1.2) and (1.4), we obtain the following relation (cf.

tT‘L
) =Y Kpr— (L5)
which satisfies the following difference rule
Axey (t) = tex (1).

Letn,j € Z withn 2 0 and j > 0, and let A;, A, € R\ {0}. The generalized degenerate Gould-Hopper
polynomials Hg,)hi\z (x,y) are defined by means of the following generating function (cf. [11]):

n

o0 t )
D Hiha 0y =X (D, (V). (1.6)

n=0

Duran and Acikgoz in [11] mvestlgated diverse formulas and properties of the generalized degenerate
Gould-Hopper polynomials Hn Aas (X Y).

2. The generalized degenerate Gould-Hopper based degenerate Stirling polynomials of the second
kind

In this section, we perform to analyze and investigate degenerate forms of some special polynomials
and numbers. We focus on the generalized degenerate Gould-Hopper based degenerate Stirling polyno-
mials of the second kind. We then derive several properties and formulas for these polynomials.

For non-negative integer n, the Stirling numbers of the second kind S; (n, m) are defined by the
following exponential generating function (cf. [1-4, 7, 10-17, 20-22, 25-27, 29-33, 38]

0 tn (et o 1)m
nZ_oSZ (nym) = 2.1)

For non-negative integer n, the degenerate Stirling polynomials of the second kind S (n, m: x) and
the degenerate Stirling numbers of the second kind Sy (n, m) are defined by the following exponential
generating functions (cf. [19, 21, 25-27])

t“ (ex (t) —1)™

ZSZ)\ nm:Xx j:Tex (t) (22)
and
an n,m) ':W. (2.3)

When A goes to 0, the degenerate Stirling numbers of the second kind (2.3) reduce to the Stirling numbers
of the second kind (2.1), that is limp_,0 Sp,A (n, m) = S (n, m).

We are now ready to give the definition of the generalized degenerate Gould-Hopper based degenerate
Stirling polynomials of the second kind.
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Definition 2.1. Let Ay, A2, A3 € R\ {0}. The generalized degenerate Gould-Hopper based degenerate Stir-

ling polynomials of the second kind S2 Ay )\ A, (MM x,y) are defined by means of the following generat-
ing function

m
o n (e;vl(t)—l) s
Z 2}\17\27\3 (n, m: xg)n' D — (e, (V). (2.4)
n=0
We here analyze some special circumstances of the generalized degenerate Gould-Hopper based de-

generate Stirling polynomials of the second kind 52 Ay )\ s (M mx,y) as follows.
Remark 2.2.

1. When x =y = 0, we get the extended degenerate Stirling numbers of the second kind

no (e m—1)"
Zslew nm) = <Am|> of. ([12]). (2.5)

2. Upon setting y = 0, we obtain a new extension of the Stirling polynomials of the second kind,
termed unified degenerate Stirling polynomials of the second kind:

m
(w) o b ( A
Z 52;\)1,7\2 (n,m:x) o = Te}iz (t).
e

3. When x = 0, we attain a novel family of polynomials, which is a generalization of the Stirling
polynomials of the second kind:

co o (ew-1)"

Zsz>\17\3 “m‘x)ﬁzTe’is(tj)-

4. In the limiting case A; — 0, generalized Gould-Hopper based degenerate Stirling polynomials of the

second kind S[j’w] (n, m: x,y) reduce to the w-analogue of the degenerate Gould-Hopper based
2,A1,A2,A3 Y & g 1YY

Stirling polynomials of the second kind denoted by Sg}w;Az,M (n,m:x,y):

G

— [j] t" Y (e
. _ X
Z SZ,w;Az,A3 (n,m:x,y) oy B ex, (1) ez, (tl) .

5. When w =1 and y = 0 with replacing A, by A;, we get the degenerate Stirling polynomials of the
second kind S5, (n, m) in (2.2), cf. [25-27].

6. Choosing w =1, A;, A, — 0 and y = 0, we acquire the usual Stirling polynomials of the second kind
So (n,m:x), cf. [12, 19, 24-27].

7. When Ay — 0, w =1 and x = y = 0, we attain the familiar Stirling numbers of the second kind
Sy (n,m) in (2.1), cf. [1-4, 7, 10-17, 20-22, 25-27, 29-33, 38].

Proposition 2.3. The following summation formulas

n

n .
S (Mmixy) =3 () Saane (smIHD 3y (o),

n
b,w] n [j,w] )
S2 A (X Y) = Z (s) (g0, S2a 0, (=8 Mm i Yy),
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Tl

] (w) (

[j,w] . |Z 57\3 2?\17\2)\3
S, (MMix,y)=n n—is)is!

—sj,m:x)

4

hold true.

Proposition 2.4. For k, m,n € IN and A1, A2, A3 € R\ {0}, we have

S[] w] k'm'

Mg (KX, Y) k+m' < ) 2>\1>\2>\3 (w,m:xY)S2a,0 (M—u, k),

n

§,w] kim! n\ . (w) oy il

52{7\?7\2,7\3 mm+k:x,y) = ra— Z SZ,C?L\’1,7\2,7\3 (u, m:x) 52{7\?7\3 m—u,k:y).
(k+m)! —\u

Here is a differentiation rule for the generalized degenerate Gould-Hopper based degenerate Stirling
polynomials of the second kind S2 A )\ A (Mmixy).

Theorem 2.5. The following relation

d i ] n 00 n m (_1)u+k+1 .
aw52A1A2>\3(nm x,y) ) ZZZl s\ TA?
0k=0u
—k .
X = (@ (M=K yp, HOA, (00) (2.6)
holds true for A1, A2, A3 € R\ {0}.
Proof. In view of (2.4), we get
- tn
3% )\2 As (m,m:x,y) -
n=0
m
_ 0 (e;ﬁ(t)_l) X (t Y tj
=~ 30 ml exz()exs( )
Ui el (t)ed (Y w(m—k) mk
=3 (%) B ™ g
k m!
k=0
m 00 u+k+1
m (—1) m—k u-lgu elpk) Y (4
o M M u+k+1
n\ /m\ (—1) m—k_ ., 1 4) gt
=3 3 3 3 ()(0) T e wim ek, M o
n=0s=0k=0u=1
which implies the claimed result (2.6). O

Theorem 2.6. The following identity

9 (hwl - uH)\ sl 0o
Ox 29\17\2;\3(nm X,Y) n— u'Z 22;\17\27\3(T1 um:x,y) (2.7)

u=1

is valid for A, A2, A3 € R\ {0}.

Proof. From (2.4), the asserted result (2.7) can be obtained by utilizing similar method used in the proof
of Theorem 2.5. Thus, we omit the proof. O
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Theorem 2.7. For A1, A\, A3 € R\ {0}, we have

d el (e ] u+1 }\u 1 i)
dy T2 (WX, Y) n—u)! Z SoA A (M—iw,mex, y). (2.8)
u=1

Proof. From (2.4), the asserted result (2.8) can be similarly obtained by utilizing same method used in the
proof of Theorem 2.5. Thus, we omit the proof. O

We here give the following correlation.

Theorem 2.8. The following relation

SE)\?]M As (m,m:x,y) Z Z ( > Sz A (M=K, u) SE’)\?’]M (k, m:y) (2.9)
k=0u=0
holds true for A1, A2, A3 € R\ {0}.
Proof. By Definition 2.1, we have
m
oo o w1
ZZZMMMTanth—WMﬁ%J+U — el (V)
n=0
m
o (e;ﬁ (t) — 1)
= Z <u> (ex, (1) =)™ i e‘){3 (V)
u=0
o0 n
n x! G, w] tm
=3 3 3 (1) s sl komay) o
n=0k=0u=0
which implies the desired result (2.9). O

We here give the following correlation.

Theorem 2.9. The following correlation

SE?\T]M As (n,m:x,y) Z Sg]w;kz,ks (Lm:x,y)S1(n, 1) ?\{‘_l (2.10)
1=0

is valid for A, A2, A3 € R\ {0}
Proof. By Definition 2.1 and the identity (1.4), we obtain

o0 Tl 1

v 1 log (1+A1t))
> S (Lmixy) o Z Sy s (LTI X, Y) AT e
n=0 1=0

o n tn
:Zzshv?\z?\ (Lm:x,y)Si(n, YA ln"
n=01=0

which provides the desired result (2.10). O

3. The generalized degenerate Gould-Hopper based fully degenerate Bell polynomials

In this section, we consider a new concept of the degenerate Bell polynomials by using the generalized
degenerate Gould-Hopper polynomials. We then get several formulas and identities for these polynomials
such as summation formula, explicit formula and differentiation property.
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The classical Bell polynomials By (x) (also called exponential polynomials) are defined by means of
the following generating function: (cf. [1, 2, 12, 14-16, 19-22, 26, 31, 32])

Z Bn (x) % = ex(e' 1), (3.1)

n=0

The classical Bell numbers B;, are determined by taking x = 1 in (3.1), that is B, (1) := By, and are given
by the following exponential generating function:

o0

) Bn% = ele=1) (3.2)
n=0 ’

The Bell polynomials introduced by Bell [3] appear as a standard mathematical tool and arise in combina-
torial analysis. The familiar Bell polynomials have been intensely investigated by several mathematicians,
cf. [1, 2,12, 14-16, 19-22, 26, 31, 32] and see also the references cited therein.

The usual Bell polynomials and Stirling numbers of the second kind satisfy the following relation (cf.
(1,2, 14, 15, 20, 26, 32])

Bn (x) = Z So (n, m)x™. (3.3)
m=0

The degenerate Bell polynomials are given by the following Taylor series expansion at t = 0 as follows
(cf. [11, 21, 2325, 27])

= t (t)—1
Y Bua(x) = ex(ea(t)=1), (3.4)
n=0 '

When x = 1 in (3.4), the polynomials By,  (x) reduce to the degenerate Bell numbers B;, 5 (1) := Bna
having the following generating function

(e ¢]

t t)-1
> By = eler(ti=1), (3.5)
n=0 ’

We note that using (1.4), the degenerate classical Bell polynomials (3.4) reduce the classical Bell polyno-
mials in the following limit cases:
lim By (x) = Bn (x).
A—0
The degenerate Bell polynomials and the degenerate Stirling numbers of the second kind satisfy the
following relation (cf. [23-25, 27])

Bna (x) = Z Soa (n,m)x™. (3.6)
m=0

We are now ready to define the generalized degenerate Gould-Hopper based fully degenerate Bell
polynomials and numbers by the following Definition 3.1.

Definition 3.1. Let A, A1, A, A3 € R\ {0}. The generalized degenerate Gould-Hopper based fully degenerate
Bell polynomials Bff”)z’)}mM’M (z: w,x,y) are defined by the following exponential generating function

n

Y B Ao 2 @xy) = =k (e (1) — 1) e}, (V) ey, (V). 5.7)

n=0

n!
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Upon setting z = 1, the generalized degenerate Gould-Hopper based fully degenerate Bell poly-
nomials reduce to the corresponding numbers BE}A,M,M,M (1:w,x,y) = BEJ}\/ALAZ/}\S (w,x,y) termed as
generalized degenerate Gould-Hopper based fully degenerate Bell numbers:

00 n

> B e (@) = e (e (V- 1) €, (e, (1), (3.8)

n=0
We now examine diverse special cases of the generalized degenerate Gould-Hopper based fully de-
generate Bell polynomials as follows.
Remark 3.2.

1. When w = 1, the polynomials BE}}\/)\LAZ,}\S (z:w,x,y) in (3.7) reduce to the generalized Gould-

Hopper based degenerate Bell polynomials BE?)\/}\L)\L)\S (z:x,y) are as in (3.9), which are also new
generalizations of the Bell polynomials By, (x) in (3.1), given by

- " .

Z Bﬂml s (Zixy) o =ex (e (B —1)ex, (1) ey, (V). (3.9)

2. Upon setting A, Ay, Az — 0, we get the Gould-Hopper based generalized degenerate Bell polynomials
BE}M (z:w,x,y) (3.10), which are extensions of the Bell polynomials (3.1), shown by

tTl

n!

Z an zZ:w,x,y)— =e (e (1) exthyt), (3.10)

n=0

3. Choosing y = x = 0, we obtain a new generalization of the degenerate Bell polynomials given below:

4. Setting w =1,y = x = 0 and Ay — 0, we attain the degenerate Bell polynomials and numbers
denoted by By a (z) and By, 5, which is different from the polynomials and numbers in (3.4) and
(3.5) given by Kim et al. [21]:

s ot . t" t
Zany\(z)—':e)\ (e'—1) and Zany\E:e;\ (et—1).
n=0 n=0

5. In the special case A, A1,A2,A3 — 0, we acquire Gould-Hopper based extended Bell polynomials
Bg)w (x :x,y) as follows

0 tn

wt__ j
Zan 2 xy 7' (e 1)ext+yt.

6. When w =1,y =x =0 and A — 0, we obtain the degenerate Bell polynomials and numbers in (3.4)
and (3.5) (cf. [11, 21, 23-25, 27]).

7. When A, A\ = 0,y =x =0and w =1, we arrive at the usual Bell polynomials and numbers in (3.1)
and (3.2) (cf. [1, 2, 14, 15, 20, 26, 32]).

We now investigate some properties and formulas of the generalized degenerate Gould-Hopper based

tully degenerate Bell polynomials B1(1c,’>3,)>\1,>\z,7\3 (z:w,x,y). Hence, we firstly provide the following theo-
rem.
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Theorem 3.3. For A, A1, Ay, A3 € R\ {0}, we have
. n n .
BE}A,M,MM (z:w,x,y) = Z <L> Biaa, (z:w) H?_MMS (x,y). (3.11)
1=0

Proof. By (1.6) and (3.7), the asserted result (3.11) can be directly derived by using Cauchy product. Hence,
we omit the proof. 0

A generalization of the well-known relations in (3.3) and (3.6) is given below.

Theorem 3.4. The following relation

3]
B (21 @ X y) ZSZA17\27\3 M X, Y) (2)m A (3.12)
holds true for A, A1, A2, A3 € R\ {0}.

Proof. By Definition 3.1 and formulas (1.4) and (1.5), the claimed result (3.12) can be directly obtained by
utilizing Cauchy product. Thus, we omit the proof. O

We now state a summation formula for 82}7\,7\1,7\2,7\3 (z:w,x,y) as follows.
Theorem 3.5. The following summation formula
Gl = n 53
BT]L,?\,M,?\z,?\a (z1+ 22 w,x,y) = Z <m> BTJL—m,?\,A1,?\2,?\3 (z1:w,%Y)Bman (z2: w), (3.13)
m=0
is valid for A, A1, A2, A3 € R\ {0}.

Proof. By Definition 3.1 and the identity (1.5), the desired result (3.13) can be directly acquired by using
Cauchy product. Hence, we omit the proof. O

We now provide a correlation as follows.

Theorem 3.6. The following formula

n n

(51 5} —
BT]M ALAsAs (z:w,x,y) Z Z Z)ma 52),“,;7\2,7\3 (Lm:x,y)Si(n,YAT t (3.14)
m=01=0

holds true for A, A1, A2, A3 € R\ {0}.

Proof. By Definition 3.1 and Theorem 2.9, we get

tn >0 ex, (t)—1 .
Z BTI A ?\1 )\2 7\3 (Z (.U X U) 7’ Z (Z)TTL,}\ ( m| ) e)\z (t) el)J\3 (t])
n=0 m=0 ’
0 o n ) n
- Z (Z)m)\ Z Z SE,LJ;M,M (]"m : x,y) S1 (TL, 1) )\?_lﬁ
0 n=01=0 )

m=
o0 mn n n

_ lj] ) nath

- Z Z Z (Z)m,7\ SZ,w;Az,?\g (l/m . le) Sl (TL, l) )\ n’

which gives the claimed result (3.14). O



U. Duran, M. Acikgoz, ]J. Math. Computer Sci., 21 (2020), 243-257 252

We here provide an explicit formula for BE}A A Ao s (z:w,x,y) as follows.

Theorem 3.7. The following explicit formula

. n (n—u)/j| _ 1
BPL}?\ A1LA2,A3 Z w, X, y Z Z Z Z (2) <T]:L> (_1)m7k (nm'll)

u=0m=0k=0 (315)
(X)n—u—jk,)\z (U)k,)\3
X Wl 0 S
holds true for A, A1, A2, A3 € R\ {0}.
Proof. By Definition 3.1 and formulas (1.3) and (1.5), we get
tTL
ZBTI?\MM?\?, (z:w,xy)
n=0
m
° €\ (t)—1 .
=D (Dma <1m!>e§2 (t)ex, (V)
m=0
= (Z)m)\ = [m m—k wk x L
=y > (D™ QMO N (14M0)% (14 A5) %
m! k
m=0 k=0
00 oo m —k 0 [n/j]
m (—™ th (In—jien, Wias |t
=3 (L3 (1) T b ) 5 3 (3 S|
n=0 \m=0k=0 n=0 k=0
which gives the asserted result (3.15). O

We now present the following derivation property with respect to z for Bn A A As (210, %, Y).

Theorem 3.8. The following relation

d _j AT -
B rnan 200 = 3 5 ()8 aa a2 0% U] Saage () (m = 11 N™ T (316)

u=0m=1
holds true for A, A1, A2, A3 € R\ {0}.
Proof. By Definition 3.1 and formulas (1.4) and (1.5), we get

0 n

Z ?\1>\27\3Z wxy)

- d%ei (e (6~ 1) &, (), (1)

= (1A (e (0 =1)) I (1A (e (0 -1)" ) e, (1) e, (V)

bl tm Z‘X’ ) (e;fl (t)—l)m
n=0 m=1 :
[oe] n o0
n m
=5 (u> > (m—1(=N™" :50 WA AN (25X Y) Sop e (um) —,

which means the claimed result (3.16). O
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4. Multifarious connected formulas

In this section, we perform to get several diverse relations for 32}7\,7\1,7\2,7\3 (x : w,x,y) with some other
degenerate polynomials including both the degenerate Bernstein polynomials and the generalized degen-
erate Gould-Hopper based degenerate Bernoulli, Genocchi, and Euler polynomials.

Kim and Kim [22] defined the degenerate Bernstein polynomials by means of the following generating

function:

" (e k1o
Z‘Bkn x:A) —'— k' ke%\ *(t).

By utilizing (1.6), (3.7), and (4.1), we consider that

- 5] tn
ZBn,?\,M,)\z As (z:w,xy) )
n=0 .
m
oo CROE
= Z (Z) A = eX, () e}, (V)
m=0

[ele] m —k
(z) —1)™ " (1 - wk) wk
=2 wi—a B . (LM e, () €}

e v @pa
"z Ztk(l_wk)k)\l (m—Kk)! 2 ; <u>%ku(lwk M) HY

Hence, we arrive at the following theorem.

Theorem 4.1. The following correlation

glil (—1)

m=0 k=0

n+k
X Z ( >%ku(1_‘”k M) nJ)rk WAL A

holds true.
Let (2)
Z)x A k 1- )
Y = - (e (t)—1) el ® (e (t)—1) e, (1) e§\3 (V).
From (2.4) and (4.1), we obtain
u
i ey (t)—1 :
Y=D) Brulz:A) (lu,)eiz (tey (V)
u=0 ’
S Bz Y SEELL it
= ku(z: A A (WX, Y y
u=0 n=0
w
= Z (Z %k,u (Z . )\) Sz))\l A As (TL u:x, y)) ﬁ
n=0 \u=0 ’
and on the other hand, by (2.5) and (3.7), we get

AN (2 wxy‘”“Z:Z:1 Mﬁd(m—MWn+M!

, (V)

n— u7\27\3

(4.1)
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) Z <Z < ) B (172 @%Y) $a30 (=1, K) (z)m) :TT:

Thus, we arrive at the following theorem.

Theorem 4.2. The following summation equality

n
n .
Z %ku z:A)S 2)\1 )\2 A3 (mu:x, y) Z <u> BB})\,}\I,)\Z,M l1-z:w, X/y) 52,7\1,w (m—u,k) (Z)k,}\ (4.2)

u=0
is valid.
The classical Bernoulli By (x), Euler E, (x) and Genocchi Gn, (x) polynomials and the degenerate

Bernoulli By, 5 (x), Euler E;, ) (x) and Genocchi G 5 (x) polynomials are given as follows (cf. [2, 8, 10, 13,
14, 16, 17, 28, 29, 33-36]):

S Bt = o and Y Bttt ey (4.3)
Tl T et —1 A T e () =1 A ’
n=0 n=
= tn 2 = tn 2 N
Z En (%) et and Z Ena (x) Sy mex (t), (4.4)
= tn 2t = tn 2t

A = _eX(t). 4.
T;Gn () n!  et+1 and nZ Gna (X) n!  ex(t)+1 ex (t (45)

We here generalize the mentioned polynomials above via the generalized degenerate Gould-Hopper
polynomials in (1.6).

Definition 4.3 ([11]). the following exponential generating functions are the definition of the generalized
degenerate Gould-Hopper based degenerate Bernoulli BE}M;M,M (x,y), Euler EPJM;M,M (x,y) and Genoc-

chi GTJL A, (% Y) polynomials:
goB[ e (0 Y) — i = %(I)_le’;z (t) e}, (V), (4.6)
i . ,y) v %(fmeiz (el (v), 47)
i GE}M;)\Z,M (x,y) ‘% = e;\l(ztt)—i—le;iz (t) 61‘733 (tj) (4.8)

3
g

for A, A2, A3 € IR\ {0}

When x = y = 0, the polynomials in (4.6), (4.7), and (4.8) reduce to the corresponding degenerate
numbers, namely Bn?\ AaAs (0,0) == Bna,, EE}}\L’?\Z/}B (0,0) := Enp, and GR}M;M,M (0,0) := Gn,, see
[8, 29] and the references cited therein for further information. Several properties and relations of these
polynomials have been proved by Duran and Acikgoz in [11].

Remark 4.4. When y = 0 and A, = A4, the polynomials in (4.6), (4.7) and (4.8) reduce to the degenerate
polynomials given in (4.3), (4.4), and (4.5).

We now perform to acquire several representations for BE}}\J\L)\Z,}\S (z:w,x,y) by means of the gener-
alized degenerate Gould-Hopper based degenerate Bernoulli, Euler and Genocchi polynomials and fully
degenerate Bell polynomials.

We here provide a relation involving the polynomials BT[EA)\L)\Z/}\S (z:w,xY), Boaa (x:w), and

5]
Bi,xl;xz,;“ (x,y) as follows.
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Theorem 4.5. The following correlation
51 . B[j} (1)n—u+1,?\1 4.9
B“}\Al A2 Az Z w, XU ZZ u S,A A1 (ZLU) S, ALA2,A3 (le) n—u+1 ( . )
u=0s=0
holds true.
Proof. By (3.7) and (4.6), we get
S gl (z: i
Z LA A A2, A3 z-, X,y n'
n=0
; t ey (B)—1
_ y
= ek (e (0 -1 ek, (D}, (V) =7
oo (o.¢] t“
:Z nan (2 w) |Z n?\17\27\axy Z ““Alm
0] u
u ) glil (Wi, |t
-3 (S () (4 e s e ez )
s=0
which implies the desired result (4.9). O]
We give the following theorem.
Theorem 4.6. The following summation formula
: ) :
Boaa o (21 @, Y) Z Z ( >< )nz MR (2 @)ED L (%)
k=0 m=0
Ly (™) L w) B 4.10
+ > Z K n—kAA (z:w) KALA2AS (x,y) (4.10)
k=0

is valid.

Proof. From (3.7) and (4.7), the aimed result (4.10) can be directly obtained by utilizing similar method

used in the proof of Theorem 4.2. Thus, we omit the proof.

O

A correlation covering the generalized degenerate Gould-Hopper based degenerate Genocchi polyno-

mials and the fully degenerate Bell polynomials is stated in the following theorem.

Theorem 4.7. The following relation

n+l k
gl! (z:w,x, Z Z “+1 MB (z:w)GY
LA A,A2, A3 y 2 kem A LE MALA2AS
k
i Brnii—kan (21 w) GE,}}\l;}\z,Ag (x,y)
— 2(n+1)
holds true.

(x,y)

Proof. In view of (3.7) and (4.8), the proof can be directly attained by utilizing similar method used in the

proof of Theorem 4.2. Thus, we omit the proof.

O
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