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Abstract
A q-analogue of r-Whitney numbers of the second kind, denoted by Wm,r[n,k]q, is defined by means of a triangular

recurrence relation. In this paper, several fundamental properties for the said q-analogue are established including other forms
of recurrence relations, explicit formulas and generating functions. Moreover, a kind of Hankel transform for Wm,r[n,k]q is
obtained.
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1. Introduction

Several mathematicians developed a way of obtaining a generalization of some special numbers. One
generalization is a q-analogue of these special numbers. A q-analogue is a mathematical expression
parameterized by a quantity q that generalizes a known expression and reduces to the known expres-
sion in the limit, as q → 1. For instance, a polynomial ak(q) is a q-analogue of the polynomial ak if

lim
q→1

ak(q) = ak. The q-analogue of n, n!, (n)k, and
(
n

k

)
are respectively given by

[n]q = 1 + q+ q2 + · · ·+ qn−1 =
1 − qn

1 − q
,

[n]q! = [n]q[n− 1]q · · · [2]q[1]q,
[n]k,q = [n]q[n− 1]q · · · [n− k+ 1]q,[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

[n]k,q

k!
,
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where n and k are integers and that n > k. The polynomials
[
n

k

]
q

are usually called the q-binomial

coefficients. These can be viewed as a formal polynomial in q of degree k(n− k), where the coefficient of

qj counts the number of k-subsets of {1, . . . ,n} with element sum j+
k(k+1)

2 . Thus,
[
n

k

]
q

are polynomials

with positive coefficients.

The q-binomial coefficients
[
n

k

]
q

, also known as Gaussian coefficients, count subspaces of a finite

vector space. That is, if q is the number of elements in a finite field (the number q is then a power
of a prime number, q = pe), then the number of k-dimensional subspaces of the n-dimensional vector

space over the q-element field equals
[
n

k

]
q

. We observe that, when q approaches 1, we get the binomial

coefficient
(
n
k

)
, which counts the number of k-element subsets of an n-element set. Thus, one can regard

a finite vector space as a q-generalization of a set, and the subspaces as the q-generalization of the subsets
of the set. This has been a fruitful point of view in finding interesting new theorems.

The q-binomial coefficients possess several properties including the q-binomial inversion formula

fn =

n∑
k=0

[
n

k

]
q

gk ⇐⇒ gn =

n∑
k=0

(−1)n−kq(
n−k

2 )
[
n

k

]
q

fk

and the generating function

n∑
k=0

q(
k
2)
[
n

k

]
q

xk = (1 + x)(1 + xq)(1 + xq2) · · · (1 + xqn−1). (1.1)

Again, when q approaches 1, the q-binomial inversion formula reduces to the binomial inversion formula
[5]

fn =

n∑
k=0

(
n

k

)
gk ⇐⇒ gn =

n∑
k=0

(−1)n−k
(
n

k

)
fk

and the generating function in (1.1) reduces to the following binomial expansion

n∑
k=0

(
n

k

)
xk = (1 + x)n.

It is worth-mentioning that q-analogues have applications in the study of fractals and multi-fractal
measures, and expressions for the entropy of chaotic dynamical systems. These applications of q-
analogues to fractals and dynamical systems are based on the fact that many fractal patterns have the
symmetries of Fuchsian groups in general (see, for example Indra’s pearls and the Apollonian gasket)
and the modular group in particular. The connection passes through the concept of q-series, which is
closely related to elliptic integrals (see [14, 15]).

q-analogues also appear in the study of quantum groups and in q-deformed superalgebras. The
connection here is similar, in that much of string theory is set in the language of Riemann surfaces,
resulting in connections to elliptic curves, which in turn relate to q-series.

One can also frequently find q-analogues in exact solutions of many-body problems. For instance,
in atomic physics, the model with a q-deformed version of the SU(2) algebra of operators describes the
process of the model of molecular condensate creation from an ultra cold fermionic atomic gas during a
sweep of an external magnetic field through the Feshbach resonance (see [26]). Moreover, its solution is
described by q-deformed exponential and binomial distributions.
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Carlitz [3] was the first to define a q-analogue of the Stirling numbers of the first and second kinds.
The q-Stirling numbers of the second kind, a q-analogue of the classical Stirling numbers of the second
kind S(n,k), was defined in the same paper in terms of the recurrence relation

S̃q[n,k] = S̃q[n− 1,k− 1] + [k]qS̃q[n− 1,k] (1.2)

in connection with a problem in Abelian groups. Notice that as q→ 1, (1.2) gives the triangular recurrence
relation

S(n,k) = S(n− 1,k− 1) + kS(n− 1,k).

A different way of defining q-analogue of Stirling numbers of the second kind has been adapted in the
paper by Ehrenborg [13] which is given as follows

Sq[n,k] = qk−1Sq[n− 1,k− 1] + [k]qSq[n− 1,k]. (1.3)

A slight difference is imposed in (1.3) by multiplying the first term of the right-hand side of (1.2) with
the factor qk−1. This type of q-analogue gives the Hankel transform of q-exponential polynomials and
numbers which are certain q-analogue of Bell polynomials and numbers. It is worth-noting that the q-
Stirling numbers of the second kind in (1.3) appeared as coefficients in the expansion of normally ordered
form (see [23])

(VU)n =

n∑
k=0

Sq[n,k]VkUk,

where U and V are operators satisfying the q-commutation relation UV = qVU+ 1. This expansion is a
kind of q-analogue of the following expansion in [18]

(a+a)n =

n∑
k=0

S(n,k)(a+)kak,

where S(n,k) are the Stirling numbers of the second kind, a an annihilation operator that lowers the number
of particles in a given state by one, and a+ a creation operator that increases the number of particles in a
given state by one. These operators are adjoint to each other that satisfy the commutation relation

[a,a+] := aa+ − a+a = 1.

Using the method of Aigner [1] and Mező [25], Corcino and Corcino [7] have successfully established
the Hankel transform H(Gn,r,β) of the sequence of generalized Bell numbers Gn,r,β (also known as (r,β)-
Bell numbers) given by

H(Gn,r,β) =

n∏
j=0

βjj!,

where

Gn,r,β =

n∑
k=0

{
n

k

}
r,β

and
{
n

k

}
r,β

is the (r,β)-Stirling numbers [6, 8]. These numbers are also known as (r,β)-Bell numbers.

The the method of Aigner is carried out in the following steps:

1. obtain generating function for the Bell-type numbers;
2. determine a sequence of numbers an,k such that the first column entries of the corresponding

Hankel matrix M = [an,k] are exactly those Bell-type numbers;
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3. express the Hankel matrix of order n as a product of lower and upper triangular matrices to easily
obtain the desired Hankel transform,

while the method of Mező is carried out as follows:

1. obtain generating function for the Bell-type numbers;
2. determine a sequence of numbers an,k such that the first column entries of the corresponding

Hankel matrix M = [an,k] are those Bell-type numbers with one parameter equal to zero;
3. express the Hankel matrix of order n as a product of lower and upper triangular matrices to easily

obtain the Hankel transform Bell-type numbers with one parameter equal to zero;
4. establish the binomial transform of the Bell-type numbers;
5. apply Layman’s theorem [21] to finally obtain the desired Hankel transform.

In the same paper [7], the authors have tried to establish the Hankel transform for the q-analogue
of Rucinski-Voigt numbers [11], which are also equivalent to (r,β)-Bell numbers. However, the authors
were not successful in their attempt. Recently, by introducing a new way of defining the q-analogue
of Stirling-type and Bell-type numbers, Corcino et al. [9] were able to establish the Hankel transform
for the q-analogue of non-central Bell numbers using the method of Mező. One can easily verify that
non-central Bell numbers are special case of (r,β)-Bell numbers (or Rucinski-Voigt numbers or r-Dowling
numbers [4]). In the desire to establish the Hankel transform of q-analogue of r-Dowling numbers, the
present authors have made the initiative to define and investigate a q-analogue of r-Whitney numbers
of the second kind [24] parallel to the q-analogues of noncentral Stirling numbers of the second kind in
[9, 20]. This paper is concluded by establishing the Hankel transform of the q-analogue of r-Whitney
numbers of the second kind using different method. The derivation of the Hankel transform of the q-
analogue of r-Dowling numbers will be included in another paper (see [10]). It is worth-mentioning that
r-Whitney numbers of the second kind and r-Dowling numbers are equivalent to (r,β)-Stirling numbers
and (r,β)-Bell numbers, respectively. This motivates the present authors to define a q-analogue of r-
Whitney numbers of the second kind parallel to that in [9].

2. A q-analogue of Wm,r(n,k) and recurrence relations

Now, let us introduce the desired definition of the q-analogue of r-Whitney numbers of the second
kind.

Definition 2.1. For non-negative integers n and k, a q-analogue Wm,r[n,k]q of Wm,r(n,k) is defined by

Wm,r[n,k]q = qm(k−1)+rWm,r[n− 1,k− 1]q + [mk+ r]qWm,r[n− 1,k]q, (2.1)

where Wm,r[0, 0]q = 1,Wm,r[n,k]q = 0 for n < k or n,k < 0 and [t− k]q = 1
qk

([t]q − [k]q).

Remark 2.2. This definition was motivated by the definition of q-Stirling numbers of the second kind
Sq[n,k] in (1.3). The q-analogue Wm,r[n,k]q can then be considered as generalization of Sq[n,k] in the
sense that

W1,0[n,k]q = Sq[n,k].

Remark 2.3. Clearly, this q-analogue of r-Whitney numbers of the second kind is different from that of
Mangontarum and Katriel [22] in the sense that their q-analogue, namely, (q, r)-Whitney numbers of the
second kind, denoted by Wm,r,q[n,k], satisfy the following recurrence relation

Wm,r,q(n,k) = qk−1Wm,r,q(n− 1,k− 1) + (m[k]q + r)Wm,r,q(n− 1,k). (2.2)

However, when q → 1, both equations (2.1) and (2.2) will reduce to the recurrence relation of the r-
Whitney numbers of the second kind established by Mező [24] which is given by

Wm,r(n,k) =Wm,r(n− 1,k− 1) + (mk+ r)Wm,r(n− 1,k).



R. B. Corcinio, et al., J. Math. Computer Sci., 21 (2020), 258–272 262

Moreover, an alternative q-analogue of of the Ruciński-Voigt numbers was defined by Bent-Usman et al.
[2] as follows

[x]n =

n∑
k=0

Sn,k
q (a)Qk,a

q (x),

where a = (a,a+ r,a+ 2r,a+ 3r, ...) and

Qk,a
q (x) =

k−1∏
i=0

[x− (a+ ir)]q.

Surprisingly, the q-analogue Sn,k
q (a) is equivalent to the above q-analogue of r-Whitney numbers of the

second kind Wm,r[n,k]q with a and r are replaced by r and m, respectively. That is,

Sn,k
q (a) =Wr,a[n,k]q.

However, Sn,k
q (a) are defined by means of horizontal generating function, while Wm,r[n,k]q are defined

in terms of recurrence relation. Unfortunately, relation with Wm,r,q[n,k] is difficult to establish.

Remark 2.4. It can easily be verified that

Wm,r[n, 0] = [r]nq

and
Wm,r[n, 0] = qm(n2)+nr. (2.3)

By proper application of (2.1), we can easily obtain two other forms of recurrence relations and certain
generating function.

Theorem 2.5. For nonnegative integers n and k, the q-analogue Wm,r[n,k]q satisfies the following vertical and
horizontal recurrence relations:

Wm,r[n+ 1,k+ 1]q = qmk+r
n∑
j=k

[m(k+ 1) + r]n−jq Wm,r[j,k]q, (2.4)

Wm,r[n,k]q =

n−k∑
j=0

(−1)jq−r−m(k+j) rk+j+1,q

rk+1,q
Wm,r[n+ 1,k+ j+ 1]q, (2.5)

respectively, where

ri,q =

i−1∏
h=1

q−r−mh+m[mh+ r]q

and initial value Wm,r[0, 0]q = 1.

Proof. Replacing n by n+ 1 and k by k+ 1 in (2.1) gives

Wm,r[n+ 1,k+ 1]q = qm(k)+rWm,r[n,k]q + [m(k+ 1) + r]qWm,r[n,k+ 1].

Applying repeatedly by (2.1) gives

Wm,r[n+ 1,k+ 1]q = qm(k)+rWm,r[n,k]q
+ [m(k+ 1) + r]q(qmk+rWm,r[n− 1,k]q + [m(k+ 1) + r]qWm,r[n− 1,k]q)

= qm(k)+rWm,r[n,k]q + [m(k+ 1) + r]qWm,r[n− 1,k]q
+ [m(k+ 1) + r]2(qmk+rWm,r[n− 2,k]q + [m(k+ 1) + r]qWm,r[n− 2,k])
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+ · · ·+ [m(k+ 1) + r]n−kq (qmk+rWm,r[k+ 1,k+ 1]q).

Using the fact that Wm,r[k+ 1,k+ 1]q = Wm,r[k,k]q, we obtain (2.4). Now, to prove (2.5), we have to
rewrite the right-hand side (RHS) of the relation using (2.1) as follows

RHS =

n−k∑
j=0

(−1)j
rk+j+1,q

rk+1,q
Wm,r[n,k+ j]q

+

n−k∑
j=1

(−1)j−1q−r−m(k+j−1)
∏k+j−1
h=1 q−r−mh+m[mh+ r]q∏k
h=1 q

−r−mh+m[mh+ r]q
[m(k+ j) + r]qWm,r[n,k+ j]q.

Note that
k+j−1∏
h=1

q−r−mh+m[mh+ r]q = (q−r−m+m[m+ r]q)

× (q−r−m(2)+m[m(2) + r]q) · · · (q−r−m(k+j−1)+m[m(k+ j− 1) + r]q).

Now, we have

RHS =

n−k∑
j=0

(−1)j
rk+j+1,q

rk+1,q
Wm,r[n,k+ j]q +

n−k∑
j=0

(−1)j−1 rk+j+1,q

rk+1,q
Wm,r[n,k+ j]q =Wm,r[n,k]q.

This proves the theorem.

Theorem 2.6. A horizontal generating function of Wm, r[n,k]q is given by
n∑
k=0

Wm,r[n,k]q[t− r|m]k,q = [t]nq . (2.6)

Proof. We will prove this by induction on n. It is easy to verify that (2.6) holds when n = 0.

Wm,r[0, 0][t− r|m]0,q = 1 = [t]0q.

Now, suppose that it is true for some n > 0. That is,
n∑
k=0

Wm,r[n,k]q[t− r|m]k,q = [t]nq .

Then by the definition of Wm,r[n+ 1,k]q and the fact that [t− k]q = 1
qk

([t]q − [k]q), with k = r+ km, we
have,

[t− r− km]q = q−(km+r)([t]q − [km+ r]q).

Finally,
n+1∑
k=0

Wm,r[n+ 1,k]q[t− r|m]k,q =

n∑
k=0

qm(k)+rWm,r[n,k]q[t− r|m]k,qq
−(m(k)+r)([t]q − [km+ r]q)

+

n∑
k=0

[mk+ r]qWm,r[n,k]q[t− r|m]k,q

=

n∑
k=0

[t]qWm,r[n,k]q[t− r|m]k,q

= [t]q

n∑
k=0

Wm,r[n,k]q[t− r|m]k,q = [t]q[t]
n
q = [t]n+1

q .

This proves the theorem.
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3. Explicit formula and generating function

Explicit formulas and generating functions of a given sequence of numbers or polynomials are useful
tools in giving combinatorial interpretation of the numbers or polynomials. In the subsequent theorems,
we establish the exponential and rational generating functions and explicit formulas for Wm,r[n,k]q.

A q-analogue of the difference operator, denoted by ∆nq,h, also known as q-difference operator of order
n, was defined by the rule

∆nq,hf(x) =

n−1∏
j=0

(Eh − qj)

 f(x), n > 1,

where Eh is the shift operator defined by Ehf(x) = f(x+ h). When h = 1, we use the notation

∆nq,h = ∆nq .

This operator was thoroughly discussed in [5, 19]. By convention, it is defined that ∆0
q,h = 1 (identity

map). The following is the explicit formula for the q-difference operator

∆kq,hf(x) =

k∑
j=0

(−1)k−jq(
k−j

2 )
[
k

j

]
q

f(x+ jh). (3.1)

The new q-analogue of Newton’s interpolation formula in [19] states that, for

fq(x) = a0 + a1[x− x0]q + · · ·+ ak[x− x0]q[x− x1]q · · · [x− xk−1]q,

we have

fq(x) = fq(x0) +
∆qh,hfq(x0)[x− x0]q

[1]qh ![h]q
+
∆2
qh,hfq(x0)[x− x0]q[x− x1]q

[2]qh ![h]2q

+ · · ·+
∆k
qh,hfq(x0)[x− x0]q[x− x1]q · · · [x− xk−1]q

[k]qh ![h]kq
,

where xk = x0 + kh, k = 1, 2, · · · such that when x0 = 0 and h = m this can be simplified as

fq(x) = fq(0) +
∆qm,mfq(0)[x]q

[1]qm ![m]q
+
∆2
qm,mfq(0)[x]q[x−m]q

[2]qm ![m]2q

+ · · ·+
∆kqm,mfq(0)[x]q[x−m]q · · · [x−m(k− 1)]q

[m]qm ![m]kq
.

Using (2.6) with t = x, we get
n∑
k=0

Wm, r[n,k]q[x− r|m]k,q = [x]nq ,

which can be expressed further as

n∑
k=0

Wm,r[n,k][x]q[x−m]q[x− 2m]q · · · [x− (k− 1)m]q = [x+ r]nq .

Let fq(x) = [x + r]nq and Wm,r[n,k]q =
∆kqm ,mf(q(0)
[k]qm ![m]kq

. By proper application of the above Newton’s
interpolation formula and the identity in (3.1), we get

∆kqm,mfq(x) =

k∑
j=0

(−1)k−jqm(k−j2 )
[
k

j

]
qm
fq(x+ jm) =

k∑
j=0

(−1)k−jqm(k−j2 )
[
k

j

]
qm

[x− r+ jm]nq .
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Evaluating at x = 0 yields

∆kqm,mfq(0) =
k∑
j=0

(−1)k−jqm(k−j2 )
[
k

j

]
qm

[r+ jm]nq ,

which gives the following explicit formula for Wm,r[n,k]q.

Theorem 3.1. The explicit formula for Wm,r[n,k]q is given by

Wm,r[n,k]q =
1

[k]qm ![m]kq

k∑
j=0

(−1)k−jqm(k−j2 )
[
k

j

]
qm

[jm+ r]nq . (3.2)

Remark 3.2. The above theorem reduces to

Wm,r(n,k) =
1

k!mk

k∑
j=0

(−1)k−j
(
k

j

)
(jm+ r)n,

when q→ 1, which is exactly the explicit formula of the r-Whitney numbers of the second kind.

Remark 3.3. For brevity, (3.2) can be expressed as

Wm,r[n,k]q =
1

[k]qm ![m]kq

[
∆kqm,m[x+ r]nq

]
x=0 .

Theorem 3.4. For nonnegative integers n and k, the q-analogue Wm,r[n,k]q has a generating function

∑
n>0

Wm,r[n,k]q
[t]nq
[n]q!

=
1

[k]qm![m]kq

[
∆qm,mkeq

(
[x+ jm+ r]q[t]q

)]
x=0.

Proof. Using the formula in Theorem 3.1, we obtain

∑
n>0

Wm,r[n,k]q
[t]nq
[n]q!

=
∑
n>0

1
[k]qm![m]kq

k∑
j=0

(−1)k−jqm(k−j2 )
[
k

j

]
qm

[jm+ r]nq
[t]nq
[n]q!

=

k∑
j=0

1
[k]qm![m]kq

(−1)k−jqm(k−j2 )
[
k

j

]
qm

∑
n>0

(
[jm+ r]q[t]q

)n
[n]q!

=
1

[k]qm![m]kq

k∑
j=0

(−1)k−jqm(k−j2 )
[
k

j

]
qm
eq
(
[jm+ r]q[t]q

)
=

1
[k]qm![m]kq

[
∆qm,mkeq

(
[x+ jm+ r]q[t]q

)]
x=0.

Remark 3.5. When q→ 1, the above theorem becomes

∑
n>0

Wm,r(n,k)q
tn

n!
=

1
k!(m)k

k∑
j=0

(−1)k−j
(
k

j

)
e(jm+r)t

=
ert

k!(m)k

k∑
j=0

(−1)k−j
(
k

j

)(
emt

)j
=

ert

k!(m)k
(
emt − 1

)k ,

which is the exponential generating function of the r-Whitney numbers of the second kind.
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Theorem 3.6. For nonnegative integers n and k, the q-analogue Wm, r[n,k]q satisfies the rational generating
function

Ψk(t) =
∑
n>k

Wm,r[n,k]q[t]nq =
qm(k2)+kr[t]kq∏k

j=0(1 − [mj+ r]q[t]q)
.

Proof. It can easily be verified that, when k = 0, we obtain

Ψ0(t) =
∑
n>0

Wm,r[n, 0]q[t]nq =
∑
n>0

[r]nq [t]
n
q =

∑
n>0

([r]q[t]q)
n =

1
1 − [r]q[t]q

.

Now, for k > 0 and using the recurrence relation in (2.1), we obtain

Ψk(t) =
∑
n>k

Wm,r[n,k]q[t]nq =
∑
n>k

(
qm(k−1)+rWm,r[n− 1,k− 1]q + [mk+ r]qWm,r[n− 1,k]q

)
[t]nq

=
∑
n>k

qm(k−1)+rWm,r[n− 1,k− 1]q[t]nq +
∑
n>k

[mk+ r]qWm,r[n− 1,k]q[t]nq

= qm(k−1)+r
∑
n>k

Wm,r[n− 1,k− 1]q[t]nq + [mk+ r]q
∑
n>k

Wm,r[n− 1,k]q[t]nq

= qm(k−1)+r[t]q
∑
n>k

Wm,r[n− 1,k− 1]q[t]n−1
q + [mk+ r]q[t]q

∑
n>k

Wm,r[n− 1,k]q[t]n−1
q .

This can be expressed as

Ψk(t) = q
m(k−1)+r[t]qΨk−1(t) + [mk+ r]q[t]qΨk(t),

Ψk(t) − [mk+ r]q[t]qΨk(t) = q
m(k−1)+r[t]qΨk−1(t),

Ψk(t)(1 − [mk+ r]q[t]q) = q
m(k−1)+r[t]qΨk−1(t).

This gives

Ψk(t) =
qm(k−1)+r[t]q

1 − [mk+ r]q[t]q
Ψk−1(t).

By backward substitution, we get

Ψk(t) =
qm(k−1)+r[t]q

1 − [mk+ r]q[t]q
·

qm(k−2)+r[t]q
1 − [m(k− 1) + r]q[t]q

Ψk−2(t)

=
qm(k−1)+r[t]q

1 − [mk+ r]q[t]q
·

qm(k−2)+r[t]q
1 − [m(k− 1) + r]q[t]q

·
qm(k−3)+r[t]q

1 − [mk− 2 + r]q[t]q
Ψk−3(t)

...

=
qm(k2)+kr[t]kq∏k

j=0
(
1 − [mj+ r]q[t]q

) .

As a consequence of Theorem 3.6, we have the following explicit formula in symmetric function form.

Theorem 3.7. For nonnegative integers n and k, the explicit formula for Wm,r[n,k]q in the homogeneous sym-
metric function form is given by

Wm,r[n,k]q =
∑

06j16j26···6jn−k6k
qm(k2)+kr

n−k∏
i=1

[mji + r]q. (3.3)
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Proof. The rational generating function in Theorem 3.6 can be expressed as

∑
n>k

Wm,r[n,k]q[t]nq = qm(k2)+kr[t]kq

k∏
j=0

1
(1 − [mj+ r]q[t]q)

= qm(k2)+kr[t]kq

k∏
j=0

∑
n>0

[mj+ r]nq [t]
n
q

= qm(k2)+kr[t]kq
∑
n>k

∑
S1+S2+···Sk=n−k

k∏
j=0

[mj+ r]
Sj
q }[t]n−kq

= qm(k2)+kr
∑
n>k

∑
S1+S2+···Sk=n−k

k∏
j=0

[mj+ r]
Sj
q [t]nq .

Thus, by comparing the coefficients of [t]nq , we obtain

Wm,r[n,k]q = qm(k2)+kr
∑

S1+S2+···Sk=n−k

k∏
j=0

[mj+ r]
Sj
q ,

which is equivalent to the desired explicit formula in (3.3).

4. The Hankel transform

Now, we define another form of q-analogue of r-Whitney numbers of the second kind, denoted by
W∗m,r[n,k]q, as

W∗m,r[n,k]q = q−m(k2)−krWm,r[n,k]q,

which is parallel to that in [9]. Then, using equation (3.3), we have

W∗m,r[n,k]q =
∑

06j16j26···6jn−k6k

n−k∏
i=1

[mji + r]q.

The complete symmetric function of degree n in k variables x1, x2, . . . , xk, denoted by hn(x1, x2, . . . , xk), is
defined by

hn(x1, x2, . . . , xk) =
∑

16j16j26···6jn6k

n∏
i=1

xji ,

with initial condition h0(x1, x2, . . . , xk) = 1 and hn−k(x1, x2, . . . , xk) = 0 if n < k.
Consider the case where xi = [mi+ r]q for i = 0, 1, . . . , k. Hence, we can express the other form of

q-analogue of r-Whitney numbers of the second kind as

W∗m,r[n+ k,k]q = hn(x0, x1, . . . , xk).

Moreover, it can easily be shown that

W∗m,r+mk[s, t− k]q = hs−t+k(xk, xk+1, . . . , xt).

Note that

hn(xk) =
∑

k6j16j26···6jn6k

n∏
i=1

xji = x
n
k .
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So, when t = k, we have
W∗m,r+mk[s, 0]q = hs(xk) = x

s
k = [mk+ r]sq. (4.1)

An A-tableau is defined in [12] as a list φ of column c of a Ferrer’s diagram of a partition λ(by
decreasing order of length) such that the lengths |c| are part of the sequence A = (ri)i>0, a strictly
increasing sequence of nonnegative integers. Let ω be a function from the set of nonnegative integers N
to a ring K (column weights according to length). Suppose Φ is an A-tableau with l columns of lengths
|c| 6 h. We use TAr (h, l) to denote the set of such A-tableaux. Then, we set

ωA(Φ) =
∏
c∈Φ

ω(|c|).

Note that Φ might contain a finite number of columns whose lengths are zero since 0 ∈ A = {0, 1, 2, . . . ,k}
and if ω(0) 6= 0.

From this point onward, whenever an A-tableau is mentioned, it is always associated with the se-
quence A = {0, 1, 2, . . . ,k}.

Consider ω(|c|) = [m|c|+ r]q, where r is a complex number, and |c| is the length of column l of an
A-tableau in TAr (k,n− k). Then

W∗m,r[n,k] =
∑

φ∈TAr (k,n−k)

∏
c∈φ

ω(|c|).

Suppose φ1 is a tableau with k − l columns whose lengths are in the set {0, 1, . . . , l}, and φ2 be a
tableau with n− k− j columns whose lengths are in the set {l+ 1, l+ 2, . . . , l+ j+ 1}. Then

φ1 ∈ TA1(l,k− l) and φ2 ∈ TA2(j,n− k− j),

where A1 = {0, 1, . . . , l} and A2 = {l + 1, l + 2, . . . , l + j + 1}. Notice that by joining the columns of φ1
and φ2, we obtain an A-tableau φ with n− l− j columns whose lengths are in the set A = A1 ∪A2 =
{0, 1, . . . , l+ j+ 1}. That is, φ ∈ TA(l+ j+ 1,n− l− j). Then,

∑
φ∈TA(l+j+1,n−l−j)

ωA(φ) =

n−j∑
k=l

 ∑
φ1∈TA1(l, k−l)

ωA1(φ1)


 ∑
φ2∈TA2(j, n−k−j)

ωA2(φ2)

 .

Note that ∑
φ2∈TA2(j, n−k−j)

ωA2(φ2) =
∑

φ2∈TA2(j, n−k−j)

∏
c∈φ2

[m|c|+ r]q

=
∑

l+16g16...6g n−k−j6 l+j+1

n−k−j∏
i=1

[mgi + r]q

=
∑

06g16...6g n−k−j6j

n−k−j∏
i=1

[mgi +m(l+ 1) + r]q.

Thus,

∑
06g16...6gn−l−j6l+j+1

n−l−j∏
i=1

[mgi + r]q

=

n−j∑
k=l

 ∑
06g16...6gk−l6l

k−l∏
i=1

[mgi + r]q


 ∑

06g16...6gn−k−j6j

n−k−j∏
i=1

[mgi +m(l+ 1) + r]q

.
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Then the q-analogue W∗m,r[n,k] satisfies the following convolution-type identity

W∗m,r[n+ 1, l+ j+ 1]q =

n∑
k=0

W∗m,r[k, l]qW∗m,r+m(l+1)[n− k, j]q.

Using the same argument above with: φ1 be a tableau with l− k columns whose lengths are in A1 =
{0, 1, . . . , k}, and φ2 be a tableau with j−n+ k columns whose lengths are in A2 = {k,k+ 1, . . . ,n}, that is,
φ1 ∈ TA1(k, l− k) and φ2 ∈ TA2(n− k, j−n+ k), we can easily obtain the following convolution formula:

W∗m,r[l+ j,n]q =

n−j∑
k=l

W∗m,r[l,k]qW
∗
m,r+mk[j,n− k]q.

This can further be written as

W∗m,r[s+ p, t]q =

min{t,s}∑
k=max{0,t−p}

W∗m,r[s,k]qW
∗
m,r+mk[p, t− k]q.

Replacing s with s+ i, p with j, and t with s+ j, we get

W∗m,r[s+ i+ j, s+ j]q =

min{s+j,s+i}∑
k=s

W∗m,r[s+ i,k]qW
∗
m,r+mk[j, s+ j− k]q. (4.2)

This gives the following LU factorization of the matrix
W∗m,r[s, s]q W∗m,r[s+ 1, s+ 1]q . . . W∗m,r[s+n, s+n]q

W∗m,r[s+ 1, s]q W∗m,r[s+ 2, s+ 1]q . . . W∗m,r[s+n+ 1, s+n]q
...

... . . .
...

W∗m,r[s+n, s]q W∗m,r[s+n+ 1, s+ 1]q . . . W∗m,r[s+ 2n, s+n]q



=


W∗m,r[s, s]q 0 . . . 0

W∗m,r[s+ 1, s]q W∗m,r[s+ 1, s+ 1]q . . . 0
...

... . . .
...

W∗m,r[s+n, s]q W∗m,r[s+n, s+ 1]q . . . W∗m,r[s+n, s+n]q



×


W∗m,r+ms[0, 0]q W∗m,r+ms[1, 1]q . . . W∗m,r+ms[n,n]q

0 W∗m,r+m(s+1)[1, 0]q . . . W∗m,r+m(s+1)[n,n− 1]q
...

... . . .
...

0 0 . . . W∗m,r+m(s+n)[n, 0]q

 .

This implies that

det
(
W∗m,r[s+ i+ j, s+ j]q

)
06i,j6n =

(
n∏
k=0

W∗m,r[s+ k, s+ k]q

)(
n∏
k=0

W∗m,r+m(s+k)[k, 0]q

)
.

Using equation (4.1) and the fact that W∗m,r[n,n]q = 1, we have the following theorem.

Theorem 4.1. For nonnegative integers n and k, the Hankel transform for Wm,r[n,k]q is given by

det
(
W∗m,r[s+ i+ j, s+ j]q

)
06i,j6n =

n∏
k=0

[m(s+ k) + r]kq.
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When q → 1, the Hankel transform in Theorem 4.1 yields the Hankel transform for the r-Whitney
numbers of the second kind. More precisely,

det (Wm,r(s+ i+ j, s+ j))06i,j6n =

n∏
k=0

(m(s+ k) + r)k.

This further gives the Hankel transform for the classical Stirling numbers of the second kind when (m, r) =
(1, 0). That is,

det (S(s+ i+ j, s+ j))06i,j6n =

n∏
k=0

(s+ k)k.

We recall that
Wm,r[n,k]q = qm(k2)+krW∗m,r[n,k]q.

Then, multiplying both sides of (4.2) by qm(s+j2 )+(s+j)r, we obtain

Wm,r[s+ i+ j, s+ j]q =

min{s+j,s+i}∑
k=s

qm(s+j2 )+(s+j)rW∗m,r[s+ i,k]qW
∗
m,r+mk[j, s+ j− k]q.

Note that

qm(k2)+krqm(s+j−k2 )+(s+j−k)(r+mk) = qm[(k2)+(
s+j−k

2 )]+kr+(s+j−k)(r+mk),

m

[(
k

2

)
+

(
s+ j− k

2

)]
= m

k(k− 1) + (s+ j)2 − (k+ 1)(s+ j) − k(s+ j) + k(k+ 1)
2

=
m[(s+ j)2 − (s+ j)] +m[k2 − k− 2(s+ j)k+ k2 + k]

2

= m

(
s+ j

2

)
+mk2 −mk(s+ j).

Hence,

qm(k2)+krqm(s+j−k2 )+(s+j−k)(r+mk) = qm(s+j2 )+mk
2−mk(s+j)+kr+(s+j−k)(r+mk)

= qm(s+j2 )+kr+mk
2−mk(s+j)+(s+j)r−kr+mk(s+j)−mk2

= qm(s+j2 )+(s+j)r.

Thus, we have

Wm,r[s+ i+ j, s+ j]q

=

min{s+j,s+i}∑
k=s

qm(k2)+krW∗m,r[s+ i,k]qq
m(s+j−k2 )+(s+j−k)(r+mk)W∗m,r+mk[j, s+ j− k]q

=

min{s+j,s+i}∑
k=s

Wm,r[s+ i,k]qWm,r+mk[j, s+ j− k]q.

This implies that

det (Wm,r[s+ i+ j, s+ j]q)06i,j6n =

(
n∏
k=0

Wm,r[s+ k, s+ k]q

)(
n∏
k=0

Wm,r+m(s+k)[k, 0]q

)
.
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Since W∗m,r+mk[s, 0]q = hs(xk) = x
s
k = [mk+ r]sq, we have

Wm,r+m(s+k)[k, 0]q = qm(0
2)W∗m,r+m(s+k)[k, 0]q = [m(s+ k) + r]kq.

Also, using (2.3),

Wm,r[s+ k, s+ k]q = qm(s+k2 )+(s+k)r.

Thus, we have

det (Wm,r[s+ i+ j, s+ j]q)06i,j6n =

(
n∏
k=0

qm(s+k2 )+(s+k)r

)(
n∏
k=0

[m(s+ k) + r]kq

)
,

which is equivalent to

det (Wm,r[s+ i+ j, s+ j]q)06i,j6n =

n∏
k=0

qm(s+k2 )+(s+k)r[m(s+ k) + r]kq.
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Ruciński-Voigt Numbers, Commun. Korean Math. Soc., 33 (2018), 1055–1073. 2.3
[3] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987–1000. 1
[4] G.-S. Cheon, J.-H. Jung, r-Whitney numbers of Dowling Lattices, Discrete Math., 312 (2012), 2337–2348. 1
[5] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, (1974). 1, 3
[6] R. B. Corcino, The (r,β)-Stirling numbers, Mindanao Forum, 14 (1999), 91–99. 1
[7] R. B. Corcino, C. B. Corcino, The Hankel Transform of Generalized Bell Numbers and Its q-Analogue, Util. Math., 89

(2012), 297–309. 1, 1
[8] R. B. Corcino, C. B. Corcino, R. Aldema, Asymptotic Normality of the (r,β)-Stirling Numbers, Ars Combin., 81 (2006),

81–96. 1
[9] C. B. Corcino, R. B. Corcino, J. M. Ontolan, C. M. Perez-Fernandez, E. R. Cantallopez, The Hankel Transform of

q-Noncentral Bell Numbers, Int. J. Math. Math. Sci., 2015 (2015), 10 pages. 1, 4
[10] R. B. Corcino, M. J. R. Latayada, M. A. Vega, The Hankel Transform of (q, r)-Dowling Numbers, Eur. J. Pure Appl.

Math., 12 (2019), 279–293. 1
[11] R. B. Corcino, C. B. Montero, A q-Analogue of Rucinski-Voigt Numbers, ISRN Discrete Math., 2012 (2012), 18 pages.

1
[12] A. de Medicis, P. Leroux, Generalized Stirling Numbers, Convolution Formulae and p,q-Analogues, Can. J. Math., 47

(1995), 474–499. 4
[13] R. Ehrenborg, The Hankel Determinant of exponential Polynomials, Amer. Math. Monthly, 107 (2000), 557–560. 1
[14] T. Ernst, A Method for q-calculus, J. Nonlinear Math. Phys., 10 (2003), 487–525. 1
[15] H. Exton, q-Hypergeometric Functions and Applications, Halstead Press, New York, (1983). 1
[16] M. Garcia Armas, B. A. Seturaman, A note on the Hankel transform of the central binomial coefficients, J. Integer Seq.,

11 (2008), 9 pages.
[17] H. W. Gould, The q-Stirling Number of the First and Second Kinds, Duke Math. J., 28 (1968), 281–289.
[18] J. Katriel, M. Kibler, Normal ordering for deformed boson operators and operator-valued deformed Stirling numbers, J.

Phys. A, 25 (1992), 2683–2691. 1
[19] M.-S. Kim, J.-W. Son, A Note on q-Difference Operators, Commun. Korean Math. Soc., 17 (2002), 423–430. 3, 3
[20] M. Koutras, Non-Central Stirling Numbers and Some Applications, Discrete Math., 42 (1982), 73–89. 1
[21] J. W. Layman, The Hankel transform and some of its properties, J. Integer Seq., 4 (2001), 11 pages. 5
[22] M. Mangontarum, J. Katriel, On q-Boson Operators and q-Analogues of the r-Whitney and r-Dowling Numbers, J.

Integer Seq., 18 (2015), 23 pages. 2.3

https://doi.org/10.1016/S0012-365X(99)00108-9
https://doi.org/10.4134/CKMS.c170379
https://doi.org/10.4134/CKMS.c170379
https://doi.org/10.1215/S0012-7094-48-01588-9
https://doi.org/10.1016/j.disc.2012.04.001
https://books.google.com/books?hl=en&lr=&id=C0HPgWhEssYC&oi=fnd&pg=PP15&ots=rHfBn3ZoB7&sig=inqDOk57t6Uvyc8JeWu_a_YjHFs
https://scholar.google.com/scholar?as_q=The+r+%CE%B2+Stirling+numbers&as_epq=&as_oq=&as_eq=&as_occt=title&as_sauthors=Corcino&as_publication=&as_ylo=1999&as_yhi=1999&hl=en&as_sdt=0%2C5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Hankel+Transform+of+Generalized+Bell+Numbers+and+Its+%24q%24-Analogue&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Hankel+Transform+of+Generalized+Bell+Numbers+and+Its+%24q%24-Analogue&btnG=
https://scholar.google.com/scholar?as_q=Asymptotic+Normality+of+the+r+beta+Stirling+Numbers&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2006&as_yhi=2006&hl=en&as_sdt=0%2C5
https://scholar.google.com/scholar?as_q=Asymptotic+Normality+of+the+r+beta+Stirling+Numbers&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=&as_publication=&as_ylo=2006&as_yhi=2006&hl=en&as_sdt=0%2C5
https://doi.org/10.1155/2015/417327
https://doi.org/10.1155/2015/417327
https://www.ejpam.com/index.php/ejpam/article/view/3406
https://www.ejpam.com/index.php/ejpam/article/view/3406
https://doi.org/10.5402/2012/592818
https://doi.org/10.4153/CJM-1995-027-x
https://doi.org/10.4153/CJM-1995-027-x
https://doi.org/10.2307/2589352
https://doi.org/10.2991/jnmp.2003.10.4.5
https://cds.cern.ch/record/99100
http://www.emis.de/journals/JIS/VOL11/Sethuraman/sethuraman2.html
http://www.emis.de/journals/JIS/VOL11/Sethuraman/sethuraman2.html
http://oerior.uniud.it/wp-content/uploads/2018/12/Gould1961.pdf
https://doi.org/10.1088/0305-4470/25/9/036
https://doi.org/10.1088/0305-4470/25/9/036
https://doi.org/10.4134/CKMS.2002.17.3.423
https://doi.org/10.1016/0012-365X(82)90056-5
http://www.emis.de/journals/JIS/VOL4/LAYMAN/hankel.html
http://www.emis.de/journals/JIS/VOL18/Mangontarum/mango2.html
http://www.emis.de/journals/JIS/VOL18/Mangontarum/mango2.html


R. B. Corcinio, et al., J. Math. Computer Sci., 21 (2020), 258–272 272

[23] T. Mansour, M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, CRC Press, Boca Raton,
(2016). 1
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