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Abstract

Nonlinear programming (NLP) problems arise in various fields, such as transport, financial engineering, logistics, urban
planning, supply chain management, and power system control. Solving large-scale NLPs are usually so computationally
expensive for resource-constrained users within a feasible time. The cost-effective solution is computation outsourcing, but this
raises security concerns such as the input and output privacy of the customers, and cheating behaviors of the cloud since NLP
problems always carry sensitive information. In this paper, we develop a practical secure and verifiable schema for solving
outsourcing large-scale (NLP) with the GRG method. Also, we apply approximate KKT conditions for verifying the optimality
of the result returned by the GRG algorithm. We implement the proposed schema on the customer side laptop and using AWS
compute domain elastic compute cloud (EC2) for the cloud side.
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programming problems.
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1. Introduction

The powerful advantages of cloud computing is called outsourcing, where the customers with lim-
ited computing resource and storage devices can outsource the sophisticated computation workloads into
powerful service providers. Despite the tremendous benefits, there are many challenges and security
concerns because the cloud server and customer are not in the same trusted domain, to combat these
security concerns [9, 14, 15, 23] first applying encryption techniques to customer’s sensitive information
before outsourcing to the cloud but still, there is a challenge how makes the task of computation over
encrypted data [6–8, 10, 14, 18, 21]. Focusing optimization tasks we notice that the optimization com-
putations problems (linear and nonlinear programming (LP & NLP)) frequently appear in various fields
(optimal decision making, large-scale data analytics, etc) such as (financial engineering, support vector
machines, scheduling routes in intelligent transportation systems, etc), but solving these large-scale LP &
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NLP problems is usually computationally so expensive. The customer with limited computing resource
and storage devices are facing the challenge of solving large-scale LP& NLP problems [16], the alterna-
tive option to address this challenge is outsourcing to cloud computing. This work, focuses on secure
outsourcing large-scale NLP. The nonlinear programming is a general optimization problem, it has many
applications in both industry and academic communities. The more researchers and specialists have
devoted considerable attention to this field of real-world problems [2, 17]. We are proposing a secure, effi-
cient and verifiable scheme to offload large-scale (NLP) computation to the cloud side apply approximate
KKT conditions for verifying the optimality of the result.

This paper is organized as follows. Section 2 shows some preliminaries. Section 3, describes our
proposed system model to solve the large scale NLP problem. Section 4 presents protocol design of secure
nonlinear programming. In Section 5, we provide experimental result analysis for proposed schema. At
last the work conclusion is presented in Section 6.

2. Preliminaries

2.1. Nonlinear programming
In general, Nonlinear Program (NLP) is mathematical optimization expressed in the following stan-

dard form [3, 20]:

Minimize f(X)

Subject to gi(x) 6 bi, i = 1, 2, . . . ,m,
hj(x) = dj, i = 1, 2, . . . , l,

(2.1)

where x = (x1, x2, . . . , xn)T is an n-dimension vector of the optimization variables, a general nonlinear
function f(x): Rn −→ R is an objective function, general nonlinear functions gi(x) : Rn −→ R (for i ∈
[1,m]) are inequality constraints, general nonlinear functions hj(x) : Rn −→ R (for j ∈ [1, l]) are equality
constraints, b1,b2, . . . ,bm and d1,d2, . . . ,dl are the bounds for the constraints.

2.2. Computational indistinguishability
Definition 2.1. Let I be a countable set. A probability ensemble indexed by I is a collection of random
variables {Xi}i∈I. I is either nature numbers N or an efficiently computable subset {0, 1}n, and with this
definition we can formally show what computational indistinguishability means for two ensembles [4].

Definition 2.2. Two probability ensembles X = {Xn}n∈N and Y = {Yn}n∈N are computationally indis-
tinguishable, denoted by X ≡ Y if for every probabilistic polynomial-time distinguisher D there exists a
negligible function neg(.) such that

|Pr[D(Xn) = 1] − Pr[D(Yn) = 1]| 6 neg(.), (2.2)

where the notation D(Xn) means that x is chosen according to distribution Xn and D(x) is run. D(x) will
output 1 if the distinguisher D determines that x is not from the ensemble Xn otherwise 0. The definition
of computational indistinguishability between two ensembles can also be extended to two matrices which
consist of multiple samples of ensembles.

Definition 2.3. Let X ∈ Rm×n be a matrix with its ith row ∀ i ∈ [1,m] or jth column ∀ j ∈ [1,n] be a
probability ensemble. Matrices X and Y ∈ Rm×n are computationally indistinguishable denoted by X ≡ Y
if for any probabilistic polynomial time distinguisher D there exists a negligible function neg(.) such that

|Pr[D(X) = 1] − Pr[D(Y) = 1]| 6 neg(.),

where the notation D(X) means xi;j is chosen from the matrix X for ∀ i ∈ [1,m], ∀ j ∈ [1,n] and D(xi,j) is
run. Distinguisher D will output 1 when it determines xi,j is not chosen from matrix X and 0 otherwise.



N. M. Mohammed, et al., J. Math. Computer Sci., 21 (2020), 335–343 337

Definition 2.4. A randomized algorithm satisfies computational indistinguishability if and only if for
any two databases D and D́, for every probabilistic polynomial-time adversary machine M, there exists a
negligible function neg(.) such that: |Pr[MA(D)]−Pr[MA(D′)]| 6 neg(.), where the notationMA(D) (sim-
ilarly for MA(D′)) means that adversary machines have access to the database and try to extract private
information from the data [11]. Definition 2.1 measures the information leakage level of the encryption
scheme that encrypts the original NLP problem. If computational indistinguishability is achieved, the
cloud server cannot learn anything significant about the original NLP problem.

2.3. KKT Conditions

Karush-Kuhn-Tucker (KKT) optimality conditions can be used to check the optimality of the result
returned by algorithms of solving optimization problems [22]. For the NLP problem described in Eq.
(2.1), the KKT conditions are defined as follows:

Of(x∗) +
l∑

i=1

uiOgi(x
∗) = 0, (2.3)

gi(x
∗) 6 0, ∀i, (2.4)

uigi(x
∗) = 0, ∀i, (2.5)
ui > 0,∀i, (2.6)

where ui is the Lagrange multiplier for the i th constraint. The solution x∗ that satisfies Eqs. (2.3)-(2.6)
is called a KKT point. A norm of the left side in Eq. (2.3) is the KKT error; x∗ is a feasible point in Eq.
(2.4); each constraint in Eq. (2.5) is called the complementary slackness equation; Eq. (2.6) means that
the Lagrange multipliers are nonnegative. Eq. (2.5) indicates that if the KKT point x∗ makes a constraint
inactive, the corresponding Lagrange multiplier must be zero. On the contrary, if x∗ makes constraint
active, as Eq. (2.6) shows, the Lagrange multiplier can be any nonnegative values. Hence, Eq. (2.3)
implies that the negative of the gradient vector Of(x∗) of the objective function in Eq. (2.2) should be a
positive linear combination of the gradient vectors of the active constraints.

Definition 2.5. A point x, which is feasible for problem P, is said to be a modified ε-KKT point for a given
ε > 0, if there exists x∗ ∈ Rn such that ‖x− x∗‖ 6

√
ε and scalars ui > 0 for i = 1, . . . , l such that

1. ‖Of(x∗) +
∑l

i=1 uiOgi(x
∗)‖ 6

√
ε;

2.
∑l

i=1 uigi(x) > −ε.

Actually, x∗ in above definition is not strict to be feasible. What calls for special attention is that the first
condition is defined for x∗ while the second condition must be true for the point x [1].

3. System model

We now give the general framework of our scheme, where the client with resource-constrained has
a computationally extensive NLP problem to be optimized and due to limited computing resources the
client cannot do this computation to solve the problem locally. He offloads the computation task to the
cloud with ample computational resource, but cannot be trusted with the sensitive information. Then to
avoid security problems our proposed scheme consists of these phases.

Problem generation: This phase consists of two parts: preprocessing and request. In preprocessing part,
the client reformulates the Ψ original problem it generate secret key k by Key-generation algorithm
to protect the privacy of the original NLP Ψ problem, and in request part, the client sends an
outsourcing request to the cloud. The request includes the reformulated problem Ψk.
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Computation outsourcing: When the cloud receives the client’s request, it uses GRG algorithm to solve
encrypted NLP Ψk problem. After GRG algorithm terminates, the cloud send its output back to the
client.

Verification: On receiving the result from the cloud, the client executes the verification algorithm to
check the honesty of the cloud it verify result correctness, and then decid to reject or accept it. If the
returned result is proved to be correct, the client will decrypt it and treat it as the optimal solution
see Fig. 1.

Figure 1: System model of secure outsourcing of NLP problem.

4. Protocol design of secure nonlinear programming problem

To achieve goals of our work, we design the following sub-algorithms.

4.1. Key generation algorithm
In key generation algorithm, secret keys are randomly generated by Key generation algorithm at

the client side to to encrypt the original NLP problem. These keys are vector r ∈ Rn×1 can be used
to protect the variable vector (x1; x2; x3; . . . ; xn)T , Q,W ∈ Rm×m key matrices use to hid the coefficient
matrix A ∈ Rm×n, which contain sensitive information.

Algorithm 4.1 (Key generation).

1. Input: input size n;
2. Output: random vector r; two random matrixes P,W; random permutation matrixes Q,S;
3. set M = 1, 2, 3, ∆∆∆,n;
4. for j = 1 to n
5. select i randomly from i ∈ (1, j);
6. swap M(i) and M(j);
7. end for
8. for i = 1 to n
9. for j = 1 to n

10. ϕ outputs the ith element from M with ϕ(i);
11. δ outputs value with σϕ(i), j;
12. set N(i, j) = σϕ(i), j;
13. end for;
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14. end for;
15. calculate b′ =MNA;
16. calculate A′ =MNb;
17. generate vector r as
18. for i = 1 to n
19. if r[i] > (−N) and r[i] < N
20. r[i] = r;
21. else
22. r[i] = 0;
23. return (vector r; matrix Q; matrix W; permutation matrix P).

4.2. Computation outsourcing

We now describe the outsourced running of reduced gradient method algorithm for solving con-
strained NLP problem in the cloud. In reduced gradient method. The main input argument is the
starting point z0 and returns the result z∗ the optimized solution.

4.3. Generalized reduced gradient method for solving NLPs

GRG method is robust and efficient in solving large-scale NLP practically. The procedure is going as
follows:

First transfer inequality constraints as ĥj(z) 6 b̂j, j = 1, . . . , l to equality constraints,

ĥj(z) + sj 6 b̂j = 0, j = 1, . . . , l
sj > 0, j = 1, . . . , l.

Thus we can rewrite NLP in the following general form:

Minimize f(z, s)
subject to ĉi(z, s) = 0, i = 1, . . . ,m, . . . ,m+ l,

âk 6 zk 6 ûk, k = 1, . . . ,n,
0 6 sp <∞, p = 1, . . . , l,

where ĉi(z, s) = 0 are the constraints. For simplicity of notation, we can use y = (z, s) to represent the
variable vector, and v 6 y 6 w to denote the range of the variables [19]. The optimization of problem is
only dependent on the non-basic variables ZN, since basic variable vector ZB can be uniquely determined
from ZN. A simple modification of the gradient decent method will provide a feasible improving direction
d to optimize the objective function. A feasible improving direction d at the point y must follow [3, 4]:

Ed = 0, (4.1)

5f(z)Td < 0, (4.2)

where 5f(z)T is the gradient vector of objective function f(z) at point z. Eq. (4.1) means that if a feasible
point y moves along the direction d, the feasibility of the constraints will not be damaged. Eq. (4.2)
indicates that moving along d will make the objective function f(z) approach the optimal point. The
reduced gradient method as the following will find such moving direction d that satisfies Eq. (4.1). The
gradient vector corresponding to zN (also called as reduced gradient) can be found by the following
expression:

rT = 5Nf(z)
T −5Bf(z)

TE−1
B EN,
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where5Nf(z)
T is the gradient vector of5f(z)T that corresponds to zN and5Bf(z)

T is the gradient vector
corresponding to zB. From above reduced gradient, we can construct the feasible moving direction dN
that will move zN + λdN in the feasible working space, where dN can be determined as the following:

dNi =

{
−ri, ri 6 0,
−zNiri, ri > 0,

(4.3)

where dNi is the ith element of dN, ri is the ith element of rT , and zNi is the ith element of zN. The
Eq. (4.3) provides the rules for finding improving feasible direction for non-basic variables zN. Once the
improving feasible direction for zN is determined, we can get the corresponding moving direction dB for
zB by expanding Eq. (4.1):

ENdN + EBdB = 0, dB = −E−1
B ENdN. (4.4)

Eq. (4.4) shows that dB can be uniquely calculated from dN, and the moving direction is composed that
d = [dB,dN]. It can be proved that d = [dB,dN] satisfies Eq. (4.1) and the Eq. (4.2), indicating both
feasibility and improvability will be achieved for d. The reduced gradient method partition the variables
into basic and non-basic variable vector as z = (zB, zN), and the corresponding Jacobi matrix of ĉ(z) can
also be grouped into:

∂ĉ

∂z
= (

∂ĉ

∂zB
,
∂ĉ

∂zN
)

and a non-degeneracy assumption is made here that for any point y, ∂ĉ
∂yB
∈ R(m+l)×(m+l) is non-singular.

For the case of nonlinear constraints, the reduced gradient rT with respect to yN is expressed as:

rT = 5Nf(z)
T −5Bf(z)

T (
∂ĉ

∂zB
)−1 ∂ĉ

∂zN
.

Now we specify the direction dN as follows:

dNi =


0, zNiri > 0 and zNi = vi,
0, zNiri < 0 and zNi = wi,
−zNiri, otherwise,

(4.5)

where vi is the lower bound of the variable zi and wi is the upper bound of the variable zi. However,
the difference with the linear form is that zN moves a straight line along dN, the nonlinear form of
the constraints requires zN move nonlinearly to continuously walk in the feasible space formed by the
constraints. To address this, we can first move zN along the direction defined by Eq. (4.5), then a
correction procedure is employed making zN return to working space to satisfy the feasibility of the
constraints. Once a tentative move along dN is made, the following iterative method can be used for
the correction. Supposing zk is the current feasible point, we first move the non-basic variable vector
zN(k+1) = zNk + λdNk, to return point z = (zBk, zN(k+1)) near zk back to the constraint space, we can
solve the following equation:

ĉ(zBk, zN(k+1)) = 0

for zBk where zN(k+1) is fixed.

zBkj+1 = zBkj
− (
∂ĉ(zBkj

, zN(k+1))

∂zBk
)−1ĉ(zBkj

, zN(k+1)),

when this iterative process produces a feasible point zB(k+1), we have to check if following conditions are
satisfied:

f(zB(k+1), zN(k+1)) < f(zBk, zNk), v 6 (zB(k+1), zN(k+1)) 6 w. (4.6)

If Eq. (4.6) holds true, it indicates that the new point is feasible and improvable. Then we set zk+1 =
(zB(k+1), zN(k+1)) as a new approaching point, otherwise we will decrease the step length λ when we first
make the tentative move for zNk and repeat the above iterative process [12].
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4.4. Verification algorithm

Once the client receives the result from untrusted cloud, he verifies the result by invoking the verifi-
cation algorithm, he check the correctness of the result and see whether the cloud has faithfully executed
the computation of GRG algorithm. An verification algorithm with approximate KKT conditions to in-
spect the solution returned by GRG algorithm first we test whether the result is not a maximal solution.
Because a maximal solution can also pass the verification in next step for the necessary of KKT conditions,
second we mainly check whether the returned solution is a ε-KKT point, further conditions are necessary
to establish the optimality of a point [13, 22].

ε-KKT modified point of the KKT optimality conditions is defined to overcome the difficulty [5]. The
extent of violation of KKT conditions at points close to the KKT point may not reduce smoothly, thus
making the KKT conditions hard to directly evaluate the optimality of an optimization algorithm. A
minimizer solution might not meet the KKT conditions, but it can always be approximated by a sequence
of approximate KKT points [1].

Algorithm 4.2 (Verification algorithm).

1. Input: r, δ, ε;
2. randomly generate a M x,M x ∈ [−δ, δ];
3. if F(gbest+ M x) < F(gbest), then
4. return f;
5. end if;
6. if gbest satisfies all constraints in Eq. (2.3), then
7. calculate conditions in Section 2.3;
8. if gbest is a ε-KKT point, then
9. return true;

10. else
11. return f;
12. end if;
13. end for;
14. else
15. return f;
16. end if %(outputs: verification result.)

5. Experimental result analysis

The experimental results are the average of multiple trials. We design numerical experiments to
evaluate the efficiency of the mechanism. We implemented it using Matlab (2013a), with the system
configuration is ”CPU Intel R© CoreTMi3(CPUs)˜1.8GHZ4GB Ram” on a laptop and Amazon Elastic
Compute Cloud (EC2) cluster. To measure the efficiency of our proposed mechanism, we define

1. toriginal : required time to solve the NLP Ψ problem (customer side);
2. tcustomer : full customer time to perform computation outsourcing;
3. tcloud : required time for the cloud to solve Ψk problem in seconds;
4. asymmetric speedup: the performance gain represents savings of the computing resources for the

customer to outsource the Ψk problem to the cloud;

5. efficiency: it is calculated as Efficiency=
toriginal
tcloud

.
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Table 1: Performance of the proposed scheme for secure computation of NLP.
Problem Original Encrypted Asymmetric Cloud

Size Problem Problem Speedup Efficiency
# Dimension toriginal tcloud tclient

toriginal
tclient

toriginal
tcloud

1 n = 2000 28.01 19.03 0.69 40.59 1.47
2 n = 4000 181.98 111.99 5.06 35.96 1.62
3 n = 8000 1235.87 698.01 37.14 33.28 1.77
4 n = 12000 2776.84 1368.21 76.31 36.39 2.02
5 n = 16000 8246.01 3719.33 164.98 49.98 2.22
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Figure 2: Performance of secure computation outsourcing of large scale NLP.

Fig. 2 (a) shows analyzed computing time at both the customer and cloud. We used efficiency and
performance-gain to measure the performance of the proposed mechanism. Ideally, the efficiency of the
algorithm should be close to one. If the efficiency is nearby one, it indicates that the execution time of
original problem and the encrypted problem is almost same. We can see in Fig. 2 (b) and Table 1, that
the efficiency parameter remains close to one, which means the outsourcing paradigm adds minimum
overhead on the cloud for executing an encrypted problem. The second parameter is performance gain
for the customer. Theoretically, the performance gain is expected to be greater than one as the results in
Fig. 2 (d), otherwise it is meaningless for the customer to outsource the NLP problem. The extra time
is defined as the amount of time for extra work done by the customer and cloud server in outsourcing
paradigm as compared to direct method, the results in Fig. 2 (c).

6. Conclusion

In this paper, we study the secure computation outsourcing of large-scale (NLP) problem by (GRG)
algorithm and its verification. We formulate the problem and its security model. Also we propose
a verification scheme using (KKT) conditions with the (ε-KKT) point. We implement schema on the
customer side laptop and using AWS compute domain elastic compute cloud (EC2) for the cloud side.
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