
J. Math. Computer Sci., 22 (2021), 38–48

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

A modified extra-gradient method for a family of strongly
pseudomonotone equilibrium problems in real Hilbert
spaces

Habib ur Rehmana, Nuttapol Pakkarananga, Azhar Hussainb, Nopparat Wairojjanac,∗

aKMUTTFixed Point Research Laboratory, KMUTT-Fixed Point Theory and Applications Research Group, SCL 802 Fixed Point
Laboratory, Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126
Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand.

bDepartment of Mathematics, University of Sargodha, Sargodha-40100, Pakistan.
cApplied Mathematics Program, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University under the Royal Patronage
(VRU), 1 Moo 20 Phaholyothin Road, Klong Neung, Klong Luang, Pathumthani, 13180, Thailand.

Abstract

In this paper, we propose a modified extragradient method for solving a strongly pseudomonotone equilibrium problem
in a real Hilbert space. A strong convergence theorem relative to our proposed method is proved and the proposed method
has worked without having the information of a strongly pseudomonotone constant and the Lipschitz-type constants of a
bifunction. We have carried out our numerical explanations to justify our well-established convergence results, and we can see
that our proposed method has a substantial improvement over the time of execution and number iterations.
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1. Introduction

Let K to be a nonempty closed, convex subset of a Hilbert space E and f : E×E→ R be a bifunction
such that f(x, x) = 0 for all x ∈ K. The equilibrium problem for the bifunction f on K is defined as follows:

Find x∗ ∈ K such that f(x∗,y) > 0, ∀y ∈ K. (EP)

Equilibrium problem (EP) was initially established in the unique format by Blum and Oettli [8] in 1994
and provided a comprehensive study on their theoretical properties. This study consists of considerable
improvement in applied and pure science. It had been previously presented that the equilibrium problem
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theory has set up a unique approach to deal with many topics that are arisen from the social sciences,
economics, finance, restoration of image, ecology, transport, networking, elasticity and optimization prob-
lems (see for details [3, 10, 11, 20, 28]). The equilibrium problem contains several mathematical problems
as particular cases, i.e., minimization problems, variational inequality problems (VIP), the fixed point
problems, the Nash equilibrium of non-cooperative games, complementarity problems, the problem of
vector minimization and the saddle point problem [8, 13, 19, 21, 34].

On the other hand, iterative methods are significant and useful tools for studying the numerical
solution of an equilibrium problem. A considerable number of methods was formed to deal with specific
types of equilibrium problems for finite and infinite dimensional spaces (see [9, 12, 14, 17, 18, 24, 25, 27,
29, 32, 33]). More specifically, Hieu et al. in [15] described a sequence {xn} recursively as:

x0 ∈ K,
yn = arg min{λnf(xn,y) + 1

2‖xn − y‖2 : y ∈ K},

xn+1 = arg min{λnf(yn,y) + 1
2‖xn − y‖2 : y ∈ K},

where {λn} is a sequence of positive real numbers satisfy the following conditions, i.e.,

(Ψ1) : lim
n→∞ λn = 0 and (Ψ2) :

∞∑
n=0

λn = +∞.

On the other hand, inertial-type methods are valuable and depending on the technique of the heavy-
ball methods of the second-order time dynamic system. Polyak started by considering an inertial step as
an acceleration process to deal with the problem of smooth convex minimization. Inertial-type methods
are two-step iterative programs and the next iteration is determined by using the previous two iterations
and may be used the accelerated step to boost up the iterative sequence (further details, see [1, 2, 6, 23,
30, 31, 35]).

In this paper, on the basis of the work of Hieu et al. [15], we propose a modified extragradient
method for solving equilibrium problems involving bifunction f being strongly pseudomonotone. Our
purpose method is carried out without any knowledge of the lipschitz-type and strongly pseudomonotone
constants of the bifunction. This modification is based on the use of a step-size sequence that slowly
converges to zero and is non-summable. Due to this factor and the strong pseudomonotonicity of the
bifunction, the strong convergence of our method has been achieved. Despite that, it is not mandatory
to have the information about these constants before, i.e., such constants should not be within the input
parameters of the method. In the end, the numerical experiments are carried out and shown that proposed
method is more efficient than the existing ones [15, 16] in term of number of iteration and execution time.

The paper is arranged according to the following. Section 2 provides definitions and essential lemmas
which are used during this paper. Section 3 consists of our proposed method and corresponding strong
convergence theorem. Section 4 sets out the numerical experimental work to indicate the numerical
performance compared to existing methods.

2. Preliminaries

We take K convex and closed subset of a Hilbert space E. The notion 〈., .〉 and ‖.‖ views for the inner
product and norm on the Hilbert space, respectively. Moreover, EP(f,K) stands for the solution set of an
equilibrium problem over the set K and VI(G,K) solution set of an variational inequality problem over
the set K with x∗ is any arbitrary member of EP(f,K) or VI(G,K).

Let g : K→ R is a convex function and subdifferential of g at x ∈ K is defined as follows:

∂g(x) = {z ∈ E : g(y) − g(x) > 〈z,y− x〉, ∀y ∈ K}.

A normal cone of K at x ∈ K is given as

NK(x) = {z ∈ E : 〈z,y− x〉 6 0, ∀y ∈ K}.
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Definition 2.1 ([7, 8]). f : E×E→ R on K for γ > 0 is

(i) strongly monotone if
f(x,y) + f(y, x) 6 −γ‖x− y‖2, ∀x,y ∈ K;

(ii) monotone if
f(x,y) + f(y, x) 6 0, ∀x,y ∈ K;

(iii) strongly pseudomonotone if

f(x,y) > 0 =⇒ f(y, x) 6 −γ‖x− y‖2, ∀x,y ∈ K;

(iv) pseudomonotone if
f(x,y) > 0 =⇒ f(y, x) 6 0, ∀x,y ∈ K;

(v) satisfying the Lipschitz-type condition on K if there are k1,k2 > 0, such that

f(x, z) 6 f(x,y) + f(y, z) + k1‖x− y‖2 + k2‖y− z‖2, ∀x,y, z ∈ K.

Lemma 2.2 ([26]). Let K be a nonempty, closed and convex subset of a real Hilbert space E and g : K → R be a
subdifferentiable, convex and lower semicontinuous function on K. Moreover, x ∈ K is a minimizer of a function g
if and only if 0 ∈ ∂g(x) +NK(x), where ∂g(x) and NK(x) stand for the subdifferential of g at x and the normal
cone of K at x, respectively.

Lemma 2.3 ([4]). Assume an, bn and cn are sequences in [0,+∞) such that

an+1 6 an + bn(an − an−1) + cn, for all n > 1, with
+∞∑
n=1

cn < +∞,

and also with b > 0 such that 0 6 bn 6 b < 1, for all n ∈N. Thus, the following relations are true.

(i)
∑+∞
n=1[an − an−1]+ <∞, with [s]+ := max{s, 0};

(ii) limn→+∞ an = a∗ ∈ [0,∞).

Lemma 2.4 ([5]). For every α,β ∈ E and µ ∈ R, the following item is true:

‖µα+ (1 − µ)β‖2 = µ‖α‖2 + (1 − µ)‖β‖2 − µ(1 − µ)‖α−β‖2.

Lemma 2.5 ([22]). Suppose {αn} and {βn} be two sequences of nonnegative real numbers. If
∑∞
n=1 αn =∞, and∑∞

n=1 αnβn <∞, thus lim infn→∞ βn = 0.

Assumption 1. Let f : E×E→ R satisfying the following conditions:

(f1) f(x, x) = 0, for all x ∈ K and f is strongly pseudomonotone on K;
(f2) f satisfy the Lipschitz-type conditions through two positive constants k1 and k2;
(f3) f(x, .) is sub-differentiable and convex on K for each fixed x ∈ K.

3. An algorithm and its strong convergence analysis

We established an inertial method for dealing with strongly pseudomonotone equilibrium problem
with a Lipschitz-type condition. However, it is not compulsory to have information about the Lipschitz-
type constants k1,k2 and strongly pseudomonotone constant γ previously to generate the iterative se-
quence. The following is our method in detail.

Algorithm 3.1 (Modified extragradient method for strongly pseudomonotone equilibrium problems).

Initialization: Choose x−1, x0 ∈ E and 0 6 θn <
√

5 − 2.
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Iterative steps: Assume xn−1, xn are known for n > 0, and a sequence {λn} satisfying the conditions:

(T1) : lim
n→∞ λn = 0 and (T2) :

∞∑
n=1

λn = +∞.

Step 1: Compute

yn = arg min
y∈K

{λnf(wn,y) +
1
2
‖wn − y‖2},

where wn = xn + θn(xn − xn−1). If yn = wn then stop and wn is the solution of the equilibrium
problem. Otherwise, go to Step 2.

Step 2: Compute

xn+1 = arg min
y∈K

{λnf(yn,y) +
1
2
‖wn − y‖2}.

Set n := n+ 1 and go back to Step 1.

Lemma 3.2. From Algorithm 3.1, we have the following useful inequality.

λnf(yn,y) − λnf(yn, xn+1) > 〈wn − xn+1,y− xn+1〉, ∀y ∈ K.

Proof. By Lemma 2.2, we can write

0 ∈ ∂2
{
λnf(yn,y) +

1
2
‖wn − y‖2}(xn+1) +NK(xn+1).

Thus, for ω ∈ ∂2f(yn, xn+1) and ω ∈ NK(xn+1) we have

λnω+ xn+1 −wn +ω = 0.

The above implies that

〈wn − xn+1,y− xn+1〉 = λn〈ω,y− xn+1〉+ 〈ω,y− xn+1〉, ∀y ∈ K.

Since ω ∈ NK(xn+1) then 〈ω,y− xn+1〉 6 0, for all y ∈ K. Thus, we obtain

〈wn − xn+1,y− xn+1〉 6 λn〈ω,y− xn+1〉, ∀y ∈ K. (3.1)

By ω ∈ ∂f(yn, xn+1), we get

f(yn,y) − f(yn, xn+1) > 〈ω,y− xn+1〉, ∀y ∈ K. (3.2)

Combining (3.1) and (3.2) we get the required result

λnf(yn,y) − λnf(yn, xn+1) > 〈wn − xn+1,y− xn+1〉, ∀y ∈ K.

Lemma 3.3. By Algorithm 3.1, we can also get the following inequality.

λnf(wn,y) − λnf(wn,yn) > 〈wn − yn,y− yn〉, ∀y ∈ K.

Proof. It follows the same procedure as in Lemma 3.2.

Lemma 3.4. Let f : K → R satisfies the Assumption 1 and the solution set EP(f,K) 6= ∅. Thus, for each x∗ ∈
EP(f,K), we have

‖xn+1 − x
∗‖2 6 ‖wn − x∗‖2 − (1 − 2k1λn)‖wn − yn‖2 − (1 − 2k2λn)‖yn − xn+1‖2 − 2γλn‖yn − x∗‖2.
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Proof. By the Lemma 3.2 and replacing y = x∗, we have

λnf(yn, x∗) − λnf(yn, xn+1) > 〈wn − xn+1, x∗ − xn+1〉.

Since f(x∗,yn) > 0 then due to strong pseudomonotonicity implies that f(yn, x∗) 6 −γ‖yn − x∗‖2, such
that

〈wn − xn+1, xn+1 − x
∗〉 > λnf(yn, xn+1) + γλn‖yn − x∗‖2. (3.3)

The Lipschitz-type continuity of a bifunction f leads to

f(wn, xn+1) 6 f(wn,yn) + f(yn, xn+1) + k1‖wn − yn‖2 + k2‖yn − xn+1‖2. (3.4)

Combining the expression (3.3) and (3.4) we obtain

〈wn − xn+1, xn+1 − x
∗〉 > λn

{
f(wn, xn+1) − f(wn,yn)

}
− k1λn‖wn − yn‖2

− k2λn‖yn − xn+1‖2 + γλn‖yn − x∗‖2.
(3.5)

Following Lemma 3.3 with y = xn+1, we have

λnf(wn, xn+1) − λnf(wn,yn) > 〈wn − yn, xn+1 − yn〉. (3.6)

By the expression (3.5) and (3.6) we get

〈wn − xn+1, xn+1 − x
∗〉 > 〈wn − yn, xn+1 − yn〉− k1λn‖wn − yn‖2

− k2λn‖yn − xn+1‖2 + γλn‖yn − x∗‖2.
(3.7)

Furthermore, we have the following facts:

−2〈wn − xn+1, xn+1 − x
∗〉 = −‖wn − x∗‖2 + ‖xn+1 −wn‖2 + ‖xn+1 − x

∗‖2,

2〈yn −wn,yn − xn+1〉 = ‖wn − yn‖2 + ‖xn+1 − yn‖2 − ‖wn − xn+1‖2.

From above two facts and (3.7) we get the desired result.

‖xn+1 − x
∗‖2 6 ‖wn − x∗‖2 − (1 − 2k1λn)‖wn − yn‖2 − (1 − 2k2λn)‖yn − xn+1‖2 − 2γλn‖yn − x∗‖2.

Theorem 3.5. The sequences {xn}, {yn}, and {wn} generated by Algorithm 3.1 converge strongly to x∗ ∈ EP(f,K),
where 0 6 θn 6 θ <

√
5 − 2.

Proof. Due to λn → 0 there is an N0 ∈N such that for each n > N0, we have

0 < λn 6
1
2 − 2θ− 1

2θ
2 − τ

max{k1,k2}(1 − θ)2 for some 0 < τ <
1
2
− 2θ−

1
2
θ2.

Thus, Lemma 3.4 for n > N0, provides that

‖xn+1 − x
∗‖2 6 ‖wn − x∗‖2 − (1 −βλn)

[
‖wn − yn‖2 + ‖xn+1 − yn‖2]

6 ‖wn − x∗‖2 −
(1 −βλn)

2
‖xn+1 −wn‖2,

(3.8)

where β = max{2k1, 2k2}. By Lemma 2.4, we obtain

‖wn − x∗‖2 = (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x
∗‖2 + θn(1 + θn)‖xn − xn−1‖2, (3.9)

and

‖xn+1 −wn‖2 = ‖xn+1 − xn − θn(xn − xn−1)‖2
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= ‖xn+1 − xn‖2 + θ2
n‖xn − xn−1‖2 − 2θn〈xn+1 − xn, xn − xn−1〉 (3.10)

> ‖xn+1 − xn‖2 + θ2
n‖xn − xn−1‖2 − 2θn‖xn+1 − xn‖‖xn − xn−1‖

> ‖xn+1 − xn‖2 + θ2
n‖xn − xn−1‖2 − θn‖xn+1 − xn‖2 − θn‖xn − xn−1‖2

= (1 − θn)‖xn+1 − xn‖2 + (θ2
n − θn)‖xn − xn−1‖2. (3.11)

Combining the expressions (3.8), (3.9), and (3.11) we obtain

‖xn+1 − x
∗‖2 6 (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x

∗‖2 + θn(1 + θn)‖xn − xn−1‖2

− ρn(1 − θn)‖xn+1 − xn‖2 − ρn(θ
2
n − θn)‖xn − xn−1‖2 (3.12)

= (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x
∗‖2 − ρn(1 − θn)‖xn+1 − xn‖2

+
[
θn(1 + θn) − ρn(θ

2
n − θn)

]
‖xn − xn−1‖2

= (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x
∗‖2 − qn‖xn+1 − xn‖2 + rn‖xn − xn−1‖2, (3.13)

where ρn :=
(1−βλn)

2 > 0 and qn := ρn(1 − θn) > 0 with

rn := θn(1 + θn) − ρn(θ
2
n − θn) = θn(1 + θn) + ρnθn(1 − θn) > 0, for all n > N0.

Next, we assume that

Πn = ‖xn − x∗‖2 − θn‖xn−1 − x
∗‖2 + rn‖xn − xn−1‖2.

By using the expression (3.13) we can evaluate the following for n > N0, such that

Πn+1 −Πn = ‖xn+1 − x
∗‖2 − θn+1‖xn − x∗‖2 + rn+1‖xn+1 − xn‖2

− ‖xn − x∗‖2 + θn‖xn−1 − x
∗‖2 − rn‖xn − xn−1‖2

6 ‖xn+1 − x
∗‖2 − (1 + θn)‖xn − x∗‖2 + θn‖xn−1 − x

∗‖2

+ rn+1‖xn+1 − xn‖2 − rn‖xn − xn−1‖2

6 −(qn − rn+1)‖xn+1 − xn‖2

(3.14)

and

qn − rn+1 = ρn(1 − θn) − θn+1(1 + θn+1) + ρn+1(θ
2
n+1 − θn+1)

> ρn+1(1 − θn+1) − θn+1(1 + θn+1) + ρn+1(θ
2
n+1 − θn+1)

> ρn+1(1 − θ)2 − θ− θ2

=
(1

2
−
β

2
λn+1

)
(1 − θ)2 − θ− θ2

=
(1

2
− 2θ−

1
2
θ2
)
−
β

2
λn+1(1 − θ)2 > τ.

(3.15)

From the expression (3.14) and (3.15) we obtain

Πn+1 −Πn 6 −τ‖xn+1 − xn‖2 6 0. (3.16)

Hence the sequence {Πn} is non-increasing for n > N0. The definition of {Πn} for n > N0, implies that

‖xn − x∗‖2 6 Πn + θn‖xn−1 − x
∗‖2

6 ΠN0 + θ‖xn−1 − x
∗‖2

6 · · · 6 Πn0(θ
n−N0 + · · ·+ 1) + θn−N0‖xN0 − x

∗‖2
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6
ΠN0

1 − θ
+ θn−N0‖xN0 − x

∗‖2. (3.17)

By the definition of {Πn+1} for n > N0, with expression (3.17) implies that

−Πn+1 6 θn+1‖xn − x∗‖2 6 θ‖xn − x∗‖2 6 θ
ΠN0

1 − θ
+ θn−N0+1‖xN0 − x

∗‖2. (3.18)

It follows from expressions (3.16) and (3.18) such that

τ

k∑
n=N0

‖xn+1 − xn‖2 6 ΠN0 −Πk+1 6 ΠN0 + θ
ΠN0

1 − θ
+ θk−N0+1‖xN0 − x

∗‖2 6
ΠN0

1 − θ
+ ‖xN0 − x

∗‖2, (3.19)

letting k→∞ in expression (3.19) implies that

∞∑
n=1

‖xn+1 − xn‖2 < +∞ =⇒ lim
n→∞ ‖xn+1 − xn‖ = 0. (3.20)

Thus, the expression (3.10) with (3.20) implies that

‖xn+1 −wn‖ → 0 as n→∞. (3.21)

By expression (3.12), (3.20) with Lemma 2.3, implies that

lim
n→∞ ‖xn − x∗‖2 = l and lim

n→∞ ‖wn − x∗‖2 = l. (3.22)

To show limn→∞ ‖yn− x∗‖2 = l, next, we use Lemma 3.4, for n > N0 with relations (3.21) and (3.22) such
that

(1 − 2k1λn)‖wn − yn‖2 6 ‖wn − x∗‖2 − ‖xn+1 − x
∗‖2

= (‖wn − x∗‖+ ‖xn+1 − x
∗‖)(‖wn − x∗‖− ‖xn+1 − x

∗‖)
6 (‖wn − x∗‖+ ‖xn+1 − x

∗‖)‖xn+1 −wn‖ −→ 0, as n→∞.

This implies that, the sequences {xn}, {wn}, and {yn} are bounded for each x∗ ∈ EP(f,K), and the
limn→∞ ‖xn − x∗‖ exists. We prove {xn} strongly converges to x∗. By Lemma 3.4, with (3.9) for n > N0,
we have

2γλn‖yn − x∗‖2 6 −‖xn+1 − x
∗‖2 + (1 + θn)‖xn − x∗‖2 − θn‖xn−1 − x

∗‖2 + θn(1 + θn)‖xn − xn−1‖2

6 (‖xn − x∗‖2 − ‖xn+1 − x
∗‖2) + θ(1 + θ)‖xn − xn−1‖2

+ (θn‖xn − x∗‖2 − θn−1‖xn−1 − x
∗‖2).

Now summing up above expression for k > N0, we obtain

k∑
n=N0

2γλn‖yn − x∗‖2 6 (‖xN0 − x
∗‖2 − ‖xk+1 − x

∗‖2) + θ(1 + θ)

k∑
n=N0

‖xn − xn−1‖2

+ (θk‖xk − x∗‖2 − θN0−1‖xN0−1 − x
∗‖2)

6 ‖xN0 − x
∗‖2 + θ‖xk − x∗‖2 + θ(1 + θ)

k∑
n=N0

‖xn − xn−1‖2 =M,

for M > 0. It gives that ∑
n

2γλn‖yn − x∗‖2 < +∞.
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The above expression with Lemma 2.5, implies that

lim inf
n→∞ ‖yn − x∗‖ = 0.

Thus, there is a subsequence {ynk} of {yn} such that limk→∞ ‖ynk − x∗‖ = 0. Since limn→∞ ‖xn−yn‖ = 0,
we obtain limk→∞ ‖xnk − x∗‖ = 0. We have limn→∞ ‖xn − x∗‖ = l. Therefore, limn→∞ ‖xn − x∗‖ = 0, i.e.,
xn → x∗, yn → x∗ and wn → x∗ as n→∞.

Note: If we assume that the bifunction f(x,y) := 〈G(x),y − x〉 for all x,y ∈ K, then the equilibrium
problem converts into the variational inequality problem with L = 2k1 = 2k2. We deduce the results for a
strongly pseudomonotone and Lipschitz continuous operator.

Corollary 3.6. Let G : K → E is strongly pseudomonotone with L-Lipschitz continuous on K for some positive
constant L > 0 and solution set VI(G,K) 6= ∅. Let {wn}, {xn}, {yn} are sequences generated as follows.

(i.) Given xn−1, xn ∈ K with wn = xn + θn(xn − xn−1) for each n > 0, and θn ∈ [0,
√

5 − 2), compute{
yn = PK

(
wn − λnG(wn)

)
,

xn+1 = PK
(
wn − λnG(yn)

)
,

where stepsize sequence λn satisfies the conditions

(Ψ1) : lim
n→∞ λn = 0 and (Ψ2) :

∞∑
n=1

λn = +∞.

Then, the sequences {wn}, {xn}, and {yn} strongly converge to x∗ of VI(G,K).

4. Computational experiment

We will show some numerical experiments to explain the efficiency of our proposed method. The
MATLAB codes run in MATLAB version 9.5 (R2018b) on a PC Intel(R) Core(TM)i5-6200 CPU @ 2.30GHz
2.40GHz, RAM 8.00 GB. We use x−1 = x0 = y0 = (1, 1, 1, 1, 1)T , and y-axes show Dn while the x-axis
points out to the number of iterations or the time elapsed (in seconds).

4.1. Nash-Cournot oligopolistic equilibrium model
Consider that there will be n firms which generate the same commodity. Let x sets for a vector in

which each item xi holds for the volume of the commodity generated by a firm i. We take the cost P as a
decreasing affine function that depends upon on the subject matter of S =

∑m
i=1 xi, i.e., Pi(S) = φi −ψiS,

where φi > 0,ψi > 0. The profit function for each firm i is defined by Fi(x) = Pi(S)xi− ti(xi), where ti(xi)
is the tax value and cost for developing xi. Consider that Ki = [xmin

i , xmax
i ] is the set of operations connects

to each firm i, and the strategy work out for the whole design take the form as K := K1 × K2 × · · · × Kn.
In fact, each firm try to arrive at its peak revenue by adopting the respective stage of production on the
assumption that the production of the other firms is an input parameter. A broadly utilized technique
to the model is based on the popular Nash equilibrium concept. We would like to point out that point
x∗ ∈ K = K1 ×K2 × · · · ×Kn is the point of equilibrium of the model if Fi(x∗) > Fi(x∗[xi]), ∀xi ∈ Ki, ∀i =
1, 2, · · · ,n, with the vector x∗[xi] represent the vector get from x∗ by taking x∗i with xi. Certainly, we
have f(x,y) := ϕ(x,y) −ϕ(x, x) with ϕ(x,y) := −

∑n
i=1 Fi(x[yi]), and the problem of finding the Nash

equilibrium point of the model may be as follows:

find x∗ ∈ K : f(x∗,y) > 0, ∀y ∈ K.

It follows from [27], that the bifunction f could be taken in the following form

f(x,y) = 〈Ax+By+ c,y− x〉,
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where c ∈ R5 and A, B are

A =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 , B =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 , c =


1
−2
−1
2
−1

 .

B is symmetric positive semidefinite and B−A is symmetric negative definite with Lipschitz constants
k1 = k2 = 1

2‖A−B‖ (for more details see [27]). The feasible set K ⊂ R5 is closed and convex and writen as

K := {x ∈ R5 : −5 6 xi 6 5}.

The numerical results regarding model 4.1 are shown in Figures 1-6 and Table 1.

Table 1: The experimental results for Figures 1-6.
Hieu-Algo1 [15] Hieu-Algo2 [16] Rehman-Algo1 3.1

n TOL λn iter. time iter. time iter. time
5 10−6 1

n+1 222 2.5697 179 1.9488 102 0.9632
5 10−6 1√

n+1
31 0.2880 29 0.2712 18 0.1919

5 10−6 1
log(n+2) 19 0.1909 24 0.2338 13 0.1279

5 10−6 1
(n+1) log(n+3) 319 4.1638 385 5.1718 123 1.1854

5 10−6 log(n+3)
n+1 139 1.2722 135 1.3614 77 0.7494

5 10−6 1
log log(n+20) 28 0.2564 83 0.7783 18 0.1797

0 20 40 60 80 100 120 140 160 180 200 220 240

Number of iterartions

10-6
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10-3

10-2

10-1

100

Figure 1: Equilibrium model 4.1 when λn = 1
n+1 .

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of iterartions
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Figure 2: Equilibrium model 4.1 when λn = 1√
n+1

.
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Number of iterartions
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Figure 3: Equilibrium model 4.1 when λn = 1
log(n+2) .
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Figure 4: Equilibrium model 4.1 when λn = 1
(n+1) log(n+3) .
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Figure 5: Equilibrium model 4.1 when λn =
log(n+3)
n+1 .
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Figure 6: Equilibrium model 4.1 when λn = 1
log log(n+20) .

5. Conclusion

In this study, we have established a new method by incorporating an inertial term with an extra-
gradient method for solving a family of strongly pseudomonotone equilibrium problems. The prospec-
tive method requires a sequence of diminishing and non-summable stepsizes and the proposed method
could be carried out without previous knowledge of the modulus of strong pseudomonotonicity and the
Lipschitz-type constant of a cost bifunction. Two numerical experiments were presented to demonstrate
the computational performance of the method in comparison to alternative existing methods. Such nu-
merical results have confirmed that the method with inertial effects contributes to perform better than
without inertial effects.
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