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Abstract

In this study, the optimal control problem is considered. This is an important class of partial differential equations con-
strained optimization problems. The constraint here is an elliptic partial differential equation with Neumann boundary con-
ditions. The discretization of the optimality system produces a block coupled algebraic system of equations of saddle point
form. The solution of such systems is a major computational task since they require specialized methods. Constructing robust,
fast and efficient solvers for their numerical solution has preoccupied the computational science community for decades and
various approaches have been developed. The approaches involve solving simultaneously for all the unknowns using a coupled
block system, the segregated approach where a reduced system is solved and the approach of reducing to a fixed point form.
Here the minimum residual solver with ideal preconditioning is applied to the unreduced 3 by 3 and reduced 2 by 2 coupled
systems and compared to the multigrid method applied to the compact fixed-point form. The two methods are compared
numerically in terms of iterative counts and computational times. The numerical results indicate that the two methods pro-
duce similar outcomes and the multigrid solver becoming very competitive in terms of the iterative counts though slower than
preconditioned minimum residual solver in terms of computational times. For all the approaches, the two methods exhibited
mesh and parameter independent convergence. The optimal performance of the two methods is verified computationally and
theoretically.
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1. Introduction

In this paper, we consider a robust and numerical solution of the distributed partial differential equa-
tion constrained optimisation problems. The PDE-optimisation problems have come to the forefront of
an active field of research in applied mathematics. These are optimisation problems where there is an
objective function to minimise with PDEs as constraints. There are many areas in which these problems
have been applied in modern science and engineering [1] and have evolved both in theory [21, 40] and
in computation [17, 21, 36]. Such interesting applications of these problems are in fluid flow, biological
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and chemical processes, finance and many more. The need for efficient simulations of the optimal con-
trol problems stimulates the development and evolvement of the numerical solution in various divisions
such as Stokes control [19, 26, 28, 39], Navier-Stokes control [16, 27], wave control [37], parabolic control
[19, 20, 38] and elliptic control [3, 4, 13, 14, 35]. The efficient solution of PDE-constrained optimization
problems is a highly challenging task computationally. This is especially true for all the problems which
typically require the solution of very large matrix systems arising from the discretization of the under-
lying PDEs. This paper considers optimal control problems constrained by elliptic partial differential
equations. The solution process involves formulating a coupled optimality system of partial differential
equations comprising of the state, control and adjoint equations. Then the discretization of the system
leads to a large, block sparse linear algebraic systems of saddle point form. The properties of the system
call for the use of specialised solvers which are robust, fast and efficient.

The formulation of an optimal control problem involves the cost functional to minimize subject to the
constraint given by the modeling partial differential equations defined in a bounded domain Ω ⊂ R2,

min(u,y) J(y,u) :=
1
2
‖ y− yd ‖2

L2(Ω) +
δ

2
‖ u ‖2

L2(Ω), (1.1)

subject to the constraints

−∆y+ y = f+ u, in Ω,
∂y

∂n
= 0, on ∂Ω (1.2)

with y the state variable, yd the desired state known over the domain Ω̄ and u the control variable on the
right hand side. The parameter δ is called the regularization parameter which measures the cost of the
control and is supplied and positive. The main thrust of this work is analyze and apply the numerical
methods that produce an appropriate solution to the optimality system that is to find the control and
the state variables. The solution of the state variable y must satisfy the PDE over Ω and must be as
close as possible to yd in L2-norm so that the objective function can be minimised. In this paper we
consider a distributed control problem over the domain Ω which will be ill-posed for δ = 0. In general
the regularisation parameter needs to be determined, it can be shown that the value δ = 1e− 2 is most
optimal [22, 32, 33]. The main thrust is to apply and analyse the numerical treatment of the problem
for the approximate solution of the problem (1.1)-(1.2), mainly that the numerical solution must be of
reasonable accuracy and the computational efficiency of the solver is independent of the parameters,
regularization parameter δ and the discretization parameter h.

The appropriate spaces for the model variables are V = H1(Ω) and U = L2(Ω). The optimal control
problem has a unique solution (y,u) ∈ V × U characterized by the following optimality system called
the Karush-Kuhn-Tucker (KKT) system [3, 18, 21]. The first order optimality system of the PDE-optimal
control problems consists state equation, adjoint equation and the control equation which is a saddle
point problem as given below

1. the adjoint equation

−∆p+ p = y− yd, in Ω,
∂p

∂n
= 0, on ∂Ω, (1.3)

where the variable p is called the Lagrange multiplier which lies in the space V = H1(Ω);
2. the control equation

δu = p; (1.4)

3. the state equation

−∆y+ y = f+ u, in Ω,
∂y

∂n
= 0, on ∂Ω. (1.5)
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The optimality system is achieved through the Lagrange multiplier method which partitions the model
problem into three equations namely in the state y, control u and the adjoint, p as enumerated above. The
coupled system is the basis for the construction of the iterative solvers starting with the discretization.
The finite element discretization of the optimality system (1.3)-(1.5) leads a to large scale symmetric
indefinite linear systems of equations. For many applications these systems cannot be solved using direct
numerical linear algebra techniques. Consequently, it is important to have specialised efficient iterative
methods for solving these optimality systems. The finite element discretization method described here
is based on the references [5–7, 9, 10, 12, 13]. The finite element discretization of the optimal control
problem results in large symmetric sparse indefinite system whose condition number grows when the
mesh size increases and the regularisation parameter approaches zero. The numerical solution process of
such system presents a lot of computational challenges and this has attracted a lot of attention within the
scientific computational community to construct fast, efficient solution methods.

Various formulations of the discretized system have been done which are the basis for the construction
of robust, fast and efficient solvers to determine the state and the control variables. This paper will pursue
the three formulations that are widely considered in literature. The first approach is to apply the multigrid
method to a reduced single fixed point from of the equation in the control variable, u [30]. This approach
relies on the available exact solvers for the smoothing process. Here we use the workhorse for the direct
solver the PK = LU factorisation for the state and adjoint equation with respect to y and p, respectively.
The other two approaches are to directly apply the PMINRES to a reduced or not reduced system to
solve for the variables. In this paper, the performance of the two methods are compared for the three
formulations. So far the comparison of the performance of the multigrid and PMINRES solvers applied
to these formulations for this class of optimal control problems has not been done. We have not seen the
comparison in literature.

This work on multigrid and preconditioned minimum residual methods has been motivated by the
need to effectively and efficiently solve large application problems. The multigrid method has been shown
to be very efficient and successful in solving control problems [1–3, 6, 14] and elliptic partial differential
equations [3, 8, 25] in an accurate and computationally efficient way. The multigrid method has been
applied to problems discretized by the finite difference [3, 4] method and widely by finite element method
[4, 9, 10, 30]. The effectiveness of the multigrid method depends on the correct choice of the smoothers
[15]. The key features and ingredients of the multigrid method are smoothing and coarse grid correction
that involves the inter-grid transfers and a solution correction step. The main results of the work are the
convergence of the multigrid method in calculating the optimal control and optimal state variables in an
appropriate norm which is based on the smoothing and approximation properties.

In this work we use the PK = LU-smoother with special attention to the performance of the multigrid
method in number of iterations, computational time and L2- and H1-norm errors. The formulations from
the finite element discretization is very large, sparse and indefinite such that well established iterative
schemes such as Krylov subspace methods become very slow, stagnant or fail to converge if not conve-
niently preconditioned. Preconditioning enhances the convergence behaviour of the iterative schemes.
The candidate method of choice for symmetric indefinite system is the minimum residual introduced [11]
which has an advantage that it is parameter free method. The advantage of the PMINRES is robust for
all the values of the regularisation parameter while the multigrid method convergence depends on the
regularisation parameter and the small values are not satisfactory in practice. In this paper, it will shown
numerically that as expected the two solvers show mesh independent convergence.

The rest of the paper is organized as follows. In Section 2 we give the discrete optimality system by
finite element method and show the three formulations. In Section 3 the iterative solution techniques, the
geometric method, and PMINRES are outlined. The known theoretical convergence analysis results are
also outlined. In Section 4 numerical experimental and comparative analysis results on the performance
multigrid and PMINRES methods for the three formulations are presented, discussed and the conclusion
is given.
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2. Discrete optimality system

In this study the finite element method is chosen to discretize the optimality system. The continuous
optimality system (1.1)-(1.2) is transformed into the variational formulation. Find the solutions (y,p,u) ∈
H1(Ω)×H1(Ω)× L2(Ω) for all w ∈ H1(Ω) such that

a(y,w) = F(w), ∀w ∈ H1(Ω), (2.1)

a(w,p) = G(w), ∀w ∈ H1(Ω), (2.2)

〈u,w〉L2(Ω) =
−1
δ
〈p,w〉L2(Ω), ∀w ∈ H1(Ω), (2.3)

where L2(Ω) is a space integrable functions defined as:

L2(Ω) := {u :

∫
Ω

| u |2 dx <∞}

with norm

‖ u ‖L2(Ω):= {

∫
Ω

| u |2 dx}
1
2

and H1(Ω) is a Sobolev space defined as

H1(Ω) := {u ∈ L2(Ω) :
∂u

∂xj
∈ L2(Ω), j = 1, 2, 3, . . . ,n}

with norm

‖ u ‖H1(Ω) := {‖ u ‖2
L2(Ω) +

n∑
j=1

‖ ∂u
∂xj
‖2
L2(Ω)}

1
2 ,

a(y,w) =
∫
Ω

∇y · ∇wdx+
∫
Ω

y ·wdx,

F(w) =

∫
Ω

(f+ u) ·wdx+
∫
Γ

g ·wds,

G(w) =

∫
Ω

(y+ yd) ·wdx+
∫
Γ

g ·wds.

The continuous optimality system is transformed to the discrete optimality system using the finite element
discretization method. We define the finite dimensional spaces Vh and Uh subspaces of the appropriate
spaces V = H1(Ω) and U = L2(Ω) where h is the discretization parameter.

We use shape regular partition of the domain Ω into triangles. Consider a sequence of discretization
with different step sizes h and level of refinement l. Fix the coarsest grid mesh size h0 and define

hl = 2−lh0, l ∈ N0 = 0, 1, 2, . . .,

where l is the level number which denotes the grid refinement level. The discrete version of the problem
(2.1)-(2.3) is: Find discrete solutions (yh,ph,uh) ∈ Vh × Vh ×Uh for w ∈ H1 such that

a(yh,wh) = 〈fh + uh,wh〉L2(Ω), ∀wh ∈ H1(Ω),

a(wh,ph) = 〈wh,yh − yd,h〉L2(Ω), ∀wh ∈ H1(Ω),

〈uh,wh〉L2(Ω) =
−1
δ
〈ph,wh〉L2(Ω), ∀wh ∈ H1(Ω).
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The finite element method entails partitioning of the solution domain Ω into triangles, in our case that is
Ω = ∪iτi, we denote a set of triangular elements by Th = {τ1, τ2, τ3, . . .} and on each element τi and we
denote the space Pk(τi) of degree less than or equal to k. We specify

Vh := {yh ∈ V | yh |τi∈ P1(τi), ∀ elements τi}.

The solution (yh,ph,uh) ∈ Vh × Vh × Uh is uniquely determined by specifying components of yh, uh
and ph on the nodes of the elements. The finite element method results in the coupled linear algebraic
system which has to be solved by the appropriate solvers. The resulting discrete KKT system is Mh O LTh

O δMh −MT
h

Lh −Mh O

 yh
uh
ph

 =

 −Mhyd,h
O

Mhfh

 , (2.4)

where define Lh = Ah +Mh symmetric that is Lh = LTh and Mh is symmetric (Mh =MT
h) with

Ah = [aij], aij =
∫
Ω

(∇φi · ∇φj)i,j=1,...,n, Mh = [mij], mij =
∫
Ω

(φi ·φj))i,j=1,...,n.

The linear algebraic system can be represented as

Khxh = bh, (2.5)

where Kh :=

 Mh O Lh
O δMh −Mh

Lh −Mh O

, x :=

 yh
uh
ph

 and b :=

 −Mhyd,h
O

Mhfh

 is the first formulation of

the unreduced system (2.4) is very large and each of the blocks are discretization of the PDE are sparse.
The second formulation is the reduced system obtained by substituting uh in the state equation by means
of the control equation uh = −δ−1ph, the reduced KKT system can be stated as

K̃h =

(
Mh Lh
Lh −δ−1Mh

)(
yh
ph

)
=

(
−Mhyd,h
Mhfh

)
. (2.6)

The formulations (2.5) and (2.6) are solved using the all at once PMINRES method for the control and the
state variables. The third formulation involve further expressing the KKT system in compact fixed point
form.

Let the discrete control be vh already known, the procedure involves calculating the discrete state
yh(vh) from the discrete control vh and the discrete adjoint ph(vh) from the discrete state yh(vh). Then
we can define the optimal discrete control uh for the distributed control problem as

uh = −δ−1 · ph(vh).

The mapping u 7→ y(u) 7→ p(u) 7→ −δ−1p(u) is affine and defined on a linear operator G such that the
optimal control in (2.4) can have the representation

−δ−1p(u) = Gu+ q.

The discrete optimality system (2.4) simplifies to

Mhuh = −
1
δ
L−1
h Mh

[
L−1
h Mh(uh + fh) − yd,h

]
. (2.7)

The discrete optimality system (2.7) is equivalent to the formulation in compact form of the fixed point
iteration

(Ih − Gh)uh = qh (2.8)

with
Gh = −

1
δ
L−1
h Mh(L

−1
h Mh), qh =

1
δ
L−1
h Mh

[
L−1
h Mhfh − yd,h

]
,

Gh is the discrete operator of G. The knowledge of the entries of the matrix Gh is not necessary except
at the coarsest level (h0, l = 0). The compact fixed point system (2.8) is going to be solved using the
multigrid method with PK = LU-decomposition smoother.
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3. Iterative solvers

The matrices Kh (2.5) and K̃h (2.6) are symmetric 3× 3 and 2× 2 block of saddle point forms re-
spectively. The other formulation is a compact fixed point form (2.8) for the control variable. The three
formulations need to be solved efficiently and this section discusses the two methods that are well suited
for this purpose.

3.1. Multigrid methods
In this section the multigrid procedure for solving the compact fixed point formulation of state-

constrained elliptic optimal control problems is presented. A typical multigrid method uses a sequence
of nested discretization grids of increasing fineness Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωl ⊂ Ω. Associated with the
sequence of grids is a sequence of finite element spaces V1 ⊂ V2 ⊂ · · · ⊂ Vl ⊂ V = H1(Ω) of subspaces of
the finite dimensional subspaces Vh for the control. The subspace Vl is defined on the sequence of grids
l ∈ {0, 1, 2, 3, . . . , lmax} with mesh sizes h0,h1,h2, . . . ,hmax with hl+1 := 1

2hl. The multigrid methods
belong to a class of optimal order methods for solving linear systems emanating from the discretization
techniques like the finite element method [15, 33, 36, 41]. The multigrid methods combine iterative meth-
ods to smooth the error with the correction derived from the coarse grid computation. We use the W-cycle
multigrid. The starting point of the multigrid concept is the observation that classical iteration methods
have some smoothing properties. Let the smoothing algorithm be represented by Sl such that we get an
update

uk+1
l = Sl(u

k
l ,ql), (3.1)

where ukl is the initial control/control solution at level l. In this work the operator Sl represents PK = LU-
decomposition using sequence of the optimality system to smooth the error of the control. The main goal
is to find the pair (yl,ul) of the discrete control and the discrete state variables at the finest level l. To
calculate this, an multigrid algorithm is developed over the discrete compact fixed point equation that
characterizes the discrete optimal control.

3.2. Multigrid algorithm
In this section the multigrid algorithm is presented to solve the fixed point formulation of the discrete

optimality system. The multigrid method studied here we refer to [14, 29, 36]. The main ingredients of
the multigrid iteration are the smoothing and coarse grid correction steps. The coarse grid correction
process is carried out by a restriction, coarse grid solve, interpolation. This means that at each grid level
l, the discrete problem is represented by (2.8) is solved. Let l ∈ N0 be the refinement levels. The summary
below gives the synopsis of the steps in the multigrid solver.

• At the coarsest level, l = 0, the equation ul = Glul + ql where ul is the desired control, is solved
exactly by PK = LU-decomposition of I0 − G0. At this level the entries matrix G0 are known by
evaluation of G0v0 + q0 for q0 = 0 and all unit vectors v0.

• Smoothing: If the level is not the coarsest one, l > 0, with the initial control ukl at the level l (finest
level) we apply (3.1) to get a smoother variable

u
k+ 1

2
l = Glu

k
l + ql,

where ql and Gl are defined in (2.8). The equation involving the expression Glul separately. The
explicit representation of the smoothing operator S (3.1) is illustrated as follows

1. solve the equation uk1
l = Glu

k
l using PK = LU decomposition of the sequence of linear algebraic

systems below
– choose the initial control value uk0

l and solve for the state variable yl using the equation
Llyl =Mlu

k0
l where Ll and Ml are the stiffness and mass matrices respectively at level l;
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– with yl solve for the adjoint variables using the equation Llpl =Mlyl with same matrices
defined above;

– with pl find the new control using the relation uk1
l = −δ−1pl;

2. finally, we get a smoother variable uk+
1
2

l = uk1
l + ql;

3. repeat the smoothing process (1) with the initial uk+
1
2

l to the equation, to get uk2
l = Glu

k+ 1
2

l +ql.

• Calculating the defect: After the smoothing process we calculate the corresponding defect

dl = (Il − Gl)u
k+ 1

2
l − ql = u

k+ 1
2

l − Glu
k+ 1

2
l − ql = Gl

[
ukl − u

k+ 1
2

l

]
= u

k+ 1
2

l − uk2
l .

• Restrict the defect: This is an inter-grid transfer process. The process transfers the defect from
the finer grid to a coarser grid. By a suitable restriction rl,l−1 : Vl0 → Vl−1

0 to a coarser grid with
V0 = L2(Ω), we obtain the result

dl−1 = rl,l−1dl ∈ Vl−1
0 .

• Approximate on the coarser grid that is on the level l− 1 by

wl−1 = (Il−1 − Gl−1)
−1dl−1

two iterations of the multigrid method on the level l− 1.

• Prolongate the approximate: The prolongation/interpolation is an inter-grid transfer process. The
process transfers the smooth error from the coarser grid to a finer grid. It is a linear mapping. By
a suitable prolongation pl−1,l : V

l−1
0 → Vl0 to a finer grid and coarse grid correction, we obtain the

result
uk+1
l = u

k+ 1
2

l − pl−1,lwl−1.

The above description gives the two grid algorithm. Applying the two grid recursively results in
multigrid algorithm. Defining the multigrid method (MGM) recursively. We define the algorithm MGMl

at level l > 0 by means of the algorithm MGMl−1 corresponding to the coarser grid. Now we define the
multigrid algorithm.

We define the multigrid algorithm at level l as MGMl(u
new
l ,uold

l ,ql), where

• unew
l is the output of one step of the multigrid algorithm at level l;

• uold
l is the input at level l;

• ql is defined implicitly by fl,gl,yd,l at level l;

• ukl := uold
l 7→ uk+1

l =: unew
l .

Algorithm 3.1. MGMl(u
new
l ,uold

l ,ql).
if l = 0 (coarsest grid)

u0 = (I0 − G0)
−1q0

else l > 0 define MGMl(u
new
l ,uold

l ,ql).

1. Smoothing
ũl = Glu

old
l + ql.

• Defect computation
dl = ũl − Glũl − ql.

2. Restrict the defect
dl−1 = rl,l−1dl.
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3. Approximate solution
vl−1 = Gl−1vl−1 + dl−1.

4. Applying two iterations of MGMl−1 at the recursive call:

• Set v(0)
l−1 = 0.

• Compute
v
(1)
l−1 =MGMl−1(v

(1)
l−1, v(0)

l−1,dl−1).

• Compute
v
(2)
l−1 =MGMl−1(v

(2)
l−1, v(1)

l−1,dl−1).

5. Correction step.
Define the new iterate by

unew
l := ũl − pl−1,lv

(2)
l−1.

In this work we use a multigrid W-cycle which starts at a finest level l. The finest level solution is
then transferred to next coarser level (restriction). After some relaxation (smoothing) cycles on the coarse
level, the solution is then restricted to next coarser level until the coarsest level is reached. The solution
obtained at the coarsest level is than interpolated back to the finer level (prolongation). The solution from
this finer level is interpolated to next finer level after some relaxation iterations. The solution is prolonged
till the finest level is reached. The whole process is repeated until satisfactory convergence is reached.

3.3. Analysis of the multigrid algorithm
The convergence analysis of the multigrid method presented here follows the format in [13, 36]. An

iteration of single multigrid step consists of a combination of smoothing step and a coarse grid correction
step. The following relations result from the application of each step of the multigrid method.

• The exact solution is given by the relation

ul = Glul + ql.

• Smoothing: is done by the application of the relation

ukl 7→ ũl := Glu
k
l + ql, (3.2)

apply G m-times m > 1 we have the error

ũl − ul = Gm(ukl − ul) = Gm4ukl . (3.3)

• Calculating the defect.
dl = (Il − Gl)ũl − ql. (3.4)

• From the exact solution and the defect relations we get

ul = ũl − (Il − Gl)
−1dl. (3.5)

From this relation we have
dl = (Il − Gl)(ũl − ul). (3.6)

• Coarse grid correction: Produces the relation for the new iterate

uk+1
l = ũl − pl−1,l(Il−1 − Gl−1)

−1rl,l−1dl

= ũl − pl−1,l(Il−1 − Gl−1)
−1rl,l−1(Il − Gl)(ũl − ul).

(3.7)
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• The error of the new iterate, subtract the exact solution from both sides

uk+1
l − ul = ũl − pl−1,l(Il−1 − Gl−1)

−1rl,l−1(Il − Gl)(ũl − ul) − ul,

4uk+1
l = ũl − ul − pl−1,l(Il−1 − Gl−1)

−1rl,l−1(Il − Gl)(ũl − ul)

= Gm4ukl − pl−1,l(Il−1 − Gl−1)
−1rl,l−1(Il − Gl)G

m4ukl
=
[
Il − pl−1,l(Il−1 − Gl−1)

−1rl,l−1(Il − Gl)
]
Gm4ukl .

• The above relation for the error can be expressed as

4uk+1
l = Ml4ukl , (3.8)

where Ml is the iteration matrix given by

Ml =
[
Il − pl−1,l(Il−1 − Gl−1)

−1rl,l−1(Il − Gl)
]
Gm. (3.9)

• The idea is to establish the convergence rates for our multigrid algorithm which are defined by the
relation

‖ 4uk+1
l ‖0

‖ 4ukl ‖0
=‖Ml ‖V0→V0 . (3.10)

The convergence property of the iterative process depends on ‖Ml ‖V0→V0 .

Theorem 3.2. Let l, l− 1 ∈ N and 0 < σ 6 nl−1
nl

< 1, then from the conditions (3.2)-(3.10) it holds

‖Ml ‖V0→V06 Cn
−σ
l .

The method converges for sufficiently large nl which depends on the mesh size and C is independent of l and the
smoothing steps. The method converges proportional to the mesh size.

Conclusion 3.3. The rate of convergence of the multigrid method on the level l ∈ N0 is proportional to
h
β
l for some β > 0. This means that the estimate

‖ uk+1
l − ul ‖Vl0= Ch

β
l ‖ u

k
l − ul ‖Vl0 ,

where ul is the discrete exact solution, holds for two consecutive iterates. Since ul is unknown we use the
continuous control u to get the convergence rates of the multigrid algorithm and conclude that the rate
of convergence is proportional to by a factor hβl which means β > 0.

In this work we consider V0 = L2(Ω) and we also check convergence when V0 = H1(Ω).

3.4. Preconditioned minimum residual solver
In this section we turn our attention to the algorithmic structure of the PMINRES for solving the

discretized linear algebraic systems, not reduced (2.5) and reduced (2.6) under consideration in this study.
The main goal being to find the pair (yl,ul) of the discrete state and the discrete control variables at the
level of refinement l. The PMINRES method introduced by [29] has the appeal of not requiring any
parameters for making the algorithm efficient. The preconditioned MINRES to solve the saddle point
problems was recommended in [11]. The PMINRES was also used in [24] to solve the Stokes equations
and we follow the similar format in this paper in the solution of the optimal control problems. The
PMINRES method is based on the following residual minimization problem:

Given the initial guess x0, determine xk ∈ x0 +Kk(M; r0) such that

‖Mxk − b ‖= min(‖Mxk − b ‖| x0 +Kk(M; r0)),
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where r0 = b −Mx0 and Kk(M, r0) = span
{

r0,Mr0,M2r0, . . . ,Mk−1r0
}

is the Krylov subspace. Below
is the MINRES algorithm for computing the iterate xk as given in [11].

In this study a symmetric positive definite block preconditioner M̂ of M as scrutinized in [24, 31] and
M̄ of M̄, respectively is considered. Such block preconditioners are given as

M̂ :=

[
Â O

O Ŝ

]

for the reduced formulation where the Schur complement S = LM−1LT . The preconditioners of such
form are well studied when coefficient matrix comes form the finite element of the PDEs [11, 29, 31] and
were also used in [32, 33] and

M̄ =

 M̂ O O

O δM̂ O

O O Ŝ

 ,

where the Schur complement S = LM−1LT + 1
δM. In both cases the ideal preconditioning in used which

entails the exact application of the preconditioners Â and the Schur compliment Ŝ such that the left
preconditioned system becomes

M̂−1Mx = M̂−1b,

which is
M̃x = b̃. (3.11)

The residual minimization criteria ia applied to the preconditioned system (3.11):
Given the initial guess x0 ∈ Rn+m and initial residual r̃0 = b̃− M̃x0, determine xk ∈ x0 +Kk(M̃; r̃0)

such that
‖ M̃xk − b̃ ‖= min(‖ M̂xk − b̃ ‖ | x0 +Kk(M̃; r̃0)),

where r̃0 = b̃ − M̃x0 and Kk(M̃, r̃0) = span
{
r̃0, M̃r̃0, M̃2r̃0, . . . , M̃k−1r̃0

}
is the Krylov subspace and

〈·, ·〉
M̂

= 〈M̂·, ·〉.
Then the preconditioned residual M̂−1(b −Mx) is minimized in ‖ · ‖

M̂
over transformed Krylov

subspace. The implementation of the PMINRES requires per iteration one evaluation of M̂−1z for a given
z and one multiplication by Â. The evaluation of the preconditioner is achieved by solving a linear system
z = M̂y. The preconditioned minimum residual method is outlined in the algorithm below.

Algorithm 3.4 (The PMINRES algorithm).
v0 = 0, w0 = 0, w1 = 0
Choose x0, compute v1 = b −Mx0, set γ1 =‖ v1 ‖
Solve M̂z1 = v1 set γ1 =

√
〈z1, v1〉

set η = γ1, s0 = s1 = 0, c0 = c1 = 1
for i = 1,2. . . until convergence do

zi = zi
γ i

δi = 〈Mzi, zi〉
vi+1 = Mvi − ( δiγi )vi − ( γiγi−1

)vi−1

Solve M̂zi+1 = vi+1
γ1 =

√
〈zi+1, vi+1〉

α0 = ciδi − ci−1siγi

α1 =
√
α2

0 + γ
2
i+1
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α2 = siδi + ci−1ciγi
α3 = si−1γi
ci+1 = α0

α1
, si+1 = γi+1

α1

wi+1 =
(zi−α3wi+1−α2wj)

α1
xi = xi−1 + ci+1ηwi+1
η = −si+1η

Test for convergence
end for

The main convergence results for PMINRES method are due to [30, 31, 35]. The convergence analysis
is based on the eigenvalue analysis of the preconditioned matrix system which plays a crucial role. The
spectral analysis of the preconditioner influences the convergence properties of the iterative scheme con-
nected with the approximations of Â and Ŝ. We seek that the eigenvalues of the preconditioned system
are well clustered and distributed provided that the eigenvalues of Â−1A and Ŝ−1S are so. The conver-
gence of the iterative scheme is driven mostly by the ratio between the largest and smallest eigenvalue of
the preconditioned system. The theorem below gives convergent analysis of the PMINRES method.

Theorem 3.5. Let M ∈ R(n+m)×(n+m) be symmetric and M̂ ∈ R(n+m)x(n+m) be symmetric and positive
definite. For xk, k > 0 computed in the preconditioned MINRES algorithm we define r̂k = M̂−1(b−Mxk). Then
the following holds

‖ r̂k ‖M̂= min
pk∈Pk;p0=1

‖ pk(M̂−1M)̂r0 ‖M̂6 min
pk∈Pk;p0=1

max
λ∈σ(M̂−1M)

|pk(λ)| ‖ r̂0 ‖M̂ .

The maximum is over the eigenvalues λ of M̂−1M defined in Theorem 3.5. For the proof we refer to
[35]. Theorem 3.5 gives that the rate of convergence of the preconditioned MINRES method depends on
σ(M̂−1M).

4. Numerical results

In this section we present numerical results which have been obtained from using the multigrid
method to solve the compact fixed point formulations and the PMINRES to solve the reduced and not
reduced formulations. The PMINRES is used with the block preconditioner which are approximated by
the exact approximations. For the multigrid results of the experiments, use m1 = m2 = 1 pre- and post-
smoothing steps. This means that one multigrid cycle uses m1 +m2 =2 iterations of the smoothing algo-
rithm on the finest level. Simulations and implementations were performed on a Windows 10 platform
with 2.6 GHz speed intel(R) processor by using Matlab 7 programming language.

The Table 1 below shows an example of the refinement levels and the number degrees of freedom on
each level which corresponds to the size of each entry of the block matrix.

Table 1: Refinement levels and number of nodes.
Refinement Level (l) 1 2 3 4 5 6 7
Mesh size (hl) 1

2
1
4

1
8

1
16

1
32

1
64

1
128

Nodes (number of grid points) 9 25 289 1089 4225 16641 66049

The accuracy of the approximation is obtained by applying piecewise linear functions is O(h2) in L2-
norm and O(h) in H1-norm. We introduce the discrete L2- and H1-norms of the error with respect to the
optimal control variable ul. We approximate the element with both the numerical solution ul and the
exact solution u at the centroid (x(s),y(s)) of each of the triangles Ti ∈ Th. Then the L2-norm of the error
is

‖ u− ul ‖L2=
√∑

area(Ti) · (u(x(s),y(s)) − unl (x(s),y(s)))2

and n is the nth is the iteration index at level l. Similarly the H1-norm discretization error at the nth
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iteration and l is

‖ u− ul ‖H1=
√∑

area(Ti) · (ux(x(s),y(s)) − unx,l(x(s),y(s)))2 − (uy(x(s),y(s)) − uny,l(x(s),y(s)))2,

where ux,uy are the partial derivatives of the exact solution and ux,l,uy,l are the gradients of the fi-
nite element solution. We have also established that the convergence rate of the multigrid algorithm is
proportional to hβl , β > 0. Theoretically β = 2 for L2-norm error and β = 1 for H1-norm error.

The exact solutions for the distributed optimality system and Ω = (0, 1)2 ⊂ R2 are

y = cos(πx1) cos(πx2), u = (2π2 + 1) cos(πx1) cos(πx2), p = −δ(2π2 + 1) cos(πx1) cos(πx2).

We get the corresponding desired state as

yd = (δ(2π2 + 1)2 + 1) cos(πx1) cos(πx2).

We will consider the initial control u0 = 0. The goal is to find the optimal control so that the optimal
state is as close to target state as possible and this is achieved by solving the compact fixed point problem
(2.8) and the coupled systems, not reduced (2.5) and reduced (2.6).

For this work the value δ = 1e− 2 produces optimal results [22, 32, 33]. It can be shown that for large
values of weighting factor the discretization error grows and that at any grid level the methods diverge
for the values δ 6 1e− 3 and less.

Table 2: The results of MGM, δ = 1e− 2, tolerance = 1e− 8.
level iter/time Control State L2− control error H1-control error L2−error state Obj. func
l k(sec) ‖ ul ‖L2 ‖ yl ‖L2 ‖ u− ul ‖L2 ‖ u− ul ‖H1 ‖ yd − yl ‖L2 J(yl,ul)
1 2 (0.906) 2.506e-1 1.355e-2 3.0959e-1 7.6929e-2 7.141e-3 4.823e-3
2 6(0.984) 1.120e-1 5.245e-3 7.9596e-1 3.8782e-2 2.123e-3 1.173e-3
3 5 (1.047) 3.468e-2 1.657e-3 2.0051e-2 1.9438e-2 1.142e-4 2.305e-4
4 4 (2.093) 9.441e-3 4.545e-4 5.0226e-3 8.7728e-3 8.333e-6 5.138e-5
5 3( 2.047) 2.449e-3 1.180e-4 1.2560e-3 4.8653e-3 5.572e-7 1.252e-5
6 3 (3.172) 6.228e-4 3.002e-5 3.1443e-4 2.4326e-3 3.592e-8 3.132e-6

We present in Table 2 the results on obtained from the form the multigrid methods applied to a
compact fixed point formulation.

Table 3: The results of PMINRES for unreduced formulation, δ = 1e− 2, tolerance = 1e− 8.
level iter/time Control State L2− control error H1-control error L2−error state Obj. func
l k/sec ‖ ul ‖L2 ‖ yl ‖L2 ‖ u− ul ‖L2 ‖ u− ul ‖H1 ‖ yd − yl ‖L2 J(yl;ul)
1 13(0.016) 2.506e-1 1.355e-2 3.0959e-1 7.6919e-2 7.141e-3 4.823e-3
2 13(0.063) 1.12e-1 5.244e-3 7.9596e-2 3.8782e-2 1.123e-3 1.173e-3
3 15(0.125) 3.468e-2 1.65e-3 2.0051e-2 1.9438e-2 1.142e-4 2.305e-4
4 11(0.321) 9.441e-3 4.542e-4 5.0226e-3 9.7728e-3 8.333e-6 5.138e-5
5 9(1.180) 2.449e-3 1.180e-4 1.2560e-3 4.8653e-3 5.572e-7 1.252e-5
6 9(6.390) 6.228e-4 3.002e-5 3.1443e-4 2.4326e-3 3.952e-8 3.132e-6

We present in Table 3 the results on obtained from the form the PMINRES method applied to an
unreduced formulation. We present in Table 4 the results on obtained from the form the PMINRES
method applied to a reduced formulation.

The results in Tables 2, 3, and Table 4 clearly show that the PMINRES solver applied to the reduced
and unreduced coupled systems and the MGM applied to the compact fixed point form produce similar
outcomes for the control, state in L2-norm, similar results also in the L2- and H1- norm errors and the
minimum value of the objective function. Now what is critical is to compare the methods in terms of
iteration counts, computing times and check the characteristics of the convergence errors in L2- and H1-
norms.
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Table 4: The results of PMINRES for reduced formulation, δ = 1e− 2, tolerance = 1e− 8.
level iter/time Control State L2− control error H1-control error L2−error state Obj. func
l k/sec ‖ ul ‖L2 ‖ yl ‖L2 ‖ u− ul ‖L2 ‖ u− ul ‖H1 ‖ yd − yl ‖L2 J(yl;ul)
1 13(0.031) 2.50e-1 1.355e-2 3.0959e-1 7.6919e-2 7.141e-3 4.823e-3
2 13(0.047) 1.120e-1 5.244e-3 7.9596e-2 3.8782e-2 1.123e-3 1.173e-3
3 15(0.078) 3.468e-2 1.65e-3 2.0051e-2 1.9438e-2 1.142e-4 2.305e-4
4 11(0.23) 9.441e-3 4.542e-4 5.0226e-3 9.7728e-3 8.333e-6 5.138e-5
5 9(0.790) 2.449e-3 1.180e-4 1.2560e-3 4.8653e-3 5.572e-7 1.252e-5
6 7(3.510) 6.228e-4 3.002e-5 3.1443e-3 2.4326e-3 3.952e-8 3.132e-6

Table 5: Number of iterations and CPU time for MGM and PMINRES for comparison, tolerance = 10−8.
Levels Multigrid PMINRES reduced PMINRES not reduced

iter cpu(sec) iter cpu(sec) iter cpu(sec)
1
8 2 0.906 13 0.031 13 0.016
1

16 6 0.984 13 0.047 13 0.063
1

32 5 1.047 13 0.078 13 0.125
1

64 4 2.093 11 0.230 11 0.321
1

128 3 2.047 9 0.790 9 1.180
1

256 3 3.172 7 3.500 9 6.390

The Table 5 shows the iteration counts and computational times of the two methods for the three
formulations. The results in Table 5 shows that both methods are fast, robust and efficient with the
changes in the discretization parameter. As the number problem size increases both methods have shown
parameter independent convergence and the number of iterations decreases with a small increase in the
computational times in seconds. The PMINRES converges in few seconds as compared to the MGM for
both formulations. However the MGM is slightly faster in terms of iterative counts. The two methods are
recommended for solving large linear indefinite system of saddle point form because the two methods
have shown parameter independent convergence.

Table 6: Convergence results δ = 1e− 2, tolerance = 1e− 8.
level L2- error control Ratio H1- error Ratio

l ‖ u− ukl ‖L2
‖u−ul+1‖L2
‖u−ul‖L2

‖ u− ul ‖H1
‖u−ul+1‖H1
‖u−ul‖H1

1 3.0959e-1 7.6919e-2
2 7.9596e-2 0.2571 3.8782e-2 0.5042
3 2.0051e-2 0.2519 1.9438e-3 0.5012
4 5.0226e-3 0.2505 9.7728e-3 0.5005
5 1.256e-3 0.2501 4.8653e-3 0.5001
6 3.1434e-4 0.2500 2.4326e-3 0.5000

The results in Table 6 summaries the L2- and H1-norm errors of the MGM and PMINRES for the three
formulations at each grid level. The discretization parameter hl is the mesh width at level l. The finite
element discretization and the two methods used convergence with the second order L2-norm error and
first order H1-norm error. Therefore the reduction in L2-norm error is by a factor of 1

4 and in H1-norm is
by a factor of 1

2 as indicated in the ratio column. This agrees and confirms the convergence Theorem 3.2
and theoretical results that L2-norm error shows quadratic convergence that is O(h2) and H1-norm error
shows linear convergence that is O(h). This means that further refinement reduces the error and as the
step size becomes smaller and the iteration error approaches zero. All these confirms what the theory
says. This is also clear on Figure 2 on the L2 and H1-norm errors.
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Figure 1: Error reduction from PMINRES reduced (left) and PMINRES unreduced (right) at level 4.

The Figure 1 shows the error reduction from the PMINRES for both reduced and unreduced formu-
lations at level 4. This shows that the error reduction is very fast up to until the maximum number of
iterations is reached.
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Figure 2: C changes L2 and H1-norm errors at level 4.

The Figure 2 shows changes L2- and H1-norm errors at levels 4 when the multigrid and the PMINRES
schemes are applied.
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Figure 3: Optimal control (left) and optimal state (right) at level 4.

The Figure 3 shows the snapshot of the optimal control solution and optimal state solution at level 4.
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Figure 4: Changes in the objective function (left) and Changes L2 and H1-norm errors at level 4.

The Figure 4 shows the changes in the objective function from one level to another. The figure shows
that the objective function is minimised. The changes in L2 error for the state show that the optimal state
variable is very close to the deired/target state which is the expected result.

4.1. Conclusion
The main objective of this work was to apply fast and efficient iterative solvers for the distributed el-

liptic optimal control problem discretized by finite element method. The standard finite element method
discretization of the problem produced large, sparse, indefinite linear algebraic system of saddle point
form. The system of equations has three formulations which are the basis for numerical analysis of the
problem. We presented the optimal MGM with LU-smoother for the compact fixed point form formula-
tion and compare the performance with the PMINRES solver with ideal preconditioning to the reduced
and unreduced formulations. We observed that the methods produced similar results of the solution vari-
ables but differ in computational times and iterative counts. Both methods are fast and efficient though
the MGM converges in less iterative counts and the PMIRES was faster in computational times. We ob-
served that the convergence for the optimal control problem is closely related to those well known for
the underlying elliptic partial differential equation which is the constraint. We have also paid particular
attention to the L2- and H1-norm errors and results show that the two solvers are optimal for the optimal
control problems and its convergence in L2 and H1 confirms with the theoretical results. The methods
have displayed mesh independent convergence.
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