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Abstract

In this paper, we will prove some new weighted Čebyšev-Ostrowski type inequalities with power mean on time scales. The
results will be proved by employing the generalized version of Montgomery’s identity with weights that will be proved for our
purpose. As special cases, we will derive some new weighted discrete inequalities of Čebyšev-Ostrowski type which to the best
of the authors’ knowledge are essentially new.
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1. Introduction

The significance of inequalities is increasing day by day in mathematical analysis and harmonic anal-
ysis. There are many inequalities which have used in investigating and studied complex problems. In
fact during the recent years the theory of inequalities has been considered as an incorporative subject
between mathematics and other fields. Interested readers are referred to Holder’s inequality, Minkovski’s
inequality, Young’s inequality, Wirtinger’s inequality, Hardy’s inequality, Grűss’s inequality, ČebyŠev’s
inequality and Ostrowski’s inequality, for some current advances in the theory of inequalities. In this
paper, we are interested in proving some new inequalities of Čebyšev-Ostrowski’s type on time scales.

In 1882 Čebyšev [15] proved the inequality

|T(f,g)| 6
1
12

(b− a)2
∥∥∥f′∥∥∥∞ ∥∥∥g′∥∥∥∞ ,
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where f, g : [a,b] −→ R are two absolutely continuous functions, whose first derivative f
′

and g
′

are
bounded and the operator T(f,g) is defined by

T(f,g) =
1

b− a

∫b
a

f(x)g(x)dx−

(
1

b− a

∫b
a

f(x)dx

)(
1

b− a

∫b
a

g(x)dx

)
,

and the involved integrals exist and ‖·‖∞ denotes the norm in L∞ [a,b] defined as ‖p‖∞ = ess sup |p(t)|.
In 1935 Grűss [17] improved the inequality due to Čebyšev and proved that

|T(f,g)| 6
1
4
(Φ−ϕ)(Γ − γ),

provided that f and g are two integrable functions on [a,b] satisfying the condition ϕ 6 f(x) 6 Φ and
γ 6 g(x) 6 Γ for all x ∈ [a,b] . The constant 1/4 is the best possible.

In 1938 Ostrowski [21] proved an interesting integral inequality associated with differentiable map-
pings which is a relationship between the value of a function f on some points in (a,b) and the integration
on [a,b] as follows. If f : [a,b] −→ R is continuous on [a,b] and differentiable on (a,b) and its derivative
f
′
: (a,b) −→ R is bounded in (a,b), then for any t ∈ [a,b], the following inequality holds∣∣∣∣∣f(t) − 1

b− a

∫b
a

f(s)ds

∣∣∣∣∣ 6
1

4
+

(
t− a+b

2
b− a

)2
 (b− a)

∥∥∥f′∥∥∥∞ . (1.1)

The inequality is sharp in the sense that the constant 1/4 cannot be replaced by a smaller quantity.
In 1938 Ostrowski gave a very useful formula to estimate the absolute value of derivation of a differ-

entiable function by its integral mean on a bounded interval. In particular in [21], Ostrowski proved his
inequality [

f(t) −
1

b− a

∫b
a

f(η)dη

]
6

[
(t− a)2 + (b− t)2

2(b− a)

]
sup

η∈(a,b)
|f′(η)|,

by employing the Montgomery identity. In the last decades Ostrowski’s inequality has been generalized
and extended by several authors. In the following, we indicate to some of the results in the literature to
show the motivation of our aim in this paper.

In 2007 Pachpatte [22] (Theorems 1 and 2) established new generalizations of Ostrowski inequality
for two functions, whose derivatives belong to Lp-spaces for 1 6 p < ∞. At the same year Rafiq et al.
[23] proved some weighted Čebyšev-Ostrowski type integral inequalities containing functions with first
derivatives belong to L∞[a,b].

In 2009 Ahmad et. al. [4] established weighted Čebyšev-Ostrowski type integral inequalities contain-

ing functions with first derivatives belong to Lp[a,b], for 1 6 p <∞with a norm ‖f‖p =
(∫b
a |f(x)|

p dx
)1/p

.
The Ostrowski type inequality has powerful applications in numerical integration, probability and opti-
mization theory, stochastic, statistics, information and integral operator theory, see for example [6, 7, 16,
20].

In the last few decades numerous authors have been interested in establishing the corresponding
discrete analogues of inequalities in various fields of analysis, and as a result, this subject became topic
of ongoing research. So it is natural to ask if is it possible to study the bounds of the discrete operator

M(f,g) =
1

N+ 1 − a

N∑
n=a

f(n)g(n) −

(
1

(N+ 1 − a)

N∑
n=a

f(n)

)(
1

(N+ 1 − a)

N∑
n=a

g(n)

)
,

on the discrete spaces lp[a,N] and l∞[a,N], where [a,N] ⊂ Z+ = {0, 1, 2, . . .}? The crucial reason for this
upsurge of interest in discrete case is due to the fact that discrete operators may even behave differently
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from their continuous counterparts. But the main challenge in establishing discrete analogues is that there
are no general methods to study these questions. Therefore, these methods have to be developed starting
from the basic definitions. In some cases, it is possible, almost straightforward, to translate or adapt the
objects and results from the continuous setting to the discrete setting or vice versa.

However, in some other cases this problem is far from being trivial bounds for discrete analogues of
more complicated operators such as singular and fractional operators, maximal Radon transforms (in-
volving integration over a submanifold, or family of submanifolds), are not implied by the corresponding
continuous results, and moreover, they are resistant to conventional methods and this returned to the lake
of the calculus on the discrete spaces where there is no power rules and also there is no chain rule which
are the main tools used in the proofs of the continuous case. To overcame these problems, we will study
the boundedness of a generalized weighted power mean operator of the form

H(f,g) =
1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
1

m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)

−
1

m2(a,b)

(∫b
a

w(t)gγ(t)∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)

+
1

m3(a,b)

(∫b
a

w(t)gγ(σ(t))∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)
,

(1.2)

on time scales where the measure m(a,b) is defined by m(a,b) =
∫b
aw(x)∆x. The general idea is to

prove a result for a dynamic inequality where the domain of the unknown function is a so-called time
scale T, which may be an arbitrary closed subset of the real numbers R, to avoid proving results twice,
once for differential inequality and once again for difference inequality. This idea goes back to its founder
Stefan Hilger [18] who started the study of dynamic equations on time scales. Since the integral and
discrete inequalities are important in the analysis of qualitative properties of solutions of differential and
difference equations, we also believe that the dynamic Hardy type inequalities with weights on time
scales will play the same effective role in the analysis of qualitative properties of dynamic equations with
boundary conditions like oscillation, nonoscillation and distribution of zeros of solutions. For related
dynamic inequalities on time scales, we refer the reader to the papers [8, 9, 24–33] and the books [2, 3].

In recent decades some authors established some weighted Čebyšev type inequalities, Grüss inequal-
ity, Ostrowski inequalities on time scales, we refer the reader to the papers [1, 5, 10, 11] and the references
they are cited. Since Montgomery ’s identity and its extensions have been tools that have been used to
prove most of the inequalities of Čebyšev-Ostrowski, it is natural to prove on time scales. In fact in [11]
Bohner et al. generalized Montgomery identity and proved that

f(t) =
1

b− a

[∫b
a

fσ(η)∆η+

∫b
a

Ψ(t,η)f∆(η)∆η

]
, (1.3)

where a,b ∈ T with a < b and f ∈ C1
rd([a,b]T, R) and Ψ : [a,b]2T → R is defined by

Ψ(t, s) :=

{
s− a, s ∈ [a, t)T,
s− b, s ∈ [t,b]T,

for s, t ∈ [a,b]T. Let a,b ∈ T with a < b and f ∈ C1
rd([a,b]T, R). By using the identity (1.3) Bohner et al.

proved Ostrowski inequality[
f(t) −

1
b− a

∫b
a

fσ(η)∆η

]
6

(
sup

η∈(a,b)
|f∆(η)|

)[
h2(t,a) + h2(t,b)

b− a

]
,
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on time scales, where h2(t, s) is the second-order generalized polynomial on time scales and will be
defined in the next section.

In 2011 Bohner et al. [12] established weighted Ostrowski-Grüss type integral inequalities on time
scales involving functions with first derivatives belonging to L∞∆ (a, b) and Lp∆(a, b) (will be defined in the
next section). In particular, they proved that if f, g ∈ C1

rd([a,b]T, R) such that f∆, g∆ ∈ L∞∆ (a,b) then for
all t ∈ [a,b]T, we have∣∣∣∣∣f(t)g(t) − 1

m(a,b)

[
g(t)

∫b
a

w(s)f(σ(s))∆s+ f(t)

∫b
a

w(s)g(σ(s))∆s

]

+

(
1

m(a,b)

∫b
a

w(s)f(σ(s))∆s

)(
1

m(a,b)

∫b
a

w(s)g(σ(s))∆s

)∣∣∣∣∣
6

(
1

m(a,b)

∫b
a

(σ(s) − t)w(s)sgn(s− t)∆s

)2 ∥∥f∆∥∥∞ ∥∥g∆∥∥∞ .

where a, b ∈ T such that a < b and w : [a,b]T → [0,∞) and m(a,b) =
∫b
aw(x)∆x.

In 2016 Tuna and Liu [34] established new weighted Čebyšev Ostrowski type integral inequalities on
time scales in L∞-norm and Lp-norm, involving function with first derivatives belonging to L∞∆ (a, b) and
L
p
∆(a, b). They proved that if f, g ∈ C1

rd([a,b]T, R) such that f∆,g∆ ∈ L∞∆ (a,b), then for all t ∈ [a,b]
T

, we
have ∣∣∣∣∣ 1

m(a,b)

∫b
a

w(t)f(t)g(t)∆t−
1

2m2(a,b)

(∫b
a

w(t)g(t)∆t

)(∫b
a

w(t)f(σ(t))∆t

)

−
1

2m2(a,b)

(∫b
a

w(t)f(t)∆t

)(∫b
a

w(t)g(σ(t))∆t

)∣∣∣∣∣
6

1
2m2(a,b)

∫b
a

w(x)[|g(x)|M+ |f(x)|N]

(∫b
a

sgn(t− x)(σ(t) − x)w(x)∆t

)
∆x,

where w : [a,b]T → [0,∞), M = sup
a<t<b

∣∣f∆(t)∣∣ <∞ and N = sup
a<t<b

∣∣g∆(t)∣∣ <∞.

Following this trend and to develop the study of dynamic inequalities on time scales, we will prove
some new weighted Čebyšev-Ostrowski type integral inequalities which contain operators with power
means of that is defined by (1.2). To obtain the main results, we will prove a generalized version of
Montgomery identity with weights. As special cases, we derive some discrete inequalities which to the
best of our knowledge are essentially new. The paper is organized as follows. In Section 2, we present
some basic definitions concerning the delta calculus on that we will use in this article. In Section 3, we
will prove the main results and derive the special cases.

2. Preliminaries

In this section, we present some basic definitions and results concerning the delta calculus on time
scales; for more details we refer the reader to the book [13]. A time scale T is an arbitrary nonempty
closed subset of the real numbers R.

Definition 2.1. The forward jump operator and the backward jump operator are defined by σ(t) := inf{s ∈
T : s > t}, and ρ(t) := sup{s ∈ T : s < t}, where sup ∅ = inf T. A point t ∈ T, is said to be left-dense if
ρ(t) = t and t > inf T, is right-dense if σ(t) = t, is left–scattered if ρ(t) < t and right–scattered if σ(t) > t.

Definition 2.2. A function f : T → R is said to be right–dense continuous (rd-continuous) provided f is
continuous at right-dense points and at left-dense points in T, left hand limits exist and are finite.
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Definition 2.3. For a function f : T → R we define the derivative f∆(t) to be the number, if one exists,
such that for all ε > 0, there is a neighborhood U of t such that for all s ∈ U,∣∣f(σ(t)) − f(s) − f∆(t)(σ(t) − s)∣∣ 6 ε |σ(t) − s| .
We say that f is delta differentiable on T provided that f∆(t) exists for all t ∈ T.

The set of all such rd-continuous functions is denoted by Crd(T). Also, the set of functions that are
differentiable and whose derivative is rd-continuous is denoted by C1

rd(T) = C1
rd(T, R). The graininess

function µ for a time scale T is defined by µ(t) := σ(t) − t, and for any function f : T → R the notation
fσ(t) denotes f(σ(t)).

Without loss of generality, we assume that sup T = ∞, and define the time scale interval [a,b]T by
[a,b]T := [a,b]∩T. Recall of the following product and quotient rules for the derivative of the product fg
and the quotient f/g (where ggσ 6= 0, here gσ = g ◦ σ) of two differentiable functions f and g

(fg)∆ = f∆g+ fσg∆ = fg∆ + f∆gσ, and
(
f

g

)∆
=
f∆g− fg∆

ggσ
.

The first chain rule that we will use in this paper is

(fγ(t))∆ = γ

1∫
0

[hfσ + (1 − h)f]γ−1 dhf∆(t), γ ∈ R,

which is a simple consequence of Keller’s chain rule [13, Theorem 1.90]. The second chain rule that we
will use in this paper is given in the following. Let f : R→ R be continuously differentiable and suppose
g : T→ R is delta differentiable, then f ◦ g : T→ R is delta differentiable and

f∆ (g (t)) = f
′
(g(d))g∆ (t) , for d ∈ [t,σ (t)].

In this paper we will refer to the (delta) integral which we can define as follows. If F∆(t) = f(t), then
the Cauchy (delta) integral of f is defined by

∫t
t0
f(s)∆s := F(t) − F(t0). It can be shown (see [13]) that if

f ∈ Crd(T), then the Cauchy integral F(t) :=
∫t
t0
f(s)∆s exists, t0 ∈ T, and satisfies F∆(t) = f(t), t ∈ T. An

infinite integral is defined as
∫∞
a f(t)∆t = limb→∞ ∫ba f(t)∆t. Integration on discrete time scales is defined

by ∫b
a

f(t)∆t =
∑

t∈[a,b)

µ(t)f(t).

The integration by parts formula on time scales reads∫b
a

u(t)υ∆(t)∆t = [u(t)υ(t)]ba −

∫b
a

u∆(t)υσ(t)∆t. (2.1)

Hölder’s inequality states that for f, g ∈ Crd([a, b]T, R), we have

∫b
a

|f(t)g(t)|∆t 6

[∫b
a

|f(t)|p∆t

]1/p [∫b
a

|g(t)|q∆t

]1/q

,

where p > 1, 1/p+ 1/q = 1 and a, b ∈ T. This inequality is reversed if 0 < p < 1 and
∫b
a |g(t)|

q∆t > 0,
and it is also reversed if p < 0 and

∫b
a |f(t)|

p∆t > 0.
Now, we define the Taylor monomials defined in [14]. These types of monomials are important because

they are intimately related to Cauchy functions for certain dynamic equations which are important in
variations of constants formulas.
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Definition 2.4. The Taylor monomials hk : T×T → R, k ∈ N0 = N∪ {0}, are defined recursively as
follows. The function h0 is defined by h0(t, s) = 1, for all s, t ∈ T, and given hk for k ∈ N0, the function
hk+1 is defined by

hk+1(t, s) =
∫t
s

hk(τ, s)∆τ, for all s, t ∈ T.

If we let h∆k (t, s) denote for each fixed s ∈ T, the derivative of h(t, s) with respect to t, then

h∆k (t, s) = hk−1(t, s), k ∈N, t ∈ T,

for each fixed s ∈ T.

The above definition obviously implies h1(t, s) = t− s, for all s, t ∈ T. In the case when T = R, then
σ(t) = t, µ(t) = 0, y∆(t) = y

′
(t), and

hk(t, s) =
(t− s)k

k!
, for all s, t ∈ R,

for all s, t ∈ T.
Now, we present the definition of ∆-measurable functions on time scales and we set out the method

used in [14, Chapter 5] by Bohner and Guseinov to define the Lebesgue ∆-measure on T. First, by defining
the measure m which assigns to each interval [a,b)∩T its length, that is m ([a,b)) = b−a. Using m, they
generate the outer measure m∗1 , defined for each subset E of T as

m∗1 (E) =

{
infŔ

{∑
i∈IŔ

(bi − ai)
}
∈ R+, if b /∈ E,

+∞, if b ∈ E,

with

Ŕ =

{[ai,bi)∩T}i∈IŔ
: IŔ ⊂N, E ⊂

⋃
i∈I

Ŕ

([ai,bi)∩T)

 .

A set A ⊂ T is said to be ∆-measurable if the following equality

m∗1 (E) = m
∗
1 (E∩A) +m∗1 (E∩ (T\A)) ,

holds for all subsets E ⊂ T.

Definition 2.5. We say that f : T→ R is ∆-measurable if for every α ∈ R, the set

f−1([−∞,α)) = {t ∈ T : f(t) < α},

is ∆-measurable.

Definition 2.6. Let E ⊂ T be a ∆-measurable set and let p > 1 and let f : E → R be a ∆-measurable
function. We say that f belongs to Lp∆(E) provided that either∫

E |f|
p∆s <∞, if 1 6 p <∞,

or there exists a constant C ∈ R such that

|f| 6 C, if p = +∞,

where f is ∆-almost every where on E.

In order to prove our main results in Section 3, we need the following lemmas.



A. A. Ghareeb, S. H. Saker, A. M. Ahmed, J. Math. Computer Sci., 22 (2021), 189–203 195

Lemma 2.7. Assume F : T→ R is differentiable and positive. If F∆ is always positive, then(
Fλ
)∆

> F∆ (Fσ (t))λ−1 , if λ > 1, (2.2)

and (
Fλ
)∆

6 F∆ (Fσ (t))λ−1 , if 0 6 λ 6 1. (2.3)

Proof. If F is increasing and λ > 1, then Fλ−1 is increasing and thus
(
Fλ−1

)∆
> 0 so that(

Fλ
)∆

=
(
FFλ−1)∆ = F∆ (Fσ (t))λ−1 + F

(
Fλ−1)∆ > 0.

This shows (2.2), and (2.3) follows similarly. The proof is complete.

3. Main results

Throughout this paper, we assume that the functions (without mentioning) are rd-continuous nonneg-
ative and ∆-differentiable functions, locally ∆-integrable on [a,b)T. We also assume that all the constants
and the boundaries of the integrals that appear in the inequalities are real numbers greater than or equal
to zero. Let a,b ∈ T with a < b and f, g ∈ C1

rd([a,b]T, R) and w ∈ C1
rd([a,b]T, R+) be non-negative and

integrable. Define

pw(x, t) =

{ ∫t
aw(τ)∆τ, a 6 t < x,∫t
bw(τ)∆τ, x < t 6 b,

and m(a,b) =
∫b
aw(x)dx.

Theorem 3.1. Assume that M = sup
a<t<b

∣∣∣(fγ(t))∆∣∣∣ < ∞, N = sup
a<t<b

∣∣∣(gγ(t))∆∣∣∣ < ∞ and let K = MN. Then

we have

|H(f,g)| 6 K
∫b
a

w(x)

m(a,b)

(
1

m(a,b)

∫b
a

|pw(x, t)|∆t

)2

∆x, (3.1)

where H(f,g) is defined as in (1.2) and K > 0 is a psoitive constant.

Proof. By using integration by parts (2.1), we have that∫b
a

pw(x, t) (fγ(t))∆∆t =
∫x
a

(∫t
a

w(τ)∆τ

)
(fγ(t))∆∆t+

∫b
x

(∫t
b

w(τ)∆τ

)
(fγ(t))∆∆t

= fγ(x)

∫x
a

w(τ)∆τ− fγ(a)

∫a
a

w(τ)∆τ−

∫x
a

w(t)fγ(σ(t))∆t

+ fγ(b)

∫b
b

w(τ)∆τ− fγ(x)

∫x
b

w(τ)∆τ−

∫b
x

w(t)fγ(σ(t))∆t

= fγ(x)

(∫x
a

w(τ)∆τ+

∫b
x

w(τ)∆τ

)
−

(∫x
a

w(t)fγ(σ(t))∆t+

∫b
x

w(t)fγ(σ(t))∆t

)

= fγ(x)

∫b
a

w(t)∆t−

∫b
a

w(t)fγ(σ(t))∆t

= fγ(x)m(a,b) −
∫b
a

w(t)fγ(σ(t))∆t,

and thus we obtain the generalized Montgomery identity

fγ(x) −
1

m(a,b)

∫b
a

w(t)fγ(σ(t))∆t =
1

m(a,b)

∫b
a

pw(x, t) (fγ(t))∆∆t. (3.2)
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Replacing f by g in (3.2), we obtain

gγ(x) −
1

m(a,b)

∫b
a

w(t)gγ(σ(t))∆t =
1

m(a,b)

∫b
a

pw(x, t) (gγ(t))∆∆t. (3.3)

Now, multiplying both sides of (3.2) and (3.3), we obtain

fγ(x)gγ(x) −
fγ(x)

m(a,b)

∫b
a

w(t)gγ(σ(t))∆t−
gγ(x)

m(a,b)

∫b
a

w(t)fγ(σ(t))∆t

+
1

m2(a,b)

(∫b
a

w(t)fγ(σ(t))∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)

=
1

m2(a,b)

(∫b
a

pw(x, t) (fγ(t))∆∆t

)(∫b
a

pw(x, t) (gγ(t))∆∆t

)
.

(3.4)

Multiplying equation (3.4) with w(x)/m(a,b) and integrating, and taking absolute values, we get that∣∣∣∣∣ 1
m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
1

m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)

−
1

m2(a,b)

(∫b
a

w(t)gγ(t)∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)

+
1

m3(a,b)

(∫b
a

w(t)gγ(σ(t))∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)∣∣∣∣∣
6

1
m3(a,b)

∫b
a

w(x)

(∫b
a

|pw(x, t)|
∣∣∣(fγ(t))∆∣∣∣∆t)(∫b

a

|pw(x, t)|
∣∣∣(gγ(t))∆∣∣∣∆t)∆x

6
MN

m3(a,b)

∫b
a

w(x)

(∫b
a

|pw(x, t)|∆t

)2

∆x.

6 K
∫b
a

w(x)

m(a,b)

(
1

m(a,b)

∫b
a

|pw(x, t)|∆t

)2

∆x.

Now, by using the definition of H(f,g), we get the desired inequality (3.1). The proof is complete.

Remark 3.2. By using the definition of pw(x, t), we see that∫b
a
|pw(x, t)|∆t =

∫x
a
|pw(x, t)|∆t+

∫b
x
|pw(x, t)|∆t

=

∫x
a

∣∣∣∣(∫t
a
w(τ)∆τ

)∣∣∣∣∆t+ ∫b
x

∣∣∣∣(∫t
b
w(τ)∆τ

)∣∣∣∣∆t
=

∫x
a

(∫t
a
w(τ)∆τ

)
∆t−

∫b
x

(∫t
b
w(τ)∆τ

)
∆t

= x

∫x
a
w(τ)∆τ− a

∫a
a
w(τ)∆τ−

∫x
a
w(t)σ(t)∆t− b

∫b
b
w(τ)∆τ+ x

∫x
b
w(τ)∆τ+

∫b
x
w(t)σ(t)∆t

= x

(∫x
a
w(τ)∆τ+

∫x
b
w(τ)∆τ

)
−

(∫x
a
w(t)σ(t)∆t−

∫b
x
w(t)σ(t)∆t

)

= −x

(∫x
a

sgn(t− x)w(τ)∆τ+
∫b
x

sgn(t− x)w(τ)∆τ

)
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+

(∫x
a

sgn(t− x)w(t)σ(t)∆t+
∫b
x

sgn(t− x)w(t)σ(t)∆t

)

= −x

∫b
a

sgn(t− x)w(t)∆t+
∫b
a

sgn(t− x)w(t)σ(t)∆t

=

∫b
a

sgn(t− x)w(t)σ(t)∆t− x
∫b
a

sgn(t− x)w(t)∆t

=

∫b
a
(σ(t) − x)w(t)sgn(t− x)∆t.

By combining the result in Remark 3.2 and Theorem 3.1, we get the following result.

Corollary 3.3. Assume that M = sup
a<t<b

∣∣∣(fγ(t))∆∣∣∣ < ∞ and N = sup
a<t<b

∣∣∣(gγ(t))∆∣∣∣ < ∞ and K = MN > 0.

Then we have

|H(f,g)| 6 K
∫b
a

w(x)

m(a,b)

(
1

m(a,b)

∫b
a

(σ(t) − x)w(t)sgn(t− x)∆t

)2

∆x.

If we assume that f and g are nondecreasing, we see that fγ(σ(t)) > fγ(t) and gγ(σ(t)) > gγ(t). This
in addition to the assumptions of Theorem 3.1 give us the following result.

Corollary 3.4. Assume that M = sup
a<t<b

∣∣∣(fγ(t))∆∣∣∣ < ∞ and N = sup
a<t<b

∣∣∣(gγ(t))∆∣∣∣ < ∞, and K = MN > 0.

If f and g are nondecreasing, then we have

|H0(f,g)| 6 K
∫b
a

w(x)

m(a,b)

(
1

m(a,b)

∫b
a

|pw(x, t)|∆t

)2

∆x,

where

H0(f,g) =
1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
2

m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(t)∆t

)

+
1

m3(a,b)

(∫b
a

w(t)gγ(σ(t))∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)
.

Theorem 3.5. Assume that M = sup
a<t<b

∣∣∣(fγ(t))∆∣∣∣ <∞ and N = sup
a<t<b

∣∣∣(gγ(t))∆∣∣∣ <∞. Then we have

|H1(f,g)| 6
1

2m(a,b)

∫b
a

w(x) [|gγ(x)|M+ |fγ(x)|N]

(
1

m(a,b)

∫b
a

|pw(x, t)|∆t

)
∆x, (3.5)

where

H1(f,g) =
1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t

−
1
2

(
1

m(a,b)

∫b
a

w(t)gγ(t)∆t

)(
1

m(a,b)

∫b
a

w(t)fγ(σ(t))∆t

)

−
1
2

(
1

m(a,b)

∫b
a

w(t)fγ(t)∆t

)(
1

m(a,b)

∫b
a

w(t)gγ(σ(t))∆t

)
.
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Proof. Multiplying (3.2) by gγ(x) and (3.3) by fγ(x), adding the resulting identities and multiplying the
final result with w(x)/ (2m(a,b)) and integrating over [a,b]T, we have

1
m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
1

2m2(a,b)

(∫b
a

w(t)gγ(t)∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)

−
1

2m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)

=
1

2m2(a,b)

∫b
a

w(x)

[
gγ(x)

(∫b
a

pw(x, t) (fγ(t))∆∆t

)

+fγ(x)

(∫b
a

pw(x, t) (gγ(t))∆∆t

)
∆x

]
,

(3.6)

and taking absolute values then, we get∣∣∣∣∣ 1
m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
1

2m2(a,b)

(∫b
a

w(t)gγ(t)∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)

−
1

2m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)∣∣∣∣∣
6

1
2m2(a,b)

∫b
a

w(x)

[
|gγ(x)|

(∫b
a

|pw(x, t)|
∣∣∣(fγ(t))∆∣∣∣∆t)+ |fγ(x)|

(∫b
a

|pw(x, t)|
∣∣∣(gγ(t))∆∣∣∣∆t)]∆x

6
1

2m(a,b)

∫b
a

w(x) [|gγ(x)|M+ |fγ(x)|N]

(
1

m(a,b)

∫b
a

|pw(x, t)|∆t

)
∆x.

Now, by using the definition of H1(f,g), we get the desired inequality (3.5). The proof is complete.

By combining the result in Remark 3.2 and Theorem 3.5, we get the following result.

Corollary 3.6. Assume that M = sup
a<t<b

∣∣∣(fγ(t))∆∣∣∣ <∞ and N = sup
a<t<b

∣∣∣(gγ(t))∆∣∣∣ <∞. Then we have

|H1(f,g)| 6
1

2m(a,b)

∫b
a

w(x) [|gγ(x)|M+ |fγ(x)|N]

(
1

m(a,b)

∫b
a

(σ(t) − x)w(t)sgn(t− x)∆t

)
∆x.

If we assume that f and g are nondecreasing, we see that fγ(σ(t)) > fγ(t) and gγ(σ(t)) > gγ(t). This
in addition to the assumptions of Theorem 3.5 gives us the following result.

Corollary 3.7. Assume that M = sup
a<t<b

∣∣∣(fγ(t))∆∣∣∣ < ∞ and N = sup
a<t<b

∣∣∣(gγ(t))∆∣∣∣ < ∞. If f and g is

nondecreasing, then we have

|H2(f,g)| 6
1

2m(a,b)

∫b
a

w(x) [|gγ(x)|M+ |fγ(x)|N]

(
1

m(a,b)

∫b
a

|pw(x, t)|∆t

)
∆x,

where

H2(f,g) =
1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−

(
1

m(a,b)

∫b
a

w(t)fγ(t)∆t

)(
1

m(a,b)

∫b
a

w(t)gγ(t)∆t

)
.

Corollary 3.8. In the case γ = 1 in Theorems 3.1 and 3.5, we obtain the result in [34, Theorem 3.1].
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Corollary 3.9. In the case γ = 1 and T = R in Theorems 3.1 and 3.5, we obtain the result in [23, Theorem 1].

Corollary 3.10. In the case γ = 1 and T = Z in Theorems 3.1 and 3.5 we obtain the discrete result in [34, Corollary
3.2].

Corollary 3.11. In the case γ = 1 and T =qN ∪ {0} (q > 1) in Theorems 3.1 and 3.5, we obtain the results in [34,
Corollary 3.3].

To prove the following theorem and for the sake of simplicity, we define the operator M(f,g) by

M(f,g) =
1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
1

m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)

−
1

m2(a,b)

(∫b
a

w(t)gγ(t)∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)

+
1

m3(a,b)

(∫b
a

w(t)fγ(σ(t))∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)
.

(3.7)

Theorem 3.12. Assume that M =
∥∥(fγ)∆∥∥

p
<∞ and N =

∥∥(gγ)∆∥∥
p
<∞ and K =MN > 0. Then we have

|M(f,g)| 6 K
∫b
a

w(x)

m3(a,b)

(∫b
a

|pw(x, t)|q∆t

) 2
q

∆x, (3.8)

where M(f,g) is the mean power operator defined by (3.7).

Proof. From (3.4), we have

fγ(x)gγ(x) −
fγ(x)

m(a,b)

∫b
a

w(t)gγ(σ(t))∆t−
gγ(x)

m(a,b)

∫b
a

w(t)fγ(σ(t))∆t

+
1

m2(a,b)

(∫b
a

w(t)fγ(σ(t))∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)

=
1

m2(a,b)

(∫b
a

pw(x, t) (fγ(t))∆∆t

)(∫b
a

pw(x, t) (gγ(t))∆∆t

)
.

Multiplying with w(x)/m(a,b), integrating and taking absolute values and using Hölder’s inequality on
time scales, we have∣∣∣∣∣ 1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
1

m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)

−
1

m2(a,b)

(∫b
a

w(t)gγ(t)∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)

+
1

m3(a,b)

(∫b
a

w(t)gγ(σ(t))∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)∣∣∣∣∣
6

1
m3(a,b)

∫b
a

w(x)

(∫b
a

|pw(x, t)|
∣∣∣(fγ(t))∆∣∣∣∆t)(∫b

a

|pw(x, t)|
∣∣∣(gγ(t))∆∣∣∣∆t)∆x

6

∥∥∥(fγ)∆∥∥∥
p

∥∥∥(gγ)∆∥∥∥
p

m3(a,b)

∫b
a

w(x)

(∫b
a

|pw(x, t)|q∆t

) 2
q

∆x.
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6
MN

m3(a,b)

∫b
a

w(x)

(∫b
a

|pw(x, t)|q∆t

) 2
q

∆x.

6 K
∫b
a

w(x)

m3(a,b)

(∫b
a

|pw(x, t)|q∆t

) 2
q

∆x.

Now, by using the definition of M(f,g), we get the desired inequality (3.8). The proof is complete.

Remark 3.13. By using the definition of pw(x, t), we see that(∫b
a

|pw(x, t)|q∆t

) 1
q

=

(∫x
a

|pw(x, t)|q∆t+
∫b
x

|pw(x, t)|q∆t

) 1
q

=

(∫x
a

∣∣∣∣∫t
a

w(u)∆u

∣∣∣∣q∆t+ ∫b
x

∣∣∣∣∫t
b

w(u)∆u

∣∣∣∣q∆t
) 1
q

=

(∫x
a

(∫t
a

w(u)∆u

)q
∆t+

∫b
x

(∫t
b

w(u)∆u

)q
∆t

) 1
q

=

(∫x
a

mq(a, t)∆t+
∫b
x

mq(t,b)∆t

) 1
q

.

By combining the result in Remark 3.13 and Theorem 3.12, we get the following result.

Corollary 3.14. Assume that M =
∥∥(fγ)∆∥∥

p
<∞ and N =

∥∥(gγ)∆∥∥
p
<∞ and K =MN > 0. Then we have

|M(f,g)| 6 K
∫b
a

w(x)

m3(a,b)

(∫x
a

mq(a, t)∆t+
∫b
x

mq(t,b)∆t

) 2
q

∆x.

If we assume that f and g are nondecreasing, we see that fγ(σ(t)) > fγ(t) and gγ(σ(t)) > gγ(t). This
in addition to the assumptions of Theorem 3.12 gives us the following result.

Corollary 3.15. Assume that M =
∥∥(fγ)∆∥∥

p
< ∞ and N =

∥∥(gγ)∆∥∥
p
< ∞ and K = MN > 0. If f and g are

nondecreasing, then we have

|M0(f,g)| 6 K
∫b
a

w(x)

m3(a,b)

(∫b
a

|pw(x, t)|q∆t

) 2
q

∆x,

where

M0(f,g) =
1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
2

m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(t)∆t

)

+
1

m3(a,b)

(∫b
a

w(t)gγ(σ(t))∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)
.

Theorem 3.16. Assume that M =
∥∥(fγ)∆∥∥

p
<∞ and N =

∥∥(gγ)∆∥∥
p
<∞. Then we have

|M1(f,g)| 6
1

2m2(a,b)

∫b
a

w(x)[|gγ(x)|M+ |fγ(x)|N]

(∫b
a

|pw(x, t)|q∆t

) 1
q

∆x, (3.9)
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where

M1(f,g) =
1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
1
2

(
1

m(a,b)

∫b
a

w(t)gγ(t)∆t

)(
1

m(a,b)

∫b
a

w(t)fγ(σ(t))∆t

)

−
1
2

(
1

m(a,b)

∫b
a

w(t)fγ(t)∆t

)(
1

m(a,b)

∫b
a

w(t)gγ(σ(t))∆t

)
.

Proof. From (3.6), we have

1
m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−
1

2m2(a,b)

(∫b
a

w(t)gγ(t)∆t

)(∫b
a

w(t)fγ(σ(t))∆t

)

−
1

2m2(a,b)

(∫b
a

w(t)fγ(t)∆t

)(∫b
a

w(t)gγ(σ(t))∆t

)

=
1

2m2(a,b)

∫b
a

w(x)

[
gγ(x)

(∫b
a

pw(x, t) (fγ(t))∆∆t

)
+ fγ(x)

(∫b
a

pw(x, t) (gγ(t))∆∆t

)]
∆x.

taking absolute values and using Hölder’s inequality on time scales, we get∣∣∣∣∣ 1
m(a,b)

∫b
a
w(t)fγ(t)gγ(t)∆t−

1
2m2(a,b)

(∫b
a
w(t)gγ(t)∆t

)(∫b
a
w(t)fγ(σ(t))∆t

)

−
1

2m2(a,b)

(∫b
a
w(t)fγ(t)∆t

)(∫b
a
w(t)gγ(σ(t))∆t

)∣∣∣∣∣
6

1
2m2(a,b)

∫b
a
w(x)

[
|gγ(x)|

(∫b
a
|pw(x, t)|

∣∣∣(fγ(t))∆∣∣∣∆t)+ |fγ(x)|

(∫b
a
|pw(x, t)|

∣∣∣(gγ(t))∆∣∣∣∆t)]∆x
6

1
2m2(a,b)

∫b
a
w(x)

|gγ(x)|∥∥∥(fγ)∆∥∥∥
p

(∫b
a
|pw(x, t)|q ∆t

) 1
q

+ |fγ(x)|
∥∥∥(gγ)∆∥∥∥

p

(∫b
a
|pw(x, t)|q ∆t

) 1
q

∆x
6

1
2m2(a,b)

∫b
a
w(x) [|gγ(x)|M+ |fγ(x)|N]×

(∫b
a
|pw(x, t)|q ∆t

) 1
q

∆x.

Now, by using the definition of M1(f,g), we get the desired inequality (3.9). The proof is complete.

By combining the result in Remark 3.13 and Theorem 3.16, we get the following result.

Corollary 3.17. Assume that M =
∥∥(fγ)∆∥∥

p
<∞ and N =

∥∥(gγ)∆∥∥
p
<∞. Then we have

|M1(f,g)| 6
1

2m2(a,b)

∫b
a

w(x)[|gγ(x)|M+ |fγ(x)|N]

(∫x
a

mq(a, t)∆t+
∫b
x

mq(t,b)∆t

) 1
q

∆x.

If we assume that f and g are nondecreasing, we see that fγ(σ(t)) > fγ(t) and gγ(σ(t)) > gγ(t). This
in addition to the assumptions of Theorem 3.16 gives us the following result.

Corollary 3.18. Assume that M =
∥∥(fγ)∆∥∥

p
< ∞ and N =

∥∥(gγ)∆∥∥
p
< ∞. If f and g is nondecreasing, then

we have

|M2(f,g)| 6
1

2m2(a,b)

∫b
a

w(x)[|gγ(x)|M+ |fγ(x)|N]

(∫b
a

|pw(x, t)|q∆t

) 1
q

∆x.

where

M2(f,g) =
1

m(a,b)

∫b
a

w(t)fγ(t)gγ(t)∆t−

(
1

m(a,b)

∫b
a

w(t)fγ(t)∆t

)(
1

m(a,b)

∫b
a

w(t)gγ(t)∆t

)
.
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Corollary 3.19. In the case γ = 1 in Theorems 3.12 and 3.16, we obtain Theorem 3.3 in [34].

Corollary 3.20. In the case γ = 1 and T = R in Theorems 3.12 and 3.16 we obtain Theorem 3 in [4].

Corollary 3.21. In the case γ = 1 and T = Z in Theorems 3.12 and 3.16 we obtain the discrete inequality proved
in [34, Corollary 3.8].

Corollary 3.22. In the case γ = 1 and T =qZ ∪ {0} (q > 1) in Theorems 3.12 and 3.16, we obtain Corollary 3.9
in [34].
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