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Abstract
The three-term conjugate gradient (CG) algorithms are among the efficient variants of CG method for convex and non-

convex functions. This is because most three-term algorithms are constructed using the classical CG method whose numerical
performance has been tested and convergence proved. In this paper, we present a modification of RMIL+ CG method proposed
by Dai [Z. Dai, Appl. Math. Comput., 267 (2016), 297–300] based on the convergence analysis of RMIL (2012) CG method.
Interestingly, the modified method possesses sufficient descent condition and the global convergence prove was established
using exact minimization condition. We further extended the results of the modified RMIL+ to construct a three-term CG algo-
rithm and also show that the method satisfies the sufficient descent condition under the strong Wolfe line search. Preliminary
numerical results are reported based on known benchmark problems which show that the proposed methods are efficient and
promising compare to other CG methods.
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1. Introduction

Consider the following optimization model

min f (x) , x ∈ Rn, (1.1)

where the nonlinear function f : Rn → R is smooth whose gradient g (x) is available. Problems of the form
(1.1) often arise in areas of sciences, engineering, and social science [11, 28]. The CG algorithm is among
the most efficient algorithm for obtaining the solution of (1.1) using the recursive formula

xk+1 = xk +αkdk,k = 1, 2, 3, . . . , (1.2)

where αk > 0 is the step-size obtained by certain line search process, and dk is the direction of search
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defined by
dk+1 = −gk+1 +βkdk, d0 = −g0. (1.3)

The scalar βk refers to the CG parameter whose different forms characterizes different CG method, and
gk = g (xk) . Some well-known formulas for βk are:

βHSk =
gTk(gk − gk−1)

(gk − gk−1)
Tdk−1

Hestenes− Stiefel [12], (1.4)

βFRk =
gTkgk

‖gk−1‖2 Fletcher− Reeves [10], (1.5)

βPRPk =
gTk(gk − gk−1)

‖gk−1‖2 Polak− Ribiere [21, 22], (1.6)

βLSk =
gTk(gk − gk−1)

−dk−1gk−1
Liu− Storey [16], (1.7)

βCDk = −
gTkgk

dTk−1gk−1
ConjugateDescent [9], (1.8)

βDYk =
gTkgk

(gk − gk−1)
Tdk−1

Dai− Yuan [7]. (1.9)

The convergence properties of (1.4) - (1.9) have been studied by numerous researchers. From the numerical
point of view, the PRP algorithm outperformed the algorithm of FR. Also, for convex objective function,
PRP method would converge globally under exact minimization condition [21]. The exact line search is
computed such that tk satisfy:

f (xk + tκdk) =
min
t>0 f(xk + t dk). (1.10)

However, Powell [23] show that the PRP algorithm would not converge globally on several nonconvex
functions.

Some convergence result also requires the step-size tk to possess the weak Wolfe (WWP) or strong
Wolfe (SWP) line search. The WWP line search is computed such that tk satisfy.

f (xk + tkdk) 6 f (xk) + δtkg
T
kdk, (1.11)

g(xk + tkdk)
Tdk > σgTkdk. (1.12)

The SWP line search is computed such that tk satisfy (1.11) and∣∣g(xk + tkdk)Tdk∣∣ 6 −σgTkdk, (1.13)

where 0 < δ < σ < 1. Al-Baali [1] show the FR method possess the descent condition:

gTkdk 6 −C‖gk‖2, C > 0, (1.14)

and used the SWP line search to show that the algorithm converges globally for general function. For
more convergence results of the CG method, please refer to [6, 7, 9, 15, 21, 25, 28, 31].

Recently, Rivaie et al. [24] construct an efficient variant of PRP method by defining a new denominator
as follows:

βRMILk =
gTk(gk − gk−1)

‖dk−1‖2 (1.15)

and show that (1.15) possess the descent property (1.14) and further prove the global convergence using
exact minimization condition. However, Dai [5] showed that the convergence proof is not correct due to a
wrong inequality used and presented some necessary corrections as follows:

βRMIL+k =

{
gTk(gk−gk−1)

‖dk−1‖2 , if 0 6
∣∣gTkgk−1

∣∣ 6 ‖gk‖2,

0, otherwise,
(1.16)
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and further show that RMIL+ converges globally under exact line search with efficient numerical results.
More recently, [20], extended the result of Dai [5] and prove the RMIL+ converge globally using the strong
Wolfe conditions.

One of the efficient variants of Conjugate gradient algorithm is known as the three-term CG algorithm.
This scheme often defines a new search direction dk by the convex combination of an existing CG method
with a search direction. Beale [4] was among the early researchers that studied the general three-term CG
method. Using the βHSk method defined in (1.4), he constructed a new direction of search as follows:

dk = −gk +βkdk−1 + γkdt, (1.17)

where dt is the restart directions and γk = 0 for k = t+ 1, and

γk =
gTkyt

dTt yt
k > t+ 1. (1.18)

The performance of this method was improved using an efficient restart strategy developed by Powell
[23] and McGuire [19]. The following conditions

gTkdk > ϕ ‖gk‖ ‖dk‖ (1.19)

and Powell-Beale condition ∣∣gTk−1gk
∣∣ < 0.2‖gk‖2 (1.20)

are imposed on (1.17) so that it possesses the descent properties. Further research on the Three-term CG
methods includes that of [29] who proposed a three term CG algorithm (TTPRP) using the coefficient of
βPRPk as follows:

dk = −gk +βkdk−1 + θk−1yk−1,

where θk = −
gTkdk−1

gTk−1gk−1
, and extended the result to βHSk (TTHS) [30] as follows:

dk =

{
−gk if sTk−1yk < ε1‖gk−1‖rsTk−1sk−1,
−gk +β

HS
k + θk−1yk−1 otherwise,

where θk = −
gTkdk−1

dTk−1yk−1
and sk−1 = xk− xk−1, r > 0, ε1 > 0. An attractive feature of these methods is that:

gTkdk = −‖gk‖2 (1.21)

holds irrespective of the condition of tk employed. The convergence analysis of TTPRP was established
using a modified Armijo line search and that of TTHS under the standard Wolfe line search. For more
studies and recent reference on three-term conjugate gradient methods, interested researchers may refer
to [2, 3, 13, 14, 17, 18, 26, 29, 30].

This paper defined a variant of βRMIL+k method in such a way that the modification not only possesses
the nice convergence properties of βRMIL+k , but also the efficient numerical effect of the method. More-
over, the modified method was extended to construct a new three-term CG algorithm whose convergence
analysis was studied using the strong Wolfe conditions.

The other part of the article is structured as follows. In Section 2, we proposed the modified βRMIL+k

and Three-term CG method and prove their convergence results. To illustrate the efficiency of the new
modifications, some numerical experiments were conducted whose results are presented in Section 3.
Finally, the conclusion is discussed in Section 4.

2. New formulas and algorithm

Motivated by the comments of Dai [5] on the convergence properties of RMIL method, this paper
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defined a modified RMIL+ as follows:

βSRMIL+k =

{
‖gk‖2−gTkgk−1

‖dk−1‖2 , if 0 6
∣∣gTkgk−1

∣∣ 6 ‖gk‖2,

0, otherwise,
(2.1)

that is, we expanded the term gTk(gk−gk−1) in RMIL+ to ‖gk‖2 −gTkgk−1 and called the proposed method
SRMIL+. It is obvious to know that under exact minimization condition, SRMIL+ will reduce to RMIL+
method. The algorithm for the proposed method is defined as follows.

Algorithm 2.1.
Stage 1. Given x0εR

n, d0 = −g0, set k = 0.
Stage 2. Compute tk by (1.10).
Stage 3. Update the new point based on (1.2).
Stage 4. Compute βk by (2.1) and update dk by (1.3).
Stage 5. If ‖gk‖ 6 10−6, then terminate. Else, go to stage 2 with k = k+ 1.

In the convergence analysis of the CG algorithms, the following assumptions are often required [27].
Assumption A. f(x)is bounded from below on the level set Ω = {x ∈ Rn/f(x) 6 f(x0)} .
Assumption B. In some neighborhood N of Ω, f is smooth and g(x) is Lipchitz continuous in N, such
that, there exist L > 0 (constant) satisfying;

‖g (x) − g(y)‖ 6 L ‖x− y‖ ∀x, y ∈ N. (2.2)

Some interesting properties of SRMIL+ method is presented as follows.

Lemma 2.2. The proposed βSRMIL+k satisfies

0 6 βSRMIL+k 6
‖gk‖2

‖dk−1‖2 . (2.3)

Proof. Since for 0 6
∣∣gTkgk−1

∣∣ 6 ‖gk‖2,

βSRMIL+k =
‖gk‖2 − gTkgk−1

‖dk−1‖2 ,

then, it is obvious that (2.3) holds.

2.1. Convergence analysis

The convergence analysis of βSRMIL+k would be studied in this section. One of the main conditions
that every CG algorithm should possess is the sufficient descent property defined in (1.14)

2.1.1. Sufficient descent condition
The following theorem would be used to show that βSRMIL+k possess the descent property.

Theorem 2.3. For any CG algorithm defined by (1.2) and (1.3), where βk is given as (2.1), then, (1.14) holds for
all k > 0.

Proof. Suppose k = 0, then, (1.14) becomes gT0 d0 6 −C‖g0‖2. This implies that (1.14) holds true. Next, we
need to show that (1.14) also holds true for k > 1.

From (1.4), we get
dk = −gk +β

SRMIL+
k dk−1,
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multiply through by gTk will give

gTkdk = −gTkgk +β
SRMIL+
k gTkdk−1,

= ‖gk‖2 +βSRMIL+k gTkdk−1.
(2.4)

However, for exact line search gTkdk−1 = 0 [13, 29]. Therefore, for C = 1, we have

gTkdk = −C‖gk‖2,

which implies that (1.14) holds and thus, completes the proof.

2.1.2. Global convergence properties
The global convergence of βSRMIL+k would be discussed in this section.
Consider the assumptions A and B, then, the following lemma based on Zoutendjik [31] condition is

very essential in the convergence studies of most CG algorithm.

Lemma 2.4. Let Assumptions A and B holds true. For any CG iterative algorithm defined by (1.2), where dk is
defined by (1.3), and the step-size tk satisfies (1.10). Then,

∞∑
k=0

(gTkdk)
2

‖dk‖2 < ∞. (2.5)

The proof of this lemma follows from [31]. From (2.3) and by Lemma 2.2, we have the convergent
theorem presented below.

Theorem 2.5. Suppose Assumptions A and B holds true. For any CG method of the form (1.2) and (1.3), where the
step-size tk is computed by (1.10). Also, suppose Assumptions A and B and the (1.14) holds true. Then, either

lim
k→∞ ‖gk‖ = 0 or

∞∑
k=0

(gTkdk)
2

‖dk‖2 < ∞.

Proof. The prove of this theorem would be by contradiction. We suppose the theorem is not true, then,
∃ ψ > 0 (ψ is a constant) such that

‖gk‖2 > ψ. (2.6)

From (1.4), we have
dk + gk = βkdk−1, (2.7)

squaring all side of (2.7) and dividing by (gTkdk)
2 will give

‖dk‖2

(gTkdk)
2 =

(βk)
2‖dk−1‖2

(gTkdk)
2 −

2(
gTkdk

)2 −
‖gk‖2

(gTkdk)
2

=
(βk)

2‖dk−1‖2

(gTkdk)
2 −

(
1

‖gk‖2 +
‖gk‖
gTkdk

)2

+
1

‖gk‖2 ,

which reduces to
‖dk‖2

(gTkdk)
2 =

(βk)
2‖dk−1‖2

(gTkdk)
2 +

1
‖gk‖2 . (2.8)
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However, from (2.3), we have βSRMIL+k 6 ‖gk‖2

‖dk−1‖2 . Substituting in (2.8), we obtain

‖dk‖2

(gTkdk)
2 =

(
‖gk‖2

‖dk−1‖2

)2
‖dk−1‖2

(gTkdk)
2 +

1
‖gk‖2

=
‖gk‖2

‖dk‖2‖dk−1‖2 +
1

‖gk‖2

6
1

‖dk−1‖2 +
1

‖gk‖2 .

(2.9)

But 1
‖d0‖2 = 1

‖g0‖2 , hence, (2.9) reduces to

‖dk‖2

(gTkdk)
2 =

1
‖g0‖2 +

1
‖gk‖2 ,

which implies

‖dk‖2

(gTkdk)
2 6

k∑
i=0

1
‖gi‖2

(gTkdk)
2

‖dk‖2 >
ψ2

k
.

(2.10)

From (2.6) and (2.10), we have ∞∑
k=0

(gTkdk)
2

‖dk‖2 =∞.

However, it contradicts our assertion in Lemma 2.2, and thus, completes the proof.

Theorem 2.6. Suppose Assumptions A and B holds. For any CG method defined using (1.2) and (1.3), where the
step-size tk is computed using (1.10). Also, suppose Assumptions A, B and (1.14) holds true. Then, either

lim
k→∞ ‖gk‖ = 0 or

∞∑
k=0

(gk)
4

‖dk‖2 < ∞.

Proof. Squaring through (2.7) and applying (2.3) will give

‖dk‖2 =

(
‖gk‖2

‖dk−1‖2

)2

‖dk−1‖2 − 2gTkdk − ‖gk‖
2.

After some simplification, we have

‖dk‖2 =
‖gk‖4

‖dk−1‖2 − 2gTkdk − ‖gk‖
2. (2.11)

Since, from Theorem 2.3, we showed that βSRMIL+k satisfied the descent condition, then, from (2.11), we
have

‖dk‖2 =
‖gk‖4

‖dk−1‖2 + 2C‖gk‖2 − ‖gk‖2,

‖dk‖2 =
‖gk‖4

‖dk−1‖2 − ‖gk‖2 (1 − 2C) .

(2.12)
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Multiplying through (2.12) by ‖gk‖
2

‖dk‖2 gives

‖dk‖2 ‖gk‖2

‖dk‖2 =

(
‖gk‖4

‖dk−1‖2 − ‖gk‖2 (1 − 2C)

)
‖gk‖2

‖dk‖2 ,

which after little simplification gives

‖dk‖2‖gk‖2

‖dk‖2 6
‖gk‖4

‖dk‖2 . (2.13)

However, know that limk→∞ (gTkdk)
2

‖dk‖2 < 0 based on Theorem 2.5 which means that if Theorem 2.6 is not

true, then, limk→∞ (gTkdk)
2

‖dk‖2 = 0 and from (2.13) ∞ 6 ‖gk‖4

‖dk‖2 . This means that for sufficiently large k, the
theorem will hold true.

Now similar to the construction of βSRMIL+k , we present the proposed three-term CG parameter as
follows.

2.2. Three-term βSRMIL+k method
Motivated by the structure of TTPRP [29], we extend the proposed βSRMIL+k to construct a three-term

CG parameter named βTTSRMIL+k .
An interesting feature of βTTSRMIL+k is that the method would reduce to the proposed βSRMIL+k

method under exact minimization condition.
The proposed βTTSRMIL+k is defined as expressed as follows:

dk =

{
−g0 if k = 0,
−gk +βkdk−1 + θkgk−1, if k > 1, (2.14)

where βk = βSRMIL+k defined in (2.1), and

θk =
gTkdk−1

‖dk−1‖2 . (2.15)

2.2.1. Sufficient descent condition
The following theorem would be used to show that βTTSRMIL+k satisfies the descent condition under

SWP line search.

Theorem 2.7. Consider the CG algorithm defined by (1.2) and (2.14), where βk is given as (2.1) and tκ is generated
by strong Wolfe line search (1.11) and (1.13). Then,

gTkdk 6 −(1 − σ) ‖gk‖2, ∀k > 0, (2.16)

Proof. To prove Theorem 2.7, we use mathematical induction. If k = 0, then gTod0 = −‖g0‖2. Thus,
condition (2.16) holds true. Assume that (2.16) holds true for k− 1, this implies

gTk−1dk−1 < 0,

meaning that condition (1.13) is useful.
From (2.14), multiply by gTk will give

gTkdk = −‖gk‖2 + (βk)
2·gTkdk−1 + θk·gTkgk−1.
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Substituting (2.1) and (2.15), we have

gTkdk = −‖gk‖2 +
‖gk‖2·gTkdk−1

‖dk−1‖2 −
gTkgk−1,·gTkdk−1

‖dk−1‖2 +
gTkgk−1·gTkdk−1

‖dk−1‖2 ,

which implies

gTkdk 6 −‖gk‖2 +
‖gk‖2·gTkdk−1

‖dk−1‖2

6 −‖gk‖2 + σ‖gk‖2

= −(1 − σ) ‖gk‖2,

which follows from (1.13), and thus, completes the prove.

3. Results and discussions

This section reports some preliminary numerical experiments based on Algorithm 2.1. We considered
some unconstrained optimization benchmark problems for testing the proposed SRMIL+ and TTSRMIL+
conjugate gradient methods and compared their performance RMIL algorithm, RMIL+ algorithm, and
classical FR conjugate gradient method. The problems have been implemented using dimensions ranging
from 2 6 n 6 10, 000 to illustrates the robustness of the proposed methods. The iterations are terminated
when the stopping condition ‖gk‖ 6 10−6 is satisfied.

1. SRMIL+ is a variant of RMIL+ satisfying the descent condition and its global convergence properties
was established using exact line search in Section 2.

2. TTSRMIL+ method is an extension of SRMIL+ possessing the descent condition, under SWP line
search.

3. The RMIL+ is a modification of RMIL method satisfying the descent property and converge globally
under exact and SWP line searches [5, 20, 24].

4. The FR method is among the most efficient and famous CG methods satisfying the descent condition
and converge globally under both exact and SWP line searches [1, 31].

All codes were written on MATLAB (R2015a) and run on a CoreI5 PC with 2.50 GHz processor and
4 GB RAM using windows 7 operating systems. The comparison is based on number of iterations (NOI)
and CPU time (in seconds). In some cases, the iteration terminates when the line search fails to find a
positive step-size, and that point is denoted as failed point. The set of test problems, their initial points,
and dimensions used to test the performance of both SRMIL+ and the TTSRMIL+ are presented in Table
1 below. The dimension of the test problems is denoted as DIM.

The performance results are presented as follows:

1. The first part of the result would analyze the performance of SRMIL+ method and the results would
be compared with that of the classical methods of RMIL [24], RMIL+ [5], and FR [31] method under
exact minimization rule.

2. The second part of the results would analyze the performance of the TTSRMIL+ and the results
would be compared with that of the proposed SRMIL+, the FR [1] method, and RMIL+ [20] methods
under SWP line search.

The performance results of SRMIL+ for number of iteration and CPU time are presented in Figures 1
and 2, respectively using the performance profile introduced by Dolan and More [8].

Using Dolan and More performance profile, we compare and evaluate the performance of SRMIL+,
RMIL, RMIL+, and FR algorithms under exact line search. Suppose ns solvers and npproblems exists,
for every problem p and solver s, Dolan and More defined

øp,s = Computation time (NO.IT. or CPU time) necessary to solve problem p by solver s.
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Table 1: List of test functions.

No Function Dim(n) Initial Points
1 Three Hump Camel 2 (0.5,0.5), (5,5), (10,10), (15,15)
2 Booth 2 (2,2), (9,9), (10,10), (13,13)
3 Zettl 2 (0,0), (0.5,0.5), (2,2), (10,10)
4 Treccani 2 (2,2), (9,9), (10,10), (13,13)
5 DQDRTIC 2 (2,2), (9,9), (10,10), (13,13)
6 STAIRCASE S1 2 (0,0), (10,10), (20,20), (50,50)
7 Trig double Borded 2 (-1,-1), (10,10), (17,17), (50,50)
8 Raydan 2,4 (1,1), (9,9), (10,10), (13,13)
9 Ext DENCHNB 2,4 (5,5), (10,10), (20,20), (50,50)

10 Diagonal 1 2,4 (5,5), (10,10), (20,20), (50,50)
11 Power 2,4,10 (1,1,. . . ,1), (9,9,. . . 9), (10,10,. . . ,10), (13,13,. . . 13)
12 Hager 2,4,10 (1,1,. . . ,1), (-1,-1,. . . -1), (-10,-10,. . . ,-10), (10,-10,. . . -10)
13 Sum Square 2,4,10 (-3,-3. . . ,-3),(5,5,. . . ,5),(13,13,. . . 13),(21,. . . ,21)
14 Arwhead 2,4,10 (1,1,. . . ,1), (9,9,. . . 9), (10,10,. . . ,10), (13,13,. . . 13)
15 Ext Trigonometric 2,4,10,100 (0.2,0.2,. . . ,0.2)(-1,-1,. . . ,-1)(10,10,. . . ,10),(13,13,. . . 13)
16 Shallow 2,4,10,100 (0,0, . . . , 0), (2,2, . . . , 2), (10,10, . . . , 10), (13,13, . . . , 13)
17 Sphere 2,4,10,100 (2,2, . . . , 2), (9,9, . . . , 9), (10,10, . . . , 10), (15,15, . . . , 15)
18 Ext Tridiagonal 1 2,4,10,100,1000 (2,2, . . . , 2), (9,9, . . . , 9), (10,10, . . . , 10), (15,15, . . . , 15)
19 Extended Beale 2,4,10,100,1000 (0.5,0.5,. . . ,0.5),(-1,. . . , -1), (1,1,. . . , 1), (10,10, . . . , 10)
20 Fletcher 2,4,10,100,1000 (2,2, . . . , 2), (3,3, . . . , 3), (9,9, . . . , 9), (10,10, . . . , 10)
21 Ext White and Holst 2,4,10,100,1000 (0,0, . . . , 0), (2,2, . . . , 2), (10,10, . . . , 10), (13,13, . . . , 13)
22 Gen Tridiagonal 2,4,10,100,1000 (0,0, . . . , 0), (2,2, . . . , 2), (6,6, . . . , 6), (9,9, . . . , 9)
23 Diagonal 4 2,4,10,100,1000 (2,2, . . . , 2), (9,9, . . . , 9), (10,10, . . . , 10), (15,15, . . . , 15)
24 NONSCOMP 2,4,10,100,1000 (2,2, . . . , 2), (9,9, . . . , 9), (10,10, . . . , 10), (15,15, . . . , 15)
25 Ext Quadratic QP2 2,4,10,100,1000 (2,2, . . . , 2), (9,9, . . . , 9), (10,10, . . . , 10), (15,15, . . . , 15)
26 Quartic 2,4,10,100,1000 (2,2, . . . , 2), (9,9, . . . , 9), (10,10, . . . , 10), (15,15, . . . , 15)
27 Gen Quartic 1 2,4,10,100,1000,10000 (1,1, . . . , 1), (0.5,0.5, . . . , 0.5), (5,5, . . . , 5), (10,10,. . . , 10)
28 Three ExpTerms 2,4,10,100,1000,10000 (0,0, . . . , 0), (10, . . . ,10), (20, . . . ,20), (50, . . . ,50)
29 Ext Rosenbrock 2,4,10,100,1000,10000 (0,0, . . . , 0), (2,2, . . . , 2), (10,10, . . . , 10), (15,15, . . . , 15)
30 Ext Himmelblau 2,4,10,100,1000,10000 (-1,-1,. . . ,-1),(1,1,. . . 1),(10,10,. . . ,10),(20,20,. . . ,20)

Figure 1: Performance Profile of SRMIL+ based on
Number of Iterations.

Figure 2: Performance Profile of SRMIL+ based on
CPU Time.

For each algorithm, the performance profile plots the segment P of any given problem such that the
method is in the neighborhood of a factor of ø of the fastest time. The uppermost curve indicates the
method with the best performance. That is, the method that solved nearly all the test problems within
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the shortest time.
From Fig 1 and Fig 2 we can see that the proposed SRMIL+ method performs much better than the

FR method and slightly better that RMIL+ and RMIL both in terms of NOI Fig 1 and CPU time Fig 2.
The performance results of TTSRMIL+ are presented for both NOI in Fig 3 and CPU time in Fig 4,

respectively.

Figure 3: Performance Profile of TTSRMIL+ based
on Number of Iteration.

Figure 4: Performance Profile of TTSRMIL+ based
on CPU Time.

For each figure, the left side measures the efficiency while the right side measures the robustness of
each method.

The plot shows that propose TTSRMIL+ method performed better than the proposed SRMIL+ al-
gorithm, the FR algorithm, and the RMIL+ algorithms both in terms of NOI Fig 3 and CPU time Fig
4.

The SRMIL+ method behaves more like the RMIL+ method. However, TTSRMIL+ has the least
number of iteration and CPU time under strong Wolfe line search as can be seen on the left side of Fig
3 and Fig 4. More so, from Fig 1 and Fig 2, SRMIL+ lies above RMIL+ method, FR method, and RMIL
method respectively, both under number of iterations and CPU time under exact line search. This show
that the proposed SRMIL+ and TTSRMIL+ are efficient and promising. Thus, can be used in practical
applications.

4. Conclusion

The CG algorithms plays an important part in unconstrained optimization, however, the three-term
CG algorithms represent some stimulating numerical innovation extending the classical CG coefficient to
produce efficient variants of CG methods.

This paper proposed a modification of RMIL+ method named SRMIL+ for optimization models. An
interesting feature of the proposed algorithm is that would reduce to the classical RMIL+ under exact
minimization condition. Also, SRMIL+ satisfies the descent condition and converge globally under exact
minimization rule. The proposed SRMIL+ was further extended to construct a three-term method called
TTSRMIL+. The idea of TTSRMIL+ was based on the structure of the TTPRP algorithm. The convergence
analysis of TTSRMIL+ was studied under the SWP line search.

Numerical computations using some standard unconstrained optimization bench mark problems have
been presented to illustrates the efficiency of the proposed methods. The results obtained show that
SRMIL+ and TTSRMIL+ algorithms are efficient and faster than the methods of FR, RMIL, and RMIL+
under both exact and strong Wolfe line search. This has shown that the proposed methods can be used
for practical applications and also, alternatives for solving unconstrained optimization problems
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Numerous variants of the three-term CG algorithms can be explored using the proposed search direc-
tions computed as

d0 = −g0, dk = −gk +βkdk−1 + γk∅k−1,

with βk defined as SRMIL+. More so, the convergence of the proposed SRMIL+ was established under
the exact line search, thus, more studies can be done on the convergence of SRMIL+ under different line
searches.
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