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Abstract
In this article, we study the stability problem of some fractional differential equations in the sense of Hyers-Ulam and

Hyers-Ulam-Rassias based on some fixed point techniques. In this way, we improve and generalize some recent results by
dropping some basic assumptions.
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1. Introduction

The legendary question that has been posed by Ulam in 1940 ignited the theory of stability of func-
tional (differential, difference, integral) equations. Ulam posed his question in the famous talk at the
university of Wisconsin (see, e.g., [9, 13, 16, 18, 28, 31] for more details). The mentioned open problem
can be stated as follows:

Let G be a group and (G∗, ρ) a metric group. Given ε > 0, does there exist δ > 0 such that if f : G→ G∗

satisfies
ρ(f(xy), f(x)f(y)) < δ

for all x,y ∈ G, then a homomorphism g : G→ G∗ exists such that

ρ(f(x),g(x)) < ε, ∀x,y ∈ G?

Many well-known mathematicians have addressed Ulam’s problem. For example, in 1941, Hyers
introduced an affirmative answer in the special case where G,G∗ are Banach spaces (see [17]). Since then
the problem is called Hyers-Ulam or Ulam-Hyers stability problem. In 1950, Aoki (see [3]) investigated
this problem for additive mappings (see also [8]). A new name (Hyers-Ulam-Rassias) of the problem
has been presented when Th. M. Rassias (see [27]) generalized the theorem of Hyers by considering the
stability in the case of unbounded Cauchy differences. The interesting result introduced by M. Rassias
reads as follows (see [27]).
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Theorem 1.1. Consider B1,B2 to be two Banach spaces, and let f : B1 → B2 be a mapping such that the function
t 7→ f(tx) from R into B2 is continuous for each fixed x ∈ B1. Assume that there exists θ > 0 and p ∈ [0, 1) such
that

‖f(x+ y) − f(x) − f(y)‖ 6 θ(‖x‖p + ‖y‖p), x,y ∈ B1 \ {0}.

Then there exists a unique solution T : B1 → B2 of the Cauchy equation with

‖f(x) − T(x)‖ 6 2θ‖x‖p

|2 − 2p|
, x ∈ B1 \ {0}.

The results of Hyers and Rassias have been generalized in many directions to other settings. For instance,
several authors have studied the stability for differential equations (see [2, 19, 21, 23, 24]).

In general terms, stability has been studied using each of the following methods. The method Hyers
put forward quite frequently called the direct one (see [17]), the method of invariant means (introduced in
[29]), the fixed point method (see [4, 12]), the method based on sandwich theorems [26], and the method
using the concept of shadowing (see [30]). The fixed point method is well-known as the second most
popular method in proving the stability of functional equations. According to the best of our knowledge,
Baker in 1991 (see [4]) was the first to use the fixed-point approach in the investigations of stability of
functional equations. Basically, Baker employed some version of Banach fixed point theorem to obtain the
Hyers-Ulam stability of functional equations.

It should be remarked that Diaz and Margolis in [15] proved a theorem of the alternative for any
contraction mapping on a generalized complete metric space. The approach presented by Diaz and
Margolis is widely used in different contexts, see, e.g., [1]. Fixed point techniques have been used in the
literature in the investigation of Hyers-Ulam stability. For instance, in 2012, Ciepliński (see [14]) wrote
a survey in which he presented some applications of various fixed-point theorems to the theory of the
Hyers-Ulam stability of functional equations. In 2011, Brzdęk (see [10]) proved a fixed-point theorem for
(not necessarily) linear operators and used it to obtain Hyers-Ulam stability results for a class of functional
equations. Brzdęk and Ciepliński in [11] proved a fixed-point result in complete non-Archimedean metric
spaces as well as in complete metric spaces.

In a recent paper, Jung in [21] used the fixed point approach to prove the stability of ceratin first order
differential equations. In [5] Başci et al. studied the stability of some differential equations in the sense of
Hyers-Ulam. In [7] the authors investigated the Hyers-Ulam stability for fractional differential equations
including the new Caputo-Fabrizio fractional derivative. In [6] the Hyers-Ulam-Rassias stability for Abel-
Riccati–type first-order differential equations has been investigated and in [25] the author studied the
stability of delay differential equations in the sense of Hyers-Ulam on unbounded intervals.

The goal of this paper is to investigate the Hyers-Ulam stability (HUS) and the Hyers-Ulam-Rassias
stability (HURS) of some fractional differential equations. The main tool used in our analysis is the fixed
point theory that has been introduced by Diaz and Margolis (see [15]). In our study, we drop some of
the assumptions in some recent results. The rest of the article is organized as follows. In Section 2, we
recall and discuss some basic definitions and lemmas that are necessary in the analysis. We also present
the fixed point theorem that is our basic tool in the analysis. In Section 3, we will apply the fixed point
method to study the stability the differential equation of interest, and in the last section, we conclude our
work.

2. Preliminaries

Throughout the article, we will use R to denote the set of reals, R+ to denote the set of positive reals,
and C to denote the set of complex numbers. We first recall some definitions.

Definition 2.1. Given an interval [a,b] of R, the fractional order integral of a function h ∈ L1([0,b], R) of order
α ∈ R+ is defined by

Iαa+
h(t) =

1
Γ(α)

∫t
a

(t− s)α−1h(s)ds,
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where Γ(·) is the gamma function.

Definition 2.2. For a function h given on the interval [a,b], the α-th order Riemann-Liouville fractional derivative
of h, is defined by

(Dαa+
h)(t) =

1
Γ(n−α)

(
d

dt
)n
∫t
a

(t− s)n−α−1h(s)ds,

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3. For a function h given on the interval [a,b], the Caputo fractional order derivative of h, is defined
by

(cDαa+
h)(t) =

1
Γ(n−α)

∫t
a

(t− s)n−α−1h(n)(s)ds,

where n = [α] + 1.

The following lemmas are well known, see, e.g., [22].

Lemma 2.4. For all b > 0 and a > −1∫t
0
(t− s)b−1sads =

Γ(b)Γ(a+ 1)
Γ(b+ a+ 1)

tb+a.

Lemma 2.5. For all λ, v,w > 0, and for any t > 0, we have

t1−v
∫t

0
(t− s)v−1sλ−1e−wsds 6 max{1, 21−v}Γ(λ)(1 +

λ

v
)w−λ.

For a nonempty set Y; we recall the concept of generalized metric on Y as follows.

Definition 2.6. A mapping ρ : Y × Y → [0,∞] is called a generalized metric on set Y if ρ satisfies:

(G1) ρ(x,y) = 0 if and only if x = y;
(G2) ρ(x,y) = ρ(y, x) for all x,y ∈ Y;
(G3) ρ(x, z) 6 ρ(x,y) + ρ(y, z) for all x,y, z ∈ Y.

Definition 2.7. The fractional differential equation

F(f,y,Dα1y, . . . ,Dαny) = 0 (2.1)

is said to be Hyers-Ulam stable if for a given ε > 0 and a function y which satisfies the inequality

|F(f,y,Dα1y, . . . ,Dαny)| 6 ε,

there exists a solution yα of (2.1) such that |y(x) − yα(x)| 6 K1(ε) and limε→0 K1(ε) = 0. If the expression
holds when we replace ε and K1(ε) by f(x) and g(x), where f,g are appropriate functions not depending on y and
yα, then we say that the fractional differential equation has the generalized Hyers-Ulam stability, or the equation is
Hyers-Ulam-Rassis stable.

In the following theorem, we introduce one of the fundamental results of fixed point theory. For the
proof, we refer to [15]. This theorem will play an important role in proving our main results.

Theorem 2.8. Let (Y, ρ) be a generalized complete metric space. Assume that Λ : Y → Y is a strictly con-
tractive operator with L < 1, where L is a Lipschitz constant. If there exists a nonnegative integer k such that
ρ(Λk+1y,Λky) <∞ for some y ∈ Y, then the following are true:
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(a) the sequence Λny converges to a fixed point y∗ of Λ;
(b) y∗ is the unique fixed point of Λ in Y∗ := {y1 ∈ Y : ρ(Λky,y1) <∞};
(c) if y1 ∈ Y∗, then ρ(y1,y∗) 6 1

1−Lρ(Λy1,y1).

In this article, by using Theorem 2.8, we study the Hyers-Ulam-Rassias stability and the Hyers-Ulam
stability of the following fractional differential equation

cDαa+
y(x) = f(x,y(x)), (2.2)

where cDαa+
is the Caputo fractional derivative of order α ∈ (0, 1) with the lower limit a ∈ R, the unknown

function y is some continuous function, y : I→ Y for some interval I : [a,b] and a normed space Y.

3. Main results

In this section, we fix an interval I := [0, r] for some real number r > 0, further, we define the set S of
all continuous functions on I by

S := {f : I→ R | f is continuous} = C(I, R). (3.1)

The following result will be used in our analysis:

Lemma 3.1 ([5]). Define the function d : S× S→ [0,∞] with

d(f,g) := inf
{
C ∈ [0,∞] : |f(t) − g(t)|e−At 6 Cφ(t), t ∈ I

}
,

where A > 0 is a given constant and φ : I → (0,∞) is a given continuous function. Then (S,d) is a generalized
complete metric space.

The following theorem is the main theorem of this article. It presents stability results of the fractional
differential equation (2.2) in the sense of Hyers-Ulam-Rassias.

Theorem 3.2. Suppose that f : I ×R → R is some continuous function that satisfies the following Lipschitz
condition

|f(t,y1) − f(t,y2)| 6 L|y1 − y2| (3.2)

for all t ∈ I, y1,y2 ∈ R, and a Lipschitz condition L > 0. Furthermore, if a continuously differentiable function
y : I→ R satisfies

|cDαa+
y(x) − f(x,y(x))| 6 ϕ(t) (3.3)

for all t ∈ I and a continuous and non-decreasing function ϕ : I → (0,∞), then there exists a unique solution y0
of (2.2) such that

|y(t) − y0(t)| 6
N

Γ(α)A−NL
ϕ(t)

for all t ∈ I and arbitrary constants A and N such that the inequalities

NL

AΓ(α)
< 1, max{1, 21−α}

(α+ 1
α

)
6 NeAt

hold.

Proof. First, we consider the set S defined by (3.1) and define the following function d : S× S → [0,∞]
with

d(f,g) = inf{C ∈ [0,∞] : |f(t) − g(t) | e−At 6 Cϕ(t), t ∈ I}.

In view of Lemma 3.1, (S,d) is a complete generalized metric space (see also, e.g., [20]). Now, define the
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operator T : S→ S by

(Ty)(x) = y(0) +
1
Γ(α)

∫t
0
(t− s)α−1f(s,y(s))ds, t ∈ I (3.4)

for all y ∈ S. It should be noted that T is well-defined since both f and F are continuous.
Next, we will check that the operator T is strictly contractive on the set S. Note first that using Lemma

2.5 with α = ν, t0 = 0, λ = 1, w = A we get∫t
0
(t− s)α−1eAsds 6

1
A

max{1, 21−α}
(

1 +
1
α

)
tα−1.

Using the above inequality we write∫t
0
(t− s)α−1ϕ(s)eAsds 6 ϕ(t)

∫t
0
(t− s)α−1eAsds

6 max{1, 21−α}
(1 +α

α

)
tα−1ϕ(t)

A
6
N

A
ϕ(t)eAt,

(3.5)

where N is some constant such that the inequality

max{1, 21−α}(
1 +α

α
) 6 NeAt

holds. Now, for any h1,h2 ∈ S, let Ch1,h2 ∈ [0,∞] be an arbitrary constant with d(h1,h2) 6 Ch1,h2 that is

|h1(t) − h2(t)|e
−At 6 Ch1,h2ϕ(t) (3.6)

for all t ∈ I. Then by using (3.4), (3.5), and (3.6), it follows that for h1,h2 ∈ S,∣∣∣Th1(t) − Th2(t)
∣∣∣ 6 ∣∣∣∣ 1

Γ(α)

∫t
0
(t− s)α−1

{
f(s,h1(s)) − f(s,h2(s))

}
ds

∣∣∣∣
6

1
Γ(α)

∫t
0
(t− s)α−1

∣∣∣f(s,h1(s)) − f(s,h2(s))
∣∣∣ds

6
L

Γ(α)

∫t
0
(t− s)α−1 ∣∣h1(s) − h2(s)

∣∣ds
6

L

Γ(α)

∫t
0
(t− s)α−1∣∣h1(s) − h2(s)

∣∣e−AseAsds
6
LCh1,h2

Γ(α)

∫t
0
(t− s)α−1ϕ(s)eAsds

6
NLCh1,h2

Γ(α)A
ϕ(t)eAt

for all t ∈ I. Therefore, we have ∣∣∣Th1(t) − Th2(t)
∣∣∣e−At 6 NLCh1,h2

Γ(α)A
ϕ(t)

for all t ∈ I, which means that

d(Th1,Th2) 6
NL

Γ(α)A
d(h1,h2)

for all h1,h2 ∈ S.
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Thus we conclude that the operator T : S→ S defined by (3.4) is strictly contractive. From fundamental
theorem of calculus, it is clear that Ty ∈ S and thus we infer that∣∣∣Th1(t) − h1(t)

∣∣∣e−At <∞
for any h1 ∈ S and t ∈ I, i.e., d(Th1,h1) <∞ for all h1 ∈ S. Similarly,∣∣∣h1(t) − h(t)

∣∣∣e−At <∞
for all h ∈ S and t ∈ I, which means that d(h1,h) <∞ for all h ∈ S, i.e.,

{h ∈ S : d(h1,h) <∞} = S.

Now we have shown that all the conditions of Theorem 2.8 are satisfied with S∗ = S. It follows from (3.3)
that

−ϕ(t) 6 cDαa+
y(x) − f(x,y(x)) 6 ϕ(t)

for all t ∈ I. If we multiply all sides of the above inequality by (t− s)α−1 and integrate from 0 to t to get

|Ty(t) − y| 6 cIαϕ(t) 6
1
Γ(α)

∫t
0
(t− s)α−1ϕ(s)ds 6

1
Γ(α)

∫t
0
(t− s)α−1ϕ(s)eAsds 6

N

AΓ(α)
ϕ(t)eAt

for all t ∈ I. Now the inequality above means that

|Ty(t) − y|e−At 6
N

AΓ(α)
ϕ(t),

i.e.,

d(Ty,y) 6
N

AΓ(α)
.

Therefore, according to Theorem 2.8, there exists a unique solution y0 : I → R of differential equation
(2.2) satisfying

d(y,y0) 6
1

1 − NL
Γ(α)A

d(Ty,y) 6
N

AΓ(α)

1 − NL
Γ(α)A

ϕ(t)e−At.

It follows from the definition of the metric d(y,y0) that

|y(t) − y0(t))|e
−At 6

N
AΓ(α)

1 − NL
Γ(α)A

ϕ(t)e−At,

which implies that

|y(t) − y0(t))| 6
N

AΓ(α)

1 − NL
Γ(α)A

ϕ(t) =
N

Γ(α)A−NL
ϕ(t)

for all t ∈ I.

Remark 3.3. Notice that in our analysis we don’t assume that 0 < KL < 1 in Theorem 3.2, while it is required in
Theorem 3.1 in the article of Wang [32].

Remark 3.4. Notice that in our analysis we drop the assumption (4) of Theorem 3.1 in the article of Wang [32].

In light of Definition 2.7, the following corollary introduces the Hyers-Ulam stability result of equation
(2.2).
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Corollary 3.5. Suppose that I = [0, r] is given for fixed real number r. Let f : I×R → R is continuous function
which satisfies (3.2) for all t ∈ I, and some positive constant L. Moreover, if ε > 0 and y : I → R is a continuous
function which satisfies

|cDαa+
y(x) − f(x,y(x))| 6 ε

for all t ∈ I, then there exists a unique continuous function y0 : I→ R such that

cDαa+
y0(x) = f(x,y0(x)),

and
|y(t) − y0(t)| 6

N

Γ(α)A−NL
ε

for all t ∈ I and arbitrary constant A and N such that the following inequalities

NL

AΓ(α)
< 1, max{1, 21−α}

(α+ 1
α

)
6 NeAt

hold.

Proof. We omit the proof because it is a direct application of Theorem 3.2 if we define the function ϕ(t) :=
ε.

4. Conclusion

In this article, we studied both the Hyers-Ulam-Rassias and Hyers-Ulam stability of some fractional
differential equation with Caputo derivative. In our study, we drop some of the assumptions of some
recent known results. In this way, we improve several earlier outcomes. Potential future work could be
to investigate the Hyers-Ulam-Rassias and Hyers-Ulam stability for much more complicated fractional
differential equations.
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[25] S. Öǧrekçi, Stability of delay differential equations in the sense of Ulam on unbounded intervals, Int. J. Optim. Control.

Theor. Appl. IJOCTA, 9 (2019), 125–131. 1
[26] Z. Páles, Generalized stability of the Cauchy functional equation, Aequationes Math., 56 (1998), 222–232. 1
[27] T. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. 1
[28] T. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264–284. 1
[29] L. Székelyhidi, Note on a stability theorem, Canad. Math. Bull., 25 (1982), 500–501. 1
[30] J. Tabor, J. Tabor, General stability of functional equations of linear type, J. Math. Anal. Appl., 328 (2007), 192–200. 1
[31] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publisheres, New York-London, (1960). 1
[32] J. R. Wang, L. L. Lv, Y. Zhou, New concepts and results in stability of fractional differential equations, Commun.

Nonlinear Sci. Numer. Simul., 17 (2012), 2530–2538. 3.3, 3.4

https://doi.org/10.15352/afa/1399900032
https://doi.org/10.15352/afa/1399900032
https://doi.org/10.1090/S0002-9904-1968-11933-0
https://doi.org/10.1090/S0002-9904-1968-11933-0
https://doi.org/10.1007/BF01831117
https://dx.doi.org/10.1073%2Fpnas.27.4.222
https://books.google.com/books?hl=en&lr=&id=5mvI7P2tP3wC&oi=fnd&pg=PP9&ots=qfbVH5XSol&sig=eQc0GXDZg436zAxwT25Ptp6fJD8
https://doi.org/10.1016/j.aml.2003.11.004
https://doi.org/10.1155/2007/57064
https://doi.org/10.1155/2007/57064
http://math.usm.my/bulletin/html/vol33_1_3.html
http://math.usm.my/bulletin/html/vol33_1_3.html
http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.zamlynska-a013d549-e9d1-4ed8-a35a-e8314cb93cf3/c/rm32801.pdf
http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.zamlynska-a013d549-e9d1-4ed8-a35a-e8314cb93cf3/c/rm32801.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hyers+stability+of+the+linear+differential+equation&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Connections+between+Hyers+and+Lyapunov+stability+of+the+ordinary+differential+equations&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Connections+between+Hyers+and+Lyapunov+stability+of+the+ordinary+differential+equations&btnG=
http://ijocta.balikesir.edu.tr/index.php/files/article/view/628
http://ijocta.balikesir.edu.tr/index.php/files/article/view/628
https://doi.org/10.1007/s000100050058
https://doi.org/10.1090/S0002-9939-1978-0507327-1
https://doi.org/10.1006/jmaa.2000.7046
https://www.cambridge.org/core/journals/canadian-mathematical-bulletin/article/note-on-a-stability-theorem/1FA7C75093CD293BC1463F4EFECA6FD4
https://doi.org/10.1016/j.jmaa.2006.05.022
http://doi.org/10.1126/science.132.3428.665
https://doi.org/10.1016/j.cnsns.2011.09.030
https://doi.org/10.1016/j.cnsns.2011.09.030

	Introduction
	Preliminaries
	Main results
	Conclusion

