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Abstract
A material having electrical conductivity value falling between conductor and insulator is known as semiconductor. Due

to high adaptability of these materials makes them best basic material used in advanced electronics and communications. Some
popular semiconductors in periodic table are silicon, germanium and gallium arsenide. Here in this article we will give topo-
logical aspects on different structural form of germanium phosphide. A semiconductor used in high frequency communication
and diodes.
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1. Introduction

A presentation of some points (nodes) connected by lines is called graph. In graph theory, a graph is
consists of two sets, the non empty set of objects having points (nodes) is called vertex set while the set
of connected lines which are the unordered pairs of points is called edge set [1].

A topology branch of mathematical chemistry which applies theory of graphs to chemical structures
or networks for their molding and studying their properties is known as chemical graph theory. In
this context, the structure of a chemical compound or network is presented by a graph in which points
represents atoms and connected lines represents bonds of the chemical structure[1]. A numeric quantity
derived from the graphical representation of a structure is called a topological parameter for that structure.
It is used to study physical and chemical properties for the relative structure. In view of graph theory,
this numeric parameter is a graph invariant which means that it is irrespective from the presentation of
structure graphically.

Simonraj and George [9] have investigated physicochemical properties of dominating silicate net-
works, later on Baig et al. [2] computed different indices for DSL. One may found a variety of research
articles on these parameters, in which authors had produced helpful results on different chemical struc-
tures, nano tubes and networks explaining their physicochemical properties (electron negativity, electron

∗Corresponding author
Email addresses: farukhphd008@gmail.com (Farukh Ejaz), mhmaths@gmail.com (Muhammad Hussain),
farukhphd008@gmail.com (Roslan Hasni), mhmaths@gmail.com (Roslan Hasni), hroslan@umt.edu.my (Roslan Hasni)

doi: 10.22436/jmcs.022.04.04

Received: 2020-02-12 Revised: 2020-06-03 Accepted: 2020-06-15

http://dx.doi.org/10.22436/jmcs.022.04.04
http://dx.doi.org/10.22436/jmcs.022.04.04
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.022.04.04&domain=pdf


F. Ejaz, M. Hussain, R. Hasni, J. Math. Computer Sci., 22 (2021), 347–362 348

configuration, enthalpy and stability etc) [4, 5, 8, 9]. Some of them are computed with the help of number
of edges connected to a vertex whereas some based on distance of a vertex from a particular point [5]. In
the queue of these invariants weiner index is the oldest distance based index, which was first introduced
by Harry Weiner in 1947. Later on many other indices were made defined and studied to till date. Some
very popular indices are Randic index, family of Zagreb indices, Geometric index [4] and Connectivity
indices [13] are just few names of them.

1.1. Topological invariants
For a particular atom the numbers of bonds connected to it is known as its degree. Here we will define

some topological invariants, which are computed with the help of degree of an atom associated to a
chemical graph.

Definition 1.1 ([3]). For a simply connected graph, the sum of squares of degrees of all its vertices is
known as First Zagreb index defined as:

M1 =
∑
u∼v

(du + dv). (1.1)

Definition 1.2 ([10, 13]). For any real value of α, Randic index is defined as:

Rα =
∑
u∼v

(du.dv)α, (1.2)

where α is a real number.

Definition 1.3 ([5]). For any simply connected graph atomic bond Connectivity index is,

ABC =
∑
u∼v

√
du + dv − 2
du.dv

. (1.3)

Definition 1.4 ([5, 10]). We define Geometric Arithmetic and Harmonic indices as,

GA =
∑
u∼v

2
√
du.dv

du + dv
, (1.4)

H =
∑
u∼v

2
du + dv

. (1.5)

Definition 1.5 ([13]). Another connectivity index is defined as,

SCI =
∑
u∼v

(du + dv)
−1
2 . (1.6)

For a connected graph G, and any u ∈ V(G) the set of all edges incident to u is known as its neighbor-
hood denoted by N(u). On including u to its neighborhood is called closed neighborhood denoted by N[u].
In context to these literature definitions of a graph G, we define the sum of degrees of all vertices in a
neighborhood of a vertex u as sum degree, i.e.,

Su =
∑

v∈N(u)

dv. (1.7)

In literal meaning to above definition we defined forth and fifth version of ABC and GA, respectively as
follows.

Definition 1.6 ([2]). For a connected graph G

ABC4 =
∑
u∼v

√
Su + Sv − 2
Su.Sv

. (1.8)
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Definition 1.7 ([4]). For a connected graph G

GA5 =
∑
u∼v

2
√
Su.Sv

Su + Sv
. (1.9)

2. Germanium Phosphide

After the discovery of graphene, the pedigree of two dimensional 2D crystals has increases, hold-
ing a lot of diveristy encompassing all prudent electronic properties required for nano electronics. Dirac
semimetals like graphene, silicene, germanene and semiconductors, transition metal dichalcogenide
(TMDC) (phosporene) has useful applications in nano technology. In optoelectronics very first appli-
cation were reported on the basis of TMDC.

All elements of group fourteen in periodic table are semimetallic. Combination of group 14 elements
with Phosphorene (an allotropic form of Phosporus P) produced very good results in electronics.

A layered material composed by Phosphorene (P) and Germanene (a single layer material consisting
Germanium atoms) (Ge) with stoichiometry called Germanium Phosphide GeP3 was first reported in
1970. Generally GePx found in three phases for (x = 1, 3, 5). Here x is controlled by chemical reaction
and a clean phase single layer crystal can be obtained.

Experiments shows that, GeP3 crystal owns corrugated Arsenic type honeycomb structure in ABC
stacking, which is a superconductive material and crystallized in layered structure. The bulk GeP3 is
metal, while monolayer (1L) and bilayer (2L) GeP3 is a semiconductor. Furthermore bilayer GeP3 (2LGeP3)
have notable high carrier mobility and a conspicuous light absorbtion in solar spectrum [6, 7, 11, 12].

3. Structure of 2LGeP3

Here in this article we will explain the structure of GeP3 in four different ways with the help of geoma-
trical shapes like triangle, rhombous, rectangle and cocentric circles. Naming to these structures shapes
as triangulene, rhombohedral, rectangular (jagged) and circumcoronene, respectively. These structural
shapes are very familiar in nano technology.

4. Triangulene 2LGeP3

In Triangulene 2LGeP3, structure of bilayer germanium phosphide (2LGeP3) is presented with the
influence of regular triangle shape. It has total 3n2 + 9n edges for n > 2. Here n counts the number of
hexagons in the base of monolayer 1LGeP3 structure.

Figure 1: T2LGeP4
3 Triangulene Bilayer Germanium Phosphide for n = 4.
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4.1. Partioning for the edge set of Triangulene 2LGeP3 graph
By using the definition of degree of a vetrex in molecular graph, we give a partition to the edge set of

2LGeP3 on the basis of degrees of end vertices of the edges. This edge partition consists of total 8 subsets
of edge set defined as follows:

E1 = {u ∼ v | du = 2 ∧ dv = 2}, E2 = {u ∼ v | du = 2 ∧ dv = 3},
E3 = {u ∼ v | du = 2 ∧ dv = 4}, E4 = {u ∼ v | du = 2 ∧ dv = 5},
E5 = {u ∼ v | du = 2 ∧ dv = 6}, E6 = {u ∼ v | du = 3 ∧ dv = 4},
E7 = {u ∼ v | du = 3 ∧ dv = 5}, E8 = {u ∼ v | du = 3 ∧ dv = 6},

with cardinalities as |E1| = 4, |E2| = 2n− 2, |E3| = 6, |E4| = 4n− 2, |E5| = 2n− 2, |E6| = 2, |E7| = 6n− 8, and
|E8| = 3n2 − 5n+ 2, respectively ∀ n > 2.

4.2. Computational Results for Triangulene 2LGeP3

Here in this section we will compute some topological parameters based on degrees of connected
atoms in Triangulene Bilayer Germanium Phosphide for the appurtenance of a reader we will represent
this structure shortly as T2LGePn3 .

Theorem 4.1. For n > 2, the first Zagreb index for Triangulene Bilayer Germanium Phosphide (T2LGeP3) is:

M1(T2LGePn3 ) = 27n2 − 57n− 20.

Proof. By using (1.1) we have

M1(T2LGePn3 ) = (4)(2 + 2) + (2n− 2)(2 + 3) + (6)(2 + 4) + (4n− 2)(2 + 5)

+ (2n− 2)(2 + 6) + (2)(3 + 4) + (6n− 8)(3 + 5) + (3n2 − 5n+ 2)(3 + 6),

after computing we get,
M1(T2LGePn3 ) = 27n2 − 57n− 20.

Theorem 4.2. For n > 2, the second Zagreb index for Triangulene Bilayer Germanium Phosphide (T2LGeP3) is:

M2(T2LGePn3 ) = 54n2 + 76n− 76.

Proof. By using (1.2) and taking α = 1 we have

M2(T2LGePn3 ) = (4)(2.2) + (2n− 2)(2.3) + (6)(2.4) + (4n− 2)(2.5)

+ (2n− 2)(2.6) + (2)(3.4) + (6n− 8)(3.5) + (3n2 − 5n+ 2)(3.6),

after computing we get,
M2(T2LGePn3 ) = 54n2 + 76n− 76.

Theorem 4.3. With n > 2 the General Randic index for Triangulene Bilayer Germanium Phosphide is,

Rα(T2LGePn3 )=


54n2 + 76n− 76, α = 1,
3n2 − ( 2√

6
+ 4√

10
+ 2√

12
+ 6√

15
− 5√

18
)n+ (2 − 2√

6
+ 6√

8
− 2√

10
− 8√

15
+ 2√

18
), α = 1/2,

(3
√

18)n2 + (2
√

6 + 4
√

10 + 4
√

3 + 6
√

15 − 15
√

2)n+ (8 + 12
√

2), α = −1/2,
1
6n

2 + 46
45n+ 143

180 , α = −1.
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Proof. By using (1.2) and degree based partition in Subsection 4.1 given previously we get the desired
results.

Corollary 4.4. For α = 1 and α = −1, the general randic index is also called Second Zagreb index and Second
Modified Zagreb index, respectively.

Theorem 4.5. Consider the Triangulene Bilayer Germanium Phosphide, then for n > 2 the atomic bond Connec-
tivity index is equal to

ABC(T2LGePn3 ) = (

√
14
2

)n2 + (
120

√
2 + 36

√
10 − 25

√
14

30
)n+ (

30
√

2 + 5
√

15 − 24
√

10 + 5
√

14
15

).

Proof. By using the definition (1.3) of ABC index and degree based partition in Subsection 4.1 given
previously we get the desired results.

Theorem 4.6. With n > 2 the Geometric Arithmetic index for Triangulene Bilayer Germanium Phosphide is,

GA(T2LGePn3 ) = 2
√

2n2 + (
4
√

6
5

+
8
√

10
7

+
3
√

15
4

−
20
√

2
3

+
√

3)n+ (
4
√

2
3

−
4
√

6
5

−
4
√

10
7

+

√
3

7
+ 4).

Proof. By using the definition (1.4) of GA index and degree based partition in Subsection 4.1 given previ-
ously we get the desired results.

Theorem 4.7. With n > 2 the Sum Connectivity index for Triangulene Bilayer Germanium Phosphide is,

SCI(T2LGePn3 ) = n
2 + (

2√
5
+

4√
7
+
√

8 −
5
3
)n+ (

√
6 +

8
3
−

10√
8
−

2√
5
).

Proof. By using the definition (1.6) of SCI index and degree based partition in Subsection 4.1 given previ-
ously we get the desired results.

Theorem 4.8. With n > 2, the Harmonic index for Triangulene Bilayer Germanium Phosphide is

H(T2LGePn3 ) =
1
3
n2 +

892
315

n+
1081
630

.

Proof. By using the definition (1.5) of Harmonic index and degree based partition in Subsection 4.1 given
previously we get the desired results.

4.3. neighborhood partition
Now here by using the definition (1.7) of Su we give an other different edge partition to the edge set of

T2LGePn3 on the basis of sum degree of neighborhood vertices of all the edges. And this partition consists
of total 22 partite subsets of edge set defined as follows:

ξ1 = {u ∼ v | Su = 4 ∧ Sv = 7}, ξ2 = {u ∼ v | Su = 10 ∧ Sv = 12},
ξ3 = {u ∼ v | Su = 5 ∧ Sv = 6}, ξ4 = {u ∼ v | Su = 9 ∧ Sv = 13},
ξ5 = {u ∼ v | Su = 5 ∧ Sv = 10}, ξ6 = {u ∼ v | Su = 10 ∧ Sv = 13},
ξ7 = {u ∼ v | Su = 6 ∧ Sv = 10}, ξ8 = {u ∼ v | Su = 10 ∧ Sv = 16},
ξ9 = {u ∼ v | Su = 6 ∧ Sv = 9}, ξ10 = {u ∼ v | Su = 12 ∧ Sv = 16},
ξ11 = {u ∼ v | Su = 9 ∧ Sv = 9}, ξ12 = {u ∼ v | Su = 9 ∧ Sv = 15},
ξ13 = {u ∼ v | Su = 9 ∧ Sv = 10}, ξ14 = {u ∼ v | Su = 13 ∧ Sv = 15},
ξ15 = {u ∼ v | Su = 7 ∧ Sv = 12}, ξ16 = {u ∼ v | Su = 13 ∧ Sv = 16},
ξ17 = {u ∼ v | Su = 13 ∧ Sv = 17}, ξ18 = {u ∼ v | Su = 15 ∧ Sv = 16},
ξ19 = {u ∼ v | Su = 16 ∧ Sv = 17}, ξ20 = {u ∼ v | Su = 16 ∧ Sv = 18},
ξ21 = {u ∼ v | Su = 17 ∧ Sv = 18}, ξ22 = {u ∼ v | Su = 18 ∧ Sv = 18},
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with cardinalities as |ξ1| = |ξ3| = |ξ5| = |ξ9| = |ξ11| = |ξ13| = |ξ15| = |ξ19| = |ξ4| = |ξ12| = |ξ14| = |ξ18| = 2
and |ξ7| = |ξ17| = 2n− 4, |ξ6| = |ξ16| = |ξ21| = 4n− 10, |ξ2| = 4, |ξ8| = n+ 1, |ξ10| = 2n, |ξ20| = 5n− 10,
|ξ22| = 3n2 − 15n+ 19. Fourth version of ABC and fifth version of GA indices will be computed by using
above edge partition.

Theorem 4.9. Consider the Triangulene Bilayer Germanium Phosphide T2LGePn3 , then for n > 3 the ABC4 is
equal to

ABC4(T2LGePn3 ) = (

√
34
6

)n2 + (

√
210
15

+
4
√

21√
130

+

√
15

10
+

√
78

12
+

3
√

38
13

+
2
√

28√
221

+
5
3
+

4
√

33√
306

−
5
√

34
6

)n

+ (
3√
7
+

√
30
3

+

√
26
5

+

√
78
9

+

√
170
15

+

√
357
21

+
4
√

65
39

+
2
√

330
45

+

√
435
30

+

√
527
34

−
2
√

210
15

−
10
√

21√
130

+

√
15

10
−

15
√

39
26

−
4
√

28√
221

−
10
√

33√
306

+
19
√

34
18

−
22
9

+
4√
6
).

Proof. By using the definition (1.8) of ABC4 index and partition sets in Subsection 4.3 given previously we
get the desired results.

Theorem 4.10. With n > 3, the GA5 for Triangulene Bilayer Germanium Phosphide is:

GA5(T2LGePn3 ) = 3n2 + (

√
15
2

+
8
√

130
23

+
4
√

10
13

+
8
√

3
7

+
32
√

13
29

+
2
√

221
15

+
60
√

2
7

+
24
√

34
35

− 5)n

+ (
8
√

7
11

+
12
√

30
11

+
4
√

2
3

+
4
√

6
5

+
12
√

10
19

+
8
√

21
19

+
6
√

13
11

+

√
195
7

−
63
√

15
62

+
16
√

17
33

−
20
√

130
23

+
4
√

10
13

−
80
√

13
29

−
4
√

221
15

−
120

√
2

7
−

12
√

34
7

+ 21).

Proof. By using the definition (1.9) of GA5 index and partition sets in Subsection 4.3 given previously we
get the desired results.

5. Rhombohedral 2LGeP3

In Rhomboherdal 2LGeP3, the structure of bilayer Germanium Phosphide is presented by the influence
of rhombus shape. It has total 6n2 + 8n− 2 edges for n > 2. Here n counts the number of hexagons from
either the side of monolayer 1LGeP3 structure.

Figure 2: R2LGeP4
3 Rhombohedral Bilayer Germanium Phosphide for n = 4.
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5.1. Partioning for the edge set of Rhombohedral 2LGeP3 graph

By using the definition of degree of a vetrex in molecular graph, we give a partition to the edge set
of Rhombohedral structure for bilayer Germanium Phosphide after computing degrees of vertices for all
the edges. We concluded that for n > 2 the edge set of this structural shape have 8 sub partite edge sets
defined as follows:

E1 = {u ∼ v | du = 2 ∧ dv = 2}, E2 = {u ∼ v | du = 2 ∧ dv = 3},
E3 = {u ∼ v | du = 2 ∧ dv = 4}, E4 = {u ∼ v | du = 2 ∧ dv = 5},
E5 = {u ∼ v | du = 2 ∧ dv = 6}, E6 = {u ∼ v | du = 3 ∧ dv = 4},
E7 = {u ∼ v | du = 3 ∧ dv = 5}, E8 = {u ∼ v | du = 3 ∧ dv = 6},

with cardinalities as |E1| = 4, |E2| = 4n− 4, |E3| = 6, |E4| = 4n− 2, |E5| = 4n− 4, |E6| = 2, |E7| = 6n− 8 and
|E8| = 6n2 − 10n+ 4, respectively ∀ n > 2.

5.2. Computational results for Rhombohedral 2LGeP3

Now we will compute some degree based topological parameter for Rhombohedral Bilayer Germa-
nium Phosphide. For the convenience, we will represent this structure shortly as R2LGePn3 .

Theorem 5.1. For n > 2, the first Zagreb index for Rhombohedral Bilayer Germanium Phosphide is:

M1(R2LGePn3 ) = 54n2 + 38n− 28.

Proof. By using (1.1)

M1(R2LGePn3 ) = (4)(2 + 2) + (4n− 4)(2 + 3) + (6)(2 + 4) + (4n− 2)(2 + 5)

+ (4n− 4)(2 + 6) + (2)(3 + 4) + (6n− 8)(3 + 5) + (6n2 − 10n+ 4)(3 + 6),

after computing we get,
M1(R2LGePn3 ) = 54n2 + 38n− 28.

Theorem 5.2. For n > 2, the second Zagreb index for Rhombohedral Bilayer Germanium Phosphide is:

M2(R2LGePn3 ) = 108n2 + 22n− 52.

Proof. By using (1.2) and taking α = 1

M2(R2LGePn3 ) = (4)(2.2) + (4n− 4)(2.3) + (6)(2.4) + (4n− 2)(2.5)

+ (4n− 4)(2.6) + (2)(3.4) + (6n− 8)(3.5) + (6n2 − 10n+ 4)(3.6),

after computing we get,
M2(R2LGePn3 ) = 108n2 + 22n− 52.

Theorem 5.3. With n > 2 the General Randic index for Rhombohedral Bilayer Germanium Phosphide is,

Rα(R2LGePn3 )=


108n2 + 22n− 52, α = 1,√

2n2 + ( 4√
6
+ 4√

10
+ 2√

3
+ 6√

15
− 10√

18
)n+ ( 4

√
2

3 − 4√
6
− 2√

10
− 1√

3
− 8√

15
+ 2 + 3√

2
), α = −1/2,

(18
√

2)n2 + (4
√

10 + 6
√

15 − 30
√

2 + 24)n+ (24
√

2 − 4
√

3 − 2
√

10 − 8
√

15 + 8), α = 1/2,
1
3n

2 + 56
45n+ 73

180 , α = −1.
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Proof. By using the definition (1.2) of Randic index

Rα =
∑
u∼v

(du.dv)α,

and degree based partition in Subsection 5.1 given previously we get the desired results.

Corollary 5.4. For α = 1 and α = −1, the general randic index is also called Second Zagreb index and Second
Modified Zagreb index, respectively.

Theorem 5.5. With n > 2, the atomic bond Connectivity index for Rhombohedral Bilayer Germanium Phosphide
is:

ABC(R2LGePn3 ) =
√

14n2 + (
12√

2
+

6
√

10
5

−
5
√

14
3

)n+ (

√
15
3

−
8
√

10
5

+
2
√

14
3

).

Proof. By using the definition (1.3) of ABC index and degree based partition in Subsection 5.1 given
previously we get the desired results.

Theorem 5.6. With n > 2, the Geometric Arithmetic index for Rhombohedral Bilayer Germanium Phosphide is:

GA(R2LGePn3 )=(4
√

2)n2 + (
8
√

6
5

+
8
√

10
7

+
3
√

15
2

−
20
√

2
3

+ 2
√

3)n+(
20
√

2
3

−
8
√

6
5

−
4
√

10
7

−
8
√

15
4

+ 4).

Proof. By using the definition (1.4) of GA index and degree based partition in Subsection 5.1 given previ-
ously we get the desired results.

Theorem 5.7. With n > 2, the Sum Connectivity index for Rhombohedral Bilayer Germanium Phosphide is:

SCI(R2LGePn3 ) = 2n2 + (
4√
5
+

4√
7
+

10√
8
−

10
3
)n+ (

√
6 −

4√
5
− 3

√
2 +

10
3
).

Proof. By using the definition (1.6) of SCI Index and degree based partition in Subsection 5.1 given previ-
ously we get the desired results.

Theorem 5.8. With n > 2, the Harmonic index for Rhombohedral Bilayer Germanium Phosphide is:

H(R2LGePn3 ) =
4
3
n2 +

1903
630

n+
13
45

.

Proof. By using the definition (1.5) of Harmonic index and degree based partition in Subsection 5.1 given
previously we get the desired results.

5.3. neighborhood prtition
Now here by using the definition (1.7) of Su we give an other different edge partition to the edge set

of Rhombohedral bilayer Germanium Phosphide on the basis of Sum degree of neighborhood vertices of
all the edges. We concluded that for n > 3 the neighborhood based edge partition for the edge set of
R2LGePn3 have 25 sub-partite sets defined as follows:

ξ1 = {u ∼ v | Su = 5 ∧ Sv = 6}, ξ2 = {u ∼ v | Su = 5 ∧ Sv = 7},
ξ3 = {u ∼ v | Su = 5 ∧ Sv = 10}, ξ4 = {u ∼ v | Su = 6 ∧ Sv = 10},
ξ5 = {u ∼ v | Su = 6 ∧ Sv = 9}, ξ6 = {u ∼ v | Su = 9 ∧ Sv = 9},
ξ7 = {u ∼ v | Su = 9 ∧ Sv = 10}, ξ8 = {u ∼ v | Su = 7 ∧ Sv = 12},
ξ9 = {u ∼ v | Su = 11 ∧ Sv = 12}, ξ10 = {u ∼ v | Su = 10 ∧ Sv = 12},
ξ11 = {u ∼ v | Su = 10 ∧ Sv = 16}, ξ12 = {u ∼ v | Su = 12 ∧ Sv = 16},
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ξ13 = {u ∼ v | Su = 11 ∧ Sv = 16}, ξ14 = {u ∼ v | Su = 9 ∧ Sv = 15},
ξ15 = {u ∼ v | Su = 12 ∧ Sv = 17}, ξ16 = {u ∼ v | Su = 13 ∧ Sv = 15},
ξ17 = {u ∼ v | Su = 13 ∧ Sv = 16}, ξ18 = {u ∼ v | Su = 13 ∧ Sv = 17},
ξ19 = {u ∼ v | Su = 15 ∧ Sv = 16}, ξ20 = {u ∼ v | Su = 17 ∧ Sv = 16},
ξ21 = {u ∼ v | Su = 18 ∧ Sv = 16}, ξ22 = {u ∼ v | Su = 17 ∧ Sv = 18},
ξ23 = {u ∼ v | Su = 18 ∧ Sv = 18}, ξ24 = {u ∼ v | Su = 10 ∧ Sv = 13},
ξ25 = {u ∼ v | Su = 9 ∧ Sv = 13}.

with cardinalities as |ξ1| = |ξ2| = |ξ5| = |ξ6| = |ξ7| = |ξ8| = |ξ9| = |ξ10| = |ξ13| = |ξ14| = |ξ15| = |ξ16| =
|ξ19| = |ξ25| = 2 and |ξ4| = |ξ22| = 4n− 8, |ξ17| = |ξ24| = 4n− 10, |ξ11| = 2n, |ξ12| = 4n− 6, |ξ18| = 2n− 4,
|ξ20| = |ξ3| = 4, |ξ21| = 8n− 16, |ξ23| = 6n2 − 24n+ 24. Forth version of ABC and fifth version of GA
indices will be computed by using these set cardinalities.

Theorem 5.9. With n > 3, the ABC4 for Rhombohedral Bilayer Germanium Phosphide is:

ABC4(R2LGePn3 ) = (

√
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√
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).

Proof. By using the definition (1.8) of ABC4 index and partition sets in Subsection 5.3 given previously we
get the desired results.

Theorem 5.10. With n > 3, the GA5 for Rhombohedral Bilayer Germanium Phosphide is:

GA5(R2LGePn3 ) = 6n2 + (
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+ 26).

Proof. By using the definition (1.9) of GA5 index and partition sets in Subsection 5.3 given previously we
get the desired results.

6. Rectangular 2LGeP3

In Rectangular 2LGeP3, the structure of bilayer Germanium Phosphide is presented by the influence
of rectangle shape. It has total 12n2 edges for n > 2. Here n represents the number of hexagons counted
from either the side in monolayer 1LGeP3 structure.
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Figure 3: Rct2LGeP3
3 Rectangular Bilayer Germanium Phosphide for n = 3.

6.1. Partioning for the edge set of Rectangular 2LGeP3 graph
By using the definition of degree of a vetrex in molecular graph, we give a partition to the edge set of

Rectangular structure for bilayer Germanium Phosphide after computing degrees of end vertices for all
the edges. We concluded that for n > 2 the edge set of this structural shape have 6 sub partite edge sets
defined as follows:

E1 = {u ∼ v | du = 2 ∧ dv = 2}, E2 = {u ∼ v | du = 2 ∧ dv = 3}, E3 = {u ∼ v | du = 2 ∧ dv = 4},
E4 = {u ∼ v | du = 2 ∧ dv = 6}, E5 = {u ∼ v | du = 3 ∧ dv = 4}, E6 = {u ∼ v | du = 3 ∧ dv = 6},

with cardinalities as |E1| = 4, |E2| = 4n− 4 = |E3| = |E5|, |E4| = 8n− 8, |E6| = 12n2 − 20n+ 8, ∀ n > 2.

6.2. Computational results for Rectangular 2LGeP3

Now we will compute some degree based topological parameters for Rectangular Bilayer Germanium
Phosphide. For the convenience, we will represent this structure shortly by Rct2LGePn3 .

Theorem 6.1. With n > 2, the first Zagreb index for Rectangular Bilayer Germanium Phosphide is:

M1(Rct2LGePn3 ) = 108n2 − 44n.

Proof. By using (1.1) we have

M1(Rct2LGePn3 ) = (4)(2 + 2) + (4n− 4)(2 + 3) + (4n+ 4)(2 + 4)

+ (8n− 8)(2 + 6) + (4n− 4)(3 + 4) + (12n2 − 20n+ 8)(3 + 6),

after computing we get,
M1(Rct2LGePn3 ) = 108n2 − 44n.

Theorem 6.2. With n > 2, the second Zagreb index for Rectangular Bilayer Germanium Phosphide is:

M2(Rct2LGePn3 ) = 216n2 − 160n+ 24.

Proof. By using (1.2) and taking α = 1

M2(Rct2LGePn3 ) = (4)(2.2) + (4n− 4)(2.3) + (4n+ 4)(2.4) + (8n− 8)(2.6) + (4n− 4)(3.4)

+ (12n2 − 20n+ 8)(3.6),
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after computing we get,
M2(Rct2LGePn3 ) = 216n2 − 160n+ 24.

Theorem 6.3. With n > 2, the General Randic index for Rectangular Bilayer Germanium Phosphide is:

Rα(Rct2LGePn3 ) =


216n2 − 160n+ 24, α = 1,
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√
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√
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2
3n

2 + 19
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18 , α = −1.

Proof. By using the definition (1.2) of Randic index

Rα =
∑
u∼v

(du.dv)α,

and degree based partition in Subsection 6.1 given previously we get the desired results.

Corollary 6.4. For α = 1 and α = −1, the general randic index is also called Second Zagreb index and Second
Modified Zagreb index, respectively.

Theorem 6.5. With n > 2, the atomic bond Connectivity index for Rectangular Bilayer Germanium Phosphide is:

ABC(Rct2LGePn3 ) = 2
√

14n2 + (
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√
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−
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14
3
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−
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2
√

15
3

).

Proof. By using the definition (1.3) of ABC index and degree based partition in Subsection 6.1 given
previously we get the desired results.

Theorem 6.6. With n > 2, the Geometric Arithmetic index for Rectangular Bilayer Germanium Phosphide is:

GA(Rct2LGePn3 ) = (8
√

2)n2 + (
8
√

6
5

+
8
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2
3
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√

3 +
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2
3
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6
5

+ 8
√

2 −
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√

3
7

).

Proof. By using the definition (1.4) of GA index and degree based partition in Subsection 6.1 given previ-
ously we get the desired results.

Theorem 6.7. With n > 2, the Sum Connectivity index for Rectangular Bilayer Germanium Phosphide is:

SCI(Rct2LGePn3 ) = 4n2 + (
4√
5
+

4√
6
+

4√
7
−

20
3

+
√

8)n+ (
14
3

−
4√
5
+

4√
6
−
√

8 −
4√
7
).

Proof. By using the definition (1.6) of SCI index and degree based partition in Subsection 6.1 given previ-
ously we get the desired results.

Theorem 6.8. With n > 2, the Harmonic index for Rectangular Bilayer Germanium Phosphide is:

H(Rct2LGePn3 ) =
8
3
n2 +

514
315

n+
116
315

.

Proof. By using the definition (1.5) of Harmonic index and degree based partition in Subsection 6.1 given
previously we get the desired results.

6.3. neighborhood Partition
Now here by using the definition (1.7) of Su we give an other different edge partition to the edge set of

Rectangular bilayer Germanium Phosphide on the basis of sum degree of neighborhood vertices of all the
edges. We concluded that for n > 3 the neighborhood based edge partition for the edge set of Rct2LGePn3
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have 12 sub-partite sets defined as follows:

ξ1 = {u ∼ v | Su = 5 ∧ Sv = 6}, ξ2 = {u ∼ v | Su = 5 ∧ Sv = 10},
ξ3 = {u ∼ v | Su = 6 ∧ Sv = 10}, ξ4 = {u ∼ v | Su = 6 ∧ Sv = 9},
ξ5 = {u ∼ v | Su = 10 ∧ Sv = 9}, ξ6 = {u ∼ v | Su = 10 ∧ Sv = 10},
ξ7 = {u ∼ v | Su = 10 ∧ Sv = 16}, ξ8 = {u ∼ v | Su = 12 ∧ Sv = 16},
ξ9 = {u ∼ v | Su = 9 ∧ Sv = 16}, ξ10 = {u ∼ v | Su = 16 ∧ Sv = 16},
ξ11 = {u ∼ v | Su = 16 ∧ Sv = 18}, ξ12 = {u ∼ v | Su = 18 ∧ Sv = 18},

with cardinalities as |ξ1| = |ξ2| = |ξ4| = |ξ9| = 4 and |ξ3| = |ξ6| = |ξ8| = 4n− 8, |ξ10| = 4n, |ξ7| = 10n− 10,
|ξ5| = 8, |ξ11| = 14n− 22, |ξ12| = 12n2 − 40n+ 32.

Forth version of ABC and fifth version of GA indices will be computed by using these set cardinalities.

Theorem 6.9. With n > 3, the ABC4 for Rectangular Bilayer Germanium Phosphide is:

ABC4(Rct2LGePn3 ) = (
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Proof. By using the definition (1.9) of ABC4 index and partition sets in Subsection 6.3 given previously we
get the desired results.

Theorem 6.10. With n > 3, the GA5 for Rectangular Bilayer Germanium Phosphide is:

GA5(Rct2LGePn3 )= 12n2 + (
√
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√
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√
3
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Proof. By using the definition (1.9) of GA5 index and partition sets in Subsection 6.3 given previously we
get the desired results.

7. Circumcoronene 2LGeP3

In Circumcoronene 2LGeP3, the structure of bilayer Germanium Phosphide is presented by the influ-
ence of cocentric circles. It has total 18n2 − 6n edges for n > 2. Here n represents the number of hexagons
counted from either the side in monolayer 1LGeP3 structure.

Figure 4: C2LGeP3
3 Circumcoronene Bilayer Germanium Phosphide for n = 3.
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7.1. Partioning for the edge set of Rectangular 2LGeP3 graph
By using the definition of degree of a vertex in molecular graph, we give a partition to the edge set of

Rectangular structure for bilayer Germanium Phosphide after computing degrees of vertices for all the
edges. We concluded that for n > 2 the edge set of this structural shape have 8 sub partite edge sets
defined as follows:
E1 = {u ∼ v | du = 2 ∧ dv = 2}
E2 = {u ∼ v | du = 2 ∧ dv = 3}
E3 = {u ∼ v | du = 2 ∧ dv = 4}
E4 = {u ∼ v | du = 2 ∧ dv = 5}
E5 = {u ∼ v | du = 2 ∧ dv = 6}
E6 = {u ∼ v | du = 3 ∧ dv = 4}
E7 = {u ∼ v | du = 3 ∧ dv = 5}
E8 = {u ∼ v | du = 3 ∧ dv = 6}
with cardinalities as |E2| = |E5| = 4n − 4, |E1| = 4 = |E3| = |E6|, |E4| = 8n − 4, |E7| = 12n − 16, |E8| =
18n2 − 34n+ 16 ∀ n > 2.

7.2. Computational results for Circumcoronene 2LGeP3

Now we will compute some degree based topological parameters for Circumcoronene Bilayer Germa-
nium Phosphide. For the convenience, we will represent this structure shortly by C2LGePn3 .

Theorem 7.1. With n > 2, the first Zagreb index for Circumcoronene Bilayer Germanium Phosphide is:

M1(C2LGePn3 ) = 162n2 − 102n+ 4.

Proof. By using (1.1)

M1(C2LGePn3 ) = (4)(2 + 2) + (4n− 4)(2 + 3) + (4)(2 + 4) + (8n− 4)(2 + 5) + (4n− 4)(2 + 6)

+ (4)(3 + 4) + (12n− 16)(8) + (18n2 − 34n+ 16)(3 + 6),

after computing we get,
M1(C2LGePn3 ) = 162n2 − 102n+ 4.

Theorem 7.2. With n > 2, the second Zagreb index for Circumcoronene Bilayer Germanium Phosphide is:

M2(C2LGePn3 ) = 324n2 − 280n+ 32.

Proof. By using (1.2) and taking α = 1

M2(C2LGePn3 ) = (4)(2.2) + (4n− 4)(2.3) + (4)(2.4) + (8n− 4)(2.5)

+ (4n− 4)(2.6) + (4)(3.4) + (12n− 16)(3.5) + (18n2 − 34n+ 16)(3.6),

after computing we get,
M2(C2LGePn3 ) = 324n2 − 280n+ 32.

Theorem 7.3. With n > 2, the General Randic index for Circumcoronene Bilayer Germanium Phosphide is:

Rα(C2LGePn3 ) =
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Proof. By using the definition (1.2) of Randic index,

Rα =
∑
u∼v

(du.dv)α,

and degree based partition in Subsection 7.1 given previously we get the desired results.

Corollary 7.4. For α = 1 and α = −1, the general randic index is also called Second Zagreb index and Second
Modified Zagreb index, respectively.

Theorem 7.5. With n > 2, the atomic bond Connectivity index for Circumcoronene Bilayer Germanium Phosphide
is:
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3
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Proof. By using the definition (1.3) of ABC index and degree based partition in Subsection 7.1 given
previously we get the desired results.

Theorem 7.6. With n > 2, the Geometric Arithmetic index for Circumcoronene Bilayer Germanium Phosphide is:

GA(C2LGePn3 ) = (12
√
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Proof. By using the definition (1.4) of GA index and degree based partition in Subsection 7.1 given previ-
ously we get the desired results.

Theorem 7.7. With n > 2, the Sum Connectivity index for Circumcoronene Bilayer Germanium Phosphide is:

SCI(C2LGePn3 ) = 6n2 + (
4√
5
+

8√
7
−

34
3

+ 4
√

2)n+ (
22
3

−
4√
5
+

4√
6
−

20√
8
).

Proof. By using the definition (1.6) of SCI index and degree based partition in Subsection 7.1 given previ-
ously we get the desired results.

Theorem 7.8. With n > 2, the Harmonic index for Circumcoronene Bilayer Germanium Phosphide is:

H(C2LGePn3 ) = 4n2 +
4864
315

n+
13
45

.

Proof. By using the definition (1.5) of Harmonic index and degree based partition in Subsection 7.1 given
previously we get the desired results.

7.3. neighborhood partition
Now here by using the definition (1.7) of Su we give an other different edge partition to the edge set

of Circumcoronene Bilayer Germanium Phosphide after computing sum degree of neighborhood vertices
for all the edges. We concluded that for n > 3 the neighborhood based edge partition for the edge set of
C2LGePn3 have 22 sub-partite sets defined as follows:

ξ1 = {u ∼ v | Su = 5 ∧ Sv = 7}, ξ2 = {u ∼ v | Su = 5 ∧ Sv = 10},
ξ3 = {u ∼ v | Su = 6 ∧ Sv = 10}, ξ4 = {u ∼ v | Su = 9 ∧ Sv = 10},
ξ5 = {u ∼ v | Su = 7 ∧ Sv = 12}, ξ6 = {u ∼ v | Su = 11 ∧ Sv = 12},
ξ7 = {u ∼ v | Su = 10 ∧ Sv = 12}, ξ8 = {u ∼ v | Su = 10 ∧ Sv = 13},
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ξ9 = {u ∼ v | Su = 9 ∧ Sv = 13}, ξ10 = {u ∼ v | Su = 11 ∧ Sv = 16},
ξ11 = {u ∼ v | Su = 12 ∧ Sv = 16}, ξ12 = {u ∼ v | Su = 10 ∧ Sv = 15},
ξ13 = {u ∼ v | Su = 12 ∧ Sv = 17}, ξ14 = {u ∼ v | Su = 13 ∧ Sv = 16},
ξ15 = {u ∼ v | Su = 13 ∧ Sv = 17}, ξ16 = {u ∼ v | Su = 13 ∧ Sv = 15},
ξ17 = {u ∼ v | Su = 15 ∧ Sv = 18}, ξ18 = {u ∼ v | Su = 17 ∧ Sv = 18},
ξ19 = {u ∼ v | Su = 18 ∧ Sv = 18}, ξ20 = {u ∼ v | Su = 16 ∧ Sv = 17},
ξ21 = {u ∼ v | Su = 10 ∧ Sv = 16}, ξ22 = {u ∼ v | Su = 16 ∧ Sv = 18},

with cardinalities as |ξ1| = |ξ2| = |ξ4| = |ξ5| = |ξ6| = |ξ7| = |ξ9| = |ξ10| = |ξ12| = |ξ13| = |ξ16| = |ξ17| =
|ξ20| = 4 and |ξ3| = |ξ15| = 4n− 8, |ξ8| = |ξ14| = 8n− 20, |ξ11| = 4n− 4, |ξ18| = 8n− 12, |ξ21| = 2n− 2,
|ξ22| = 10n− 18, |ξ19| = 18n2 − 54n+ 40.

Forth version of ABC and fifth version of GA indices will be computed by using these set cardinalities.

Theorem 7.9. With n > 3, the ABC4 for Circumcoronene Bilayer Germanium Phosphide is:
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Proof. By using the definition (1.8) of ABC4 index and partition sets in Subsection 7.3 given previously we
get the desired results.

Theorem 7.10. With n > 3, the GA5 for Circumcoronene Bilayer Germanium Phosphide is:

GA5(C2LGePn3 ) = 18n2 + (
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Proof. By using the definition (1.9) of GA5 index and partition sets in Subsection 7.3 given previously we
get the desired results.
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