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1. Introduction

Coincidence theory in a general setting for acyclic maps was initiated by O’Regan in [9]. This paper
is motivated by a fixed point result of Eilenberg and Montgomery [1] where they considered maps of the
form fF where f is a continuous single valued map and F is an acyclic map. In this paper we present
a general continuation theory for Eilenberg-Montgomery type maps. Even though some of the results
presented here could be modified from the results of O’Regan [9, 10] (Φ replaced by f−1 there) however
we feel it is more natural to construct this theory from a well known fixed point result. In particular we
base our theory on a result of Gorniewicz [5, 8] since maps of Eilenberg-Montgomery type are admissible
with respect to Gorniewicz. In this paper we present general Granas type topological transversality
theorems [6, 7, 10], general Leray-Schauder type alternatives [3, 7] and general Furi-Pera type results [4]
for Eilenberg-Montgomery type maps.

Now we describe the maps considered in this paper. Let H be the C̆ech homology functor with com-
pact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological
spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus
H(X) = {Hq(X)} (here X is a Hausdorff topological space) is a graded vector space, Hq(X) being the q-
dimensional C̆ech homology group with compact carriers of X. For a continuous map f : X → X, H(f) is
the induced linear map f? = {f?q}, where f?q : Hq(X) → Hq(X). A space X is acyclic if X is nonempty,
Hq(X) = 0 for every q > 1, and H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map p : Γ → X is called a
Vietoris map (written p : Γ ⇒ X) if the following two conditions are satisfied:
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(i) for each x ∈ X, the set p−1(x) is acyclic;
(ii) p is a perfect map, i.e., p is closed and for every x ∈ X the set p−1(x) is nonempty and compact.

Let φ : X → Y be a multi-valued map (note for each x ∈ X we assume φ(x) is a nonempty subset of
Y). A pair (p,q) of single valued continuous maps of the form X

p← Γ
q→ Y is called a selected pair of φ

(written (p,q) ⊂ φ) if the following two conditions hold:

(i) p is a Vietoris map;
(ii) q(p−1(x)) ⊂ φ(x) for any x ∈ X.

Now we define the admissible maps of Gorniewicz [5]. A upper semicontinuous map φ : X → Y

with closed values is said to be admissible (and we write φ ∈ Ad(X, Y)) provided there exists a selected
pair (p,q) of φ. An example of an admissible map is an acyclic map. A upper semicontinuous map
φ : X → K(Y) is said to be an acyclic map; here K(Y) denotes the family of nonempty, acyclic, compact
subsets of Y.

By a space we mean a Hausdorff topological space. Let Q be a class of topological spaces. A space Y
is an extension space for Q (written Y ∈ ES(Q) if for all X ∈ Q and all K ⊆ X closed in X, any continuous
function f0 : K→ Y extends to a continuous function f : X→ Y.

Now we recall the following fixed point result in the literature [5, 8].

Theorem 1.1. Let X ∈ ES(compact) and Ψ ∈ Ad(X,X) a compact map. Then there exists a x ∈ X with x ∈ Ψ(x).

2. Continuation theory

Let E be a completely regular topological space and U an open subset of E. In this section we fix a
continuous single valued map f : E→ E.

Definition 2.1. We say F ∈ A(U,E) if F : U → K(E) is a upper semi-continuous compact map; here K(E)
denotes the family of nonempty, compact, acyclic subsets of E and U denotes the closure of U in E.

Definition 2.2. We say F ∈ A∂U(U,E) if F ∈ A(U,E) with x /∈ f(F(x)) for x ∈ ∂U; here ∂U denotes the
boundary of U in E.

Definition 2.3. Let F,G ∈ A∂U(U,E). We say F ∼= G in A∂U(U,E) if there exists a upper semicontinuous
compact map H : U× [0, 1] → 2E with Ht ∈ A(U,E) for each t ∈ (0, 1), x /∈ f(Ht(x)) for x ∈ ∂U and
t ∈ (0, 1) (here Ht(x) = H(x, t)), H0 = F and H1 = G.

Remark 2.4. Note that ∼= in A∂U(U,E) is an equivalence relation.

Next we present the notion of an EM-essential map.

Definition 2.5. We say F ∈ A∂U(U,E) is EM-essential in A∂U(U,E) if for any map J ∈ A∂U(U,E) with
J|∂U = F|∂U there exists a x ∈ U with x ∈ f(J(x)).

Theorem 2.6. Let E be a completely regular topological space and U an open subset of E. Let F ∈ A∂U(U,E) and
suppose G ∈ A∂U(U,E) is EM-essential in A∂U(U,E). Also suppose

for any map J ∈ A∂U(U,E) with J|∂U = F|∂U, we have G ∼= J in A∂U(U,E). (2.1)

Then F is EM-essential in A∂U(U,E).

Proof. Let J ∈ A∂U(U,E) with J|∂U = F|∂U. From (2.1) there exists a upper semi-continuous compact map
HJ : U× [0, 1] → 2E with HJt ∈ A(U,E) for each t ∈ (0, 1), x /∈ f(HJt(x)) for x ∈ ∂U and t ∈ (0, 1) (here
HJt(x) = H

J(x, t)), HJ0 = G and HJ1 = J. Let

K =
{
x ∈ U : x ∈ f(HJt(x)) for some t ∈ [0, 1]

}
, and D =

{
(x, t) ∈ U× [0, 1] : x ∈ f(HJt(x))

}
.
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Now D 6= ∅ (since G is EM-essential in A∂U(U,E)) and D is closed (note f is continuous and HJ is upper
semi-continuous) and so compact (note HJ is a compact map). Let π : U× [0, 1] → U be the projection.
Now K = π(D) is closed (see Kuratowski’s theorem [2]) and so in fact compact (recall projections are
continuous). Also note K ∩ ∂U = ∅ (since x /∈ f(HJt(x)) for x ∈ ∂U and t ∈ (0, 1)) so since E is Tychonoff
there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and µ(K) = 1. Let R(x) = HJ(x,µ(x)) =
HJ
µ(x)(x) for x ∈ U. Now R ∈ A∂U(U,E) with R|∂U = G|∂U (note if x ∈ ∂U then R(x) = HJ(x, 0) = G(x)).

Now since G is EM-essential in A∂U(U,E) there exists a x ∈ U with x ∈ f(R(x)), i.e., x ∈ f(HJ
µ(x)(x)). Thus

x ∈ K so µ(x) = 1 and as a result x ∈ f(HJ1(x)) = f(J(x)) and we are finished.

We now present the topological transversality theorem for A∂U(U,E) maps. To do this we need an
extra assumption (which will be discussed after the proof of our next result):

if F,G ∈ A∂U(U,E) with F|∂U = G|∂U, then F ∼= G in A∂U(U,E). (2.2)

Theorem 2.7. Let E be a completely regular topological space and U an open subset of E. Suppose (2.2) holds. Let
F and G be two maps in A∂U(U,E) with F ∼= G in A∂U(U,E). Now F is EM-essential in A∂U(U,E) if and only if
G is EM-essential in A∂U(U,E).

Proof. Assume G is EM-essential in A∂U(U,E). Let J ∈ A∂U(U,E) with J|∂U = F|∂U. From (2.2) we have
J ∼= F in A∂U(U,E) and since F ∼= G in A∂U(U,E) we have G ∼= J in A∂U(U,E), i.e., (2.1) holds. Now
Theorem 2.6 guarantees that F is EM-essential in A∂U(U,E). Similarly if F is EM-essential in A∂U(U,E)
then G is EM-essential in A∂U(U,E).

Now we discuss (2.2). Let E be a topological (Hausdorff) vector space and U an open convex subset
of E. Suppose

there exists a retraction r : U→ ∂U, (2.3)

(note (2.3) holds if E is an infinite dimensional Banach space). We now show that (2.2) holds. To see
this let r be as in (2.3) and F,G ∈ A∂U(U,E) with F|∂U = G|∂U. Let F?(x) = F(r(x)) for x ∈ U. Note
F?(x) = G(r(x)), x ∈ U since F|∂U = G|∂U. Take

Λ(x, λ) = G(2λr(x) + (1 − 2λ)x) = G ◦ j(x, λ) for (x, λ) ∈ U×
[

0,
1
2

]
;

here j : U×
[
0, 1

2

]
→ U (note U is convex) is given by j(x, λ) = 2λr(x) + (1 − 2λ)x. Notice G ∼= F? in

A∂U(U,E); note Λ : U ×
[
0, 1

2

]
→ 2E is a upper semi-continuous compact map and for fixed x ∈ U

and t ∈
[
0, 1

2

]
, note Λt(x) has acyclic values and note x /∈ f(Λt(x)) for x ∈ ∂U and t ∈

[
0, 1

2

]
since if

x ∈ ∂U and t ∈
[
0, 1

2

]
, then r(x) = x so Λt(x) = G(x) and f(Λt(x)) = f(G(x)). Similarly if Θ(x, λ) =

F((2 − 2λ)r(x) + (2λ− 1)x) for (x, λ) ∈ U×
[ 1

2 , 1
]
, then F? ∼= F in A∂U(U,E). Thus (2.2) holds.

To establish Leray-Schauder type alternatives first we present an example of a EM-essential inA∂U(U,E)
map.

Theorem 2.8. Let E be a locally convex metrizable topological vector space, U an open subset of E, and f(0) ∈ U.
Then the zero map is EM-essential in A∂U(U,E).

Proof. Let G ∈ A∂U(U,E) with J|∂U = {0}|∂U. We must show there exists a x ∈ U with x ∈ f(G(x)). Let

Ψ(x) =

{
G(x), x ∈ U,
{0}, x ∈ E\U.

Now Ψ ∈ A(E,E) (a map θ ∈ A(E,E) if θ : E → K(E) is a upper semi-continuous compact map) and so
fΨ is an admissible compact map. Now Theorem 1.1 (note every locally convex metrizable topological
vector space is an AR) guarantees that there exists a x ∈ E with x ∈ f(Ψ(x)). If x ∈ E\U, then x = f(0), a
contradiction since f(0) ∈ U. Thus x ∈ U so x ∈ f(G(x)).
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Remark 2.9. Let E be a locally convex metrizable topological vector space, U an open subset of E, f(0) ∈ U,
F ∈ A∂U(U,E) and x /∈ f(tF(x)) for x ∈ ∂U and t ∈ (0, 1). Then one homotopy in A∂U(U,E) from F to 0
(i.e., so 0 ∼= F in A∂U(U,E)) is H(x, t) = tF(x) for t ∈ [0, 1] and x ∈ U. To see this note H : U× [0, 1] → 2E

is a upper semi-continuous compact map and note for a fixed t ∈ [0, 1] and a fixed x ∈ U, then Ht(x)
is acyclic valued (recall homeomorphic spaces have isomorphic homology groups) so Ht ∈ A∂U(U,E).
Finally H0 = 0 and H1 = F so 0 ∼= F in A∂U(U,E).

Theorem 2.10. Let E be a locally convex metrizable topological vector space, U an open subset of E, F ∈ A∂U(U,E),
f(0) ∈ U and x /∈ f(tF(x)) for x ∈ ∂U and t ∈ (0, 1). Then F is EM-essential in A∂U(U,E) (so in particular there
exists a x ∈ U with x ∈ f(F(x))).

Proof. From Theorem 2.8 we know that the zero map is EM-essential inA∂U(U,E). We will apply Theorem
2.6 to show F is EM-essential in A∂U(U,E). Note topological vector spaces are completely regular so we
need only to show (2.1) holds with G = 0. Consider any map J ∈ A∂U(U,E) with J|∂U = F|∂U. Now let
HJ(x, t) = tJ(x) and similar to Remark 2.9 note J ∼= 0 in A∂U(U,E) (note if x ∈ ∂U and t ∈ (0, 1), then
since J|∂U = F|∂U we have f(tJ(x)) = f(tF(x))). Thus (2.1) holds.

Remark 2.11. Theorem 2.10 gives a strong conclusion, namely F is EM-essential in A∂U(U,E). The usual
conclusion in a Leray-Schauder type alternative is that there exists a x ∈ U with x ∈ f(F(x)). We note that
this can be proved directly without any reference to essential maps. Let

K = {x ∈ U : x ∈ f(tF(x)) for some t ∈ [0, 1]}.

Note K 6= ∅ (take t = 0 and x = f(0)) is compact and K ∩ ∂U = ∅ (since x /∈ f(tF(x)) for x ∈ ∂U and
t ∈ (0, 1)) so there exists a continuous map µ : U→ [0, 1] with µ(∂U) = 0 and µ(K) = 1. Let N : E→ 2E be
given by

N(x) =

{
µ(x)F(x), x ∈ U,
{0}, x ∈ E\U.

Now N ∈ A(E,E) so fN is an admissible compact map. Then Theorem 1.1 guarantees that there exists
a x ∈ E with x ∈ f(N(x)). If x ∈ E\U, then x = f(0), a contradiction since f(0) ∈ U. Thus x ∈ U so
x ∈ f(µ(x)F(x)) and as a result x ∈ K. Thus µ(x) = 1 and so x ∈ f(F(x)).

Now we prove a Furi-Pera type result. Here E will be a locally convex metrizable topological vector
space and Q a closed convex subset of E. In our next result we assume ∂Q = Q (the case when int(Q) 6= ∅
is also easily handled; see Remark 2.13).

Theorem 2.12. Let E be a locally convex metrizable topological vector space,Q a closed convex subset of E, ∂Q = Q,
F ∈ A(Q,E) (i.e., F : Q→ K(E) a upper semi-continuous, compact map) and f : E→ E a continuous single valued
map with f(0) ∈ Q. In addition assume{

if {(xj, λj)}∞j=1 is a sequence in ∂Q× [0, 1] convergingto (x, λ) with x ∈ f(λF(x)) and 0 6 λ < 1,
then {f(λjF(xj))} ⊆ Q for j sufficiently large.

(2.4)

Then there exists a x ∈ Q with x ∈ f(F(x)).

Proof. From Dugundji’s theorem we know there exists a retraction r : E→ Q. Let

Ω = {x ∈ E : x ∈ f(F(r(x))}.

Note Ω 6= ∅ from Theorem 1.1 (note fFr is a compact admissible map) and Ω is compact. We claim
Ω∩Q 6= ∅. To show this we argue by contradiction. Suppose Ω∩Q = ∅. Then since Ω is compact and Q
is closed there exists a δ > 0 with dist(Q,Ω) > δ. Choose m ∈ {1, 2, . . .} with 1 < δm and let

Ui =

{
x ∈ E : d(x,Q) <

1
i

}
for i ∈ {m,m+ 1, . . .};
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here d is the metric associated with E. Fix i ∈ {m,m+ 1, . . .}. Since dist(Q,Ω) > δ we see that Ω∩Ui = ∅.
Now Remark 2.11 (note Fr has acyclic values so Fr is a compact acyclic map and f(0) ∈ Q ⊆ Ui) guarantees
that there exists λi ∈ (0, 1) and yi ∈ ∂Ui with yi ∈ f(λiFr(yi)). Since yi ∈ ∂Ui we have

{f(λiFr(yi))} 6⊆ Q for i ∈ {m,m+ 1, . . .}. (2.5)

Let
D = {x ∈ E : x ∈ f(λFr(x)) for some λ ∈ [0, 1]}.

Now D 6= ∅ (see Theorem 1.1 and take λ = 1) and D is compact. This together with

d(yj,Q) =
1
j

and |jj| 6 1 for j ∈ {m,m+ 1, . . .}

implies that we may assume without loss of generality that λj → λ? ∈ [0, 1] and yj → y? ∈ ∂Q. In addition
since f and r are continuous, F is upper semicontinuous and yj ∈ f(λjFr(yj)), we have y? ∈ f(λ?Fr(y?)).
Thus, since r(y?) = y?, we have y? ∈ f(λ?Fy?). If λ? = 1, then y? ∈ f(Fy?)(= f(Fr(y?)), which contradicts
Ω∩Q = ∅. Thus 0 6 λ? < 1. Now (2.4) with xj = r(yj) (note yj ∈ ∂Uj and r(yj) ∈ ∂Q) and x = y? = r(y?)
and y? ∈ f(λ?F(y?)) implies

{f(λjFxj)} ⊆ Q for j sufficiently large.

This contradicts (2.5). Thus Ω∩Q 6= ∅ so there exists a x ∈ Q with x ∈ f(Fr(x)) = f(Fx).

Remark 2.13. In Theorem 2.12 we assumed ∂Q = Q. However this is easily removed since if int(Q) 6= ∅
(assume without loss of generality that 0 ∈ int(Q)), then one can take the retraction r : E→ Q as

r(x) =
x

max{1,µ(x)}
for x ∈ E,

where µ is the Minkowski functional on Q (i.e., µ(x) = inf{α > 0 : x ∈ αQ}. Note r(z) ∈ ∂Q if z ∈ E\Q.
The argument in Theorem 2.12 now remains the same.

However when 0 ∈ int(Q), condition (2.4) can be linked to x /∈ f(λF(x)) for x ∈ ∂U and λ ∈ (0, 1)
in Theorem 2.10 (Remark 2.11); here U = int(Q). For simplicity take f = i (identity), U = intQ and let
F : U → E be a continuous single valued compact map with x 6= Fx for x ∈ ∂U. Now we claim if (2.4)
holds (i.e., if {(xj, λj)}∞j=1 is a sequence in ∂Q× [0, 1] converging to (x, λ) with x = λFx and 0 6 λ < 1, then
λjF(xj) ∈ Q for j sufficiently large), then if x ∈ ∂U and λ ∈ (0, 1), then x 6= λFx. Suppose the claim is false.
Then there exists a x ∈ ∂U and λ ∈ (0, 1) with x = λFx. Let {(xj, λj)}∞j=1 be a sequence in ∂Q× [0, 1] with
xj = x, λj → λ and λj > λ. Now (2.4) implies that λjFx ∈ Q for j sufficiently large. However

µ(λjFx) = µ

(
λj

λ
λFx

)
= µ

(
λj

λ
x

)
=
λj

λ
µ(x) =

λj

λ
> 1

so λjFx /∈ Q, a contradiction. Thus x 6= λFx for x ∈ ∂U and λ ∈ (0, 1). Theorem 2.10 guarantees that F has
a fixed point in U.

Remark 2.14. Note one can choose d to be a translational invariant metric associated with E so each Ui
(i ∈ {1, 2, . . .}) in the proof of Theorem 2.12 could be convex.

To take (2.2) into account in the topological transversality theorem one could replace the definition of
EM-essential in A∂U(U,E) with the following definition.

Definition 2.15. We say F ∈ A∂U(U,E) is EM-essential in A∂U(U,E) if for any map J ∈ A∂U(U,E) with
J|∂U = F|∂U and J ∼= F in A∂U(U,E) there exists a x ∈ U with x ∈ f(J(x)).
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Theorem 2.16. Let E be a completely regular topological space and U an open subset of E. Let F ∈ A∂U(U,E) and
suppose G ∈ A∂U(U,E) is EM-essential in A∂U(U,E) (Definition 2.15). Also suppose

for any map J ∈ A∂U(U,E) with J|∂U = F|∂U, and J ∼= F in A∂U(U,E), we have G ∼= J, in A∂U(U,E). (2.6)

Then F is EM-essential in A∂U(U,E) (Definition 2.15).

Proof. Let J ∈ A∂U(U,E) with J|∂U = F|∂U and J ∼= F in A∂U(U,E). From (2.1) there exists a upper semi-
continuous compact map HJ : U× [0, 1] → 2E with HJt ∈ A(U,E) for each t ∈ (0, 1), x /∈ f(HJt(x)) for
x ∈ ∂U and t ∈ (0, 1) (here HJt(x) = H

J(x, t)), HJ0 = G and HJ1 = J. Let

K =
{
x ∈ U : x ∈ f(HJt(x)) for some t ∈ [0, 1]

}
.

Now K 6= ∅ is compact, K ∩ ∂U = ∅ so there exists a continuous map µ : U → [0, 1] with µ(∂U) = 0 and
µ(K) = 1. Let R(x) = HJ

µ(x)(x) for x ∈ U. Now R ∈ A∂U(U,E) with R|∂U = G|∂U. We now claim G ∼= R in
A∂U(U,E). If the claim is true, then since G is EM-essential in A∂U(U,E) (Definition 2.15) there exists a
x ∈ U with x ∈ f(R(x)), i.e., x ∈ f(HJ

µ(x)(x)). Thus x ∈ K so µ(x) = 1 and as a result x ∈ f(HJ1(x)) = f(J(x))
and we are finished. It remains to prove the claim. To see this let Q : U × [0, 1] → 2E be given by
Q(x, t) = HJ(x, tµ(x)) = HJ

tµ(x)(x) and note Q : U× [0, 1] → 2E is a upper semicontinuous compact map

with Qs = HJ
sµ(.) ∈ A(U,E) for each s ∈ [0, 1] and x /∈ f(Qt(x)) for x ∈ ∂U and t ∈ (0, 1) (note if x ∈ ∂U

and t ∈ (0, 1), then Qt(x) = HJtµ(x)(x) = H
J
t(x) since x ∈ K).

Theorem 2.17. Let E be a completely regular topological space and U an open subset of E. Let F and G be two maps
in A∂U(U,E) with F ∼= G in A∂U(U,E). Now F is EM-essential in A∂U(U,E) (Definition 2.15) if and only if G
is EM-essential in A∂U(U,E) (Definition 2.15).

Proof. Assume G is EM-essential in A∂U(U,E) (Definition 2.15). Let J ∈ A∂U(U,E) with J|∂U = F|∂U
and J ∼= F in A∂U(U,E). Now since F ∼= G in A∂U(U,E) we have G ∼= J in A∂U(U,E), i.e., (2.6) holds.
Now Theorem 2.16 guarantees that F is EM-essential in A∂U(U,E) (Definition 2.15). Similarly if F is
EM-essential in A∂U(U,E) (Definition 2.15), then G is EM-essential in A∂U(U,E) (Definition 2.15).

Now we present a general Leray-Schauder type result.

Theorem 2.18. Let E be a completely regular topological space, U an open subset of E, u0 ∈ E with f(u0) ∈ U,
and F ∈ A∂U(U,E). Suppose the following:

for any Φ ∈ A(E,E) with Φ ∼= {u0} in A(E,E), there exists a z ∈ E with z ∈ f(Φ(z)). (2.7)

Finally suppose F ∼= {u0} in A∂U(U,E). Then F is EM-essential in A∂U(U,E) (Definition 2.15).

Remark 2.19. We say Φ ∼= {u0} in A(E,E) if there exists a upper semicontinuous, compact map R : E×
[0, 1]→ 2E with Rt ∈ A(E,E) for each t ∈ [0, 1], R0 = Φ and R1 = {u0}.

Proof. Let J(x) = {u0} for x ∈ E. We show J is EM-essential in A∂U(U,E) (Definition 2.15) so, then F is
EM-essential in A∂U(U,E) (Definition 2.15) from Theorem 2.17. Let G ∈ A∂U(U,E) with G|∂U = J|∂U and
G ∼= J in A∂U(U,E). We must show there exists a x ∈ U with x ∈ f(G(x)). Since G ∼= J in A∂U(U,E) there
exists a upper semicontinuous, compact map Ψ : U× [0, 1] → 2E with Ψt ∈ A∂U(U,E) for each t ∈ [0, 1],
Ψ0 = J and Ψ1 = G. Let

Ω =
{
x ∈ U : x ∈ f(Ψt(x)) for some t ∈ [0, 1]

}
.

Note Ω 6= ∅ (take t = 0 and x = f(u0)) is compact and Ω ∩ (E\U) = ∅ (note Ψt ∈ A∂U(U,E) for t ∈ [0, 1]
so x /∈ f(Ψt(x)) for x ∈ ∂U and t ∈ (0, 1)). Now there exists a continuous map σ : E→ [0, 1] with σ(Ω) = 1
and σ(E\U) = 0. Define Θ : E× [0, 1]→ 2E by

Θ(x, t) =
{
Ψ(x, tσ(x)), x ∈ U,
{u0}, x ∈ E\U.
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Note Θ : E× [0, 1] → 2E is an upper semicontinuous, compact map with Θt ∈ A(E,E) for each t ∈ [0, 1],
so as a result Θ1 ∼= Θ0 = J in A(E,E). Now (2.7) guarantees that there exists a x ∈ E with x ∈ f(Θ1(x)).
If x ∈ E\U, then x = f(u0), a contradiction since f(u0) ∈ U. Consequently x ∈ U so x ∈ f(Ψ(x,σ(x))) =
f(Ψσ(x)(x)) and as a result x ∈ Ω which implies σ(x) = 1 and so x ∈ f(Ψ1(x)) = f(G(x)).

Theorem 2.20. Let E be a (metrizable) ANR, U an open subset of E, u0 ∈ E with f(u0) ∈ U, F ∈ A∂U(U,E) and
suppose F ∼= {u0} in A∂U(U,E). Then F is EM-essential in A∂U(U,E) (Definition 2.15).

Proof. The result follows from Theorem 2.18 once we show (2.7). Let Φ ∈ A(E,E) with Φ ∼= {u0} in A(E,E).
Then there exists a upper semicontinuous, compact map R : E× [0, 1] → 2E with Rt ∈ A(E,E) for each
t ∈ [0, 1],R1 = Φ and R0 = {u0}. Note E can be regarded as a closed subset of a normed space X (see
the Arens-Eells theorem). Since E ∈ ANR there is an open neighborhood V of E in X and a retraction
(continuous) r : V → E. Let λ : X→ [0, 1] be a continuous function with λ(X\V) = 0 and λ(E) = 1 and let

Q(x) =

{
R(r(x), λ(x)), x ∈ V ,
{u0}, x ∈ X\V .

(note if x ∈ ∂V , then Q(x) = R(r(x), 0) = R0(r(x)) = {u0}). Also note Q → 2X is a upper semi-continuous,
compact map and for fixed x ∈ X note Q(x) is acyclic valued, so Q ∈ A(X,X). Thus fQ is an admissible
compact map so Theorem 1.1 guarantees that there exists a x0 ∈ X with x0 ∈ f(Q(x0)). If x0 ∈ X\V ,
then x0 = f(u0), a contradiction since f(u0) ∈ U ⊆ E ⊆ V . If x0 ∈ V\E, then since Q : X → 2E (note
R : E× [0, 1]→ 2E) and since x0 ∈ f(Q(x0)) one has x0 ∈ E, a contradiction. Thus x0 ∈ E and so r(x0) = x0,
λ(x0) = 1 and as a result x0 ∈ f(R(x0, 1)) = f(Φ(x0)), i.e., (2.7) holds.
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