Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

Essentiality and fixed point results for Eilenberg-Montgomery () Check for updates type maps

Donal O'Regan

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

Abstract

In this paper we establish topological transversality theorems so in particular general Leray-Schauder type alternatives and general Furi-Pera type results for Eilenberg-Montgomery type maps.

Keywords: Eilenberg-Montgomery maps, essential maps, Leray-Schauder alternatives, continuation theory. **2020 MSC:** 47H10, 54C60, 54H25, 55M20.

©2021 All rights reserved.

1. Introduction

Coincidence theory in a general setting for acyclic maps was initiated by O'Regan in [9]. This paper is motivated by a fixed point result of Eilenberg and Montgomery [1] where they considered maps of the form fF where f is a continuous single valued map and F is an acyclic map. In this paper we present a general continuation theory for Eilenberg-Montgomery type maps. Even though some of the results presented here could be modified from the results of O'Regan [9, 10] (Φ replaced by f⁻¹ there) however we feel it is more natural to construct this theory from a well known fixed point result. In particular we base our theory on a result of Gorniewicz [5, 8] since maps of Eilenberg-Montgomery type are admissible with respect to Gorniewicz. In this paper we present general Granas type topological transversality theorems [6, 7, 10], general Leray-Schauder type alternatives [3, 7] and general Furi-Pera type results [4] for Eilenberg-Montgomery type maps.

Now we describe the maps considered in this paper. Let H be the Čech homology functor with compact carriers and coefficients in the field of rational numbers K from the category of Hausdorff topological spaces and continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus $H(X) = \{H_q(X)\}$ (here X is a Hausdorff topological space) is a graded vector space, $H_q(X)$ being the qdimensional Čech homology group with compact carriers of X. For a continuous map $f : X \to X$, H(f) is the induced linear map $f_* = \{f_{*q}\}$, where $f_{*q} : H_q(X) \to H_q(X)$. A space X is acyclic if X is nonempty, $H_q(X) = 0$ for every $q \ge 1$, and $H_0(X) \approx K$.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map $p : \Gamma \to X$ is called a Vietoris map (written $p : \Gamma \Rightarrow X$) if the following two conditions are satisfied:

Email address: donal.oregan@nuigalway.ie (Donal O'Regan) doi: 10.22436/jmcs.022.04.07

Received: 2020-06-11 Revised: 2020-07-15 Accepted: 2020-07-30

- (i) for each $x \in X$, the set $p^{-1}(x)$ is acyclic;
- (ii) p is a perfect map, i.e., p is closed and for every $x \in X$ the set $p^{-1}(x)$ is nonempty and compact.

Let $\phi : X \to Y$ be a multi-valued map (note for each $x \in X$ we assume $\phi(x)$ is a nonempty subset of Y). A pair (p,q) of single valued continuous maps of the form $X \stackrel{p}{\leftarrow} \Gamma \stackrel{q}{\to} Y$ is called a selected pair of ϕ (written $(p,q) \subset \phi$) if the following two conditions hold:

- (i) p is a Vietoris map;
- (ii) $q(p^{-1}(x)) \subset \varphi(x)$ for any $x \in X$.

Now we define the admissible maps of Gorniewicz [5]. A upper semicontinuous map $\phi : X \to Y$ with closed values is said to be admissible (and we write $\phi \in Ad(X, Y)$) provided there exists a selected pair (p, q) of ϕ . An example of an admissible map is an acyclic map. A upper semicontinuous map $\phi : X \to K(Y)$ is said to be an acyclic map; here K(Y) denotes the family of nonempty, acyclic, compact subsets of Y.

By a space we mean a Hausdorff topological space. Let Q be a class of topological spaces. A space Y is an extension space for Q (written $Y \in ES(Q)$ if for all $X \in Q$ and all $K \subseteq X$ closed in X, any continuous function $f_0 : K \to Y$ extends to a continuous function $f : X \to Y$.

Now we recall the following fixed point result in the literature [5, 8].

Theorem 1.1. Let $X \in ES(compact)$ and $\Psi \in Ad(X, X)$ a compact map. Then there exists a $x \in X$ with $x \in \Psi(x)$.

2. Continuation theory

Let E be a completely regular topological space and U an open subset of E. In this section we <u>fix</u> a continuous single valued map $f : E \to E$.

Definition 2.1. We say $F \in A(\overline{U}, E)$ if $F : \overline{U} \to K(E)$ is a upper semi-continuous compact map; here K(E) denotes the family of nonempty, compact, acyclic subsets of E and \overline{U} denotes the closure of U in E.

Definition 2.2. We say $F \in A_{\partial U}(\overline{U}, E)$ if $F \in A(\overline{U}, E)$ with $x \notin f(F(x))$ for $x \in \partial U$; here ∂U denotes the boundary of U in E.

Definition 2.3. Let $F, G \in A_{\partial U}(\overline{U}, E)$. We say $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ if there exists a upper semicontinuous compact map $H : \overline{U} \times [0,1] \to 2^E$ with $H_t \in A(\overline{U}, E)$ for each $t \in (0,1)$, $x \notin f(H_t(x))$ for $x \in \partial U$ and $t \in (0,1)$ (here $H_t(x) = H(x,t)$), $H_0 = F$ and $H_1 = G$.

Remark 2.4. Note that \cong in $A_{\partial U}(\overline{U}, E)$ is an equivalence relation.

Next we present the notion of an EM-essential map.

Definition 2.5. We say $F \in A_{\partial U}(\overline{U}, E)$ is EM-essential in $A_{\partial U}(\overline{U}, E)$ if for any map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ there exists a $x \in U$ with $x \in f(J(x))$.

Theorem 2.6. Let E be a completely regular topological space and U an open subset of E. Let $F \in A_{\partial U}(\overline{U}, E)$ and suppose $G \in A_{\partial U}(\overline{U}, E)$ is EM-essential in $A_{\partial U}(\overline{U}, E)$. Also suppose

for any map
$$J \in A_{\partial U}(\overline{U}, E)$$
 with $J|_{\partial U} = F|_{\partial U}$, we have $G \cong J$ in $A_{\partial U}(\overline{U}, E)$. (2.1)

Then F is EM-essential in $A_{\partial U}(\overline{U}, E)$.

Proof. Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. From (2.1) there exists a upper semi-continuous compact map $H^J: \overline{U} \times [0,1] \rightarrow 2^E$ with $H^J_t \in A(\overline{U}, E)$ for each $t \in (0,1)$, $x \notin f(H^J_t(x))$ for $x \in \partial U$ and $t \in (0,1)$ (here $H^J_t(x) = H^J(x,t)$), $H^J_0 = G$ and $H^J_1 = J$. Let

$$\mathsf{K} = \left\{ x \in \overline{\mathsf{U}} : x \in \mathsf{f}(\mathsf{H}^{J}_{\mathsf{t}}(x)) \text{ for some } \mathsf{t} \in [0,1] \right\}, \quad \text{and} \quad \mathsf{D} = \left\{ (x,\mathsf{t}) \in \overline{\mathsf{U}} \times [0,1] : x \in \mathsf{f}(\mathsf{H}^{J}_{\mathsf{t}}(x)) \right\}.$$

Now $D \neq \emptyset$ (since G is EM-essential in $A_{\partial U}(\overline{U}, E)$) and D is closed (note f is continuous and H^J is upper semi-continuous) and so compact (note H^J is a compact map). Let $\pi : \overline{U} \times [0,1] \to \overline{U}$ be the projection. Now $K = \pi(D)$ is closed (see Kuratowski's theorem [2]) and so in fact compact (recall projections are continuous). Also note $K \cap \partial U = \emptyset$ (since $x \notin f(H_t^J(x))$ for $x \in \partial U$ and $t \in (0,1)$) so since E is Tychonoff there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H^J(x, \mu(x)) = H^J_{\mu(x)}(x)$ for $x \in \overline{U}$. Now $R \in A_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = G|_{\partial U}$ (note if $x \in \partial U$ then $R(x) = H^J(x, 0) = G(x)$). Now since G is EM-essential in $A_{\partial U}(\overline{U}, E)$ there exists a $x \in U$ with $x \in f(R(x))$, i.e., $x \in f(H^J_{\mu(x)}(x))$. Thus $x \in K$ so $\mu(x) = 1$ and as a result $x \in f(H^J_1(x)) = f(J(x))$ and we are finished.

We now present the topological transversality theorem for $A_{\partial U}(\overline{U}, E)$ maps. To do this we need an extra assumption (which will be discussed after the proof of our next result):

if
$$F, G \in A_{\partial U}(\overline{U}, E)$$
 with $F|_{\partial U} = G|_{\partial U}$, then $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. (2.2)

Theorem 2.7. Let E be a completely regular topological space and U an open subset of E. Suppose (2.2) holds. Let F and G be two maps in $A_{\partial U}(\overline{U}, E)$ with $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. Now F is EM-essential in $A_{\partial U}(\overline{U}, E)$ if and only if G is EM-essential in $A_{\partial U}(\overline{U}, E)$.

Proof. Assume G is EM-essential in $A_{\partial U}(\overline{U}, E)$. Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. From (2.2) we have $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ and since $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ we have $G \cong J$ in $A_{\partial U}(\overline{U}, E)$, i.e., (2.1) holds. Now Theorem 2.6 guarantees that F is EM-essential in $A_{\partial U}(\overline{U}, E)$. Similarly if F is EM-essential in $A_{\partial U}(\overline{U}, E)$.

Now we discuss (2.2). Let E be a topological (Hausdorff) vector space and U an open convex subset of E. Suppose

there exists a retraction
$$r: \overline{U} \to \partial U$$
, (2.3)

(note (2.3) holds if E is an infinite dimensional Banach space). We now show that (2.2) holds. To see this let r be as in (2.3) and F, G $\in A_{\partial U}(\overline{U}, E)$ with $F|_{\partial U} = G|_{\partial U}$. Let $F^*(x) = F(r(x))$ for $x \in \overline{U}$. Note $F^*(x) = G(r(x)), x \in \overline{U}$ since $F|_{\partial U} = G|_{\partial U}$. Take

$$\Lambda(x,\lambda) = G(2\lambda r(x) + (1-2\lambda)x) = G \circ j(x,\lambda) \text{ for } (x,\lambda) \in \overline{U} \times \left[0,\frac{1}{2}\right];$$

here $j: \overline{U} \times [0, \frac{1}{2}] \to \overline{U}$ (note \overline{U} is convex) is given by $j(x, \lambda) = 2\lambda r(x) + (1 - 2\lambda)x$. Notice $G \cong F^*$ in $A_{\partial U}(\overline{U}, E)$; note $\Lambda : \overline{U} \times [0, \frac{1}{2}] \to 2^E$ is a upper semi-continuous compact map and for fixed $x \in \overline{U}$ and $t \in [0, \frac{1}{2}]$, note $\Lambda_t(x)$ has acyclic values and note $x \notin f(\Lambda_t(x))$ for $x \in \partial U$ and $t \in [0, \frac{1}{2}]$ since if $x \in \partial U$ and $t \in [0, \frac{1}{2}]$, then r(x) = x so $\Lambda_t(x) = G(x)$ and $f(\Lambda_t(x)) = f(G(x))$. Similarly if $\Theta(x, \lambda) = F((2 - 2\lambda)r(x) + (2\lambda - 1)x)$ for $(x, \lambda) \in \overline{U} \times [\frac{1}{2}, 1]$, then $F^* \cong F$ in $A_{\partial U}(\overline{U}, E)$. Thus (2.2) holds.

To establish Leray-Schauder type alternatives first we present an example of a EM-essential in $A_{\partial U}(\overline{U}, E)$ map.

Theorem 2.8. Let E be a locally convex metrizable topological vector space, U an open subset of E, and $f(0) \in U$. Then the zero map is EM-essential in $A_{\partial U}(\overline{U}, E)$.

Proof. Let $G \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = \{0\}|_{\partial U}$. We must show there exists a $x \in U$ with $x \in f(G(x))$. Let

$$\Psi(\mathbf{x}) = \left\{ egin{array}{cc} \mathsf{G}(\mathbf{x}), & \mathbf{x} \in \mathsf{U}, \ \{\mathbf{0}\}, & \mathbf{x} \in \mathsf{E} ackslash \overline{\mathsf{U}}. \end{array}
ight.$$

Now $\Psi \in A(E, E)$ (a map $\theta \in A(E, E)$ if $\theta : E \to K(E)$ is a upper semi-continuous compact map) and so $f\Psi$ is an admissible compact map. Now Theorem 1.1 (note every locally convex metrizable topological vector space is an AR) guarantees that there exists a $x \in E$ with $x \in f(\Psi(x))$. If $x \in E \setminus U$, then x = f(0), a contradiction since $f(0) \in U$. Thus $x \in U$ so $x \in f(G(x))$.

Remark 2.9. Let E be a locally convex metrizable topological vector space, U an open subset of E, $f(0) \in U$, $F \in A_{\partial U}(\overline{U}, E)$ and $x \notin f(tF(x))$ for $x \in \partial U$ and $t \in (0, 1)$. Then one homotopy in $A_{\partial U}(\overline{U}, E)$ from F to 0 (i.e., so $0 \cong F$ in $A_{\partial U}(\overline{U}, E)$) is H(x, t) = tF(x) for $t \in [0, 1]$ and $x \in \overline{U}$. To see this note $H : \overline{U} \times [0, 1] \to 2^E$ is a upper semi-continuous compact map and note for a fixed $t \in [0, 1]$ and a fixed $x \in \overline{U}$, then $H_t(x)$ is acyclic valued (recall homeomorphic spaces have isomorphic homology groups) so $H_t \in A_{\partial U}(\overline{U}, E)$. Finally $H_0 = 0$ and $H_1 = F$ so $0 \cong F$ in $A_{\partial U}(\overline{U}, E)$.

Theorem 2.10. Let E be a locally convex metrizable topological vector space, U an open subset of E, $F \in A_{\partial U}(\overline{U}, E)$, $f(0) \in U$ and $x \notin f(tF(x))$ for $x \in \partial U$ and $t \in (0,1)$. Then F is EM-essential in $A_{\partial U}(\overline{U}, E)$ (so in particular there exists a $x \in U$ with $x \in f(F(x))$).

Proof. From Theorem 2.8 we know that the zero map is EM-essential in $A_{\partial U}(\overline{U}, E)$. We will apply Theorem 2.6 to show F is EM-essential in $A_{\partial U}(\overline{U}, E)$. Note topological vector spaces are completely regular so we need only to show (2.1) holds with G = 0. Consider any map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$. Now let $H^J(x, t) = tJ(x)$ and similar to Remark 2.9 note $J \cong 0$ in $A_{\partial U}(\overline{U}, E)$ (note if $x \in \partial U$ and $t \in (0, 1)$, then since $J|_{\partial U} = F|_{\partial U}$ we have f(tJ(x)) = f(tF(x))). Thus (2.1) holds.

Remark 2.11. Theorem 2.10 gives a strong conclusion, namely F is EM-essential in $A_{\partial U}(\overline{U}, E)$. The usual conclusion in a Leray-Schauder type alternative is that there exists a $x \in U$ with $x \in f(F(x))$. We note that this can be proved directly without any reference to essential maps. Let

$$\mathsf{K} = \{ \mathsf{x} \in \overline{\mathsf{U}} : \mathsf{x} \in \mathsf{f}(\mathsf{tF}(\mathsf{x})) \text{ for some } \mathsf{t} \in [0,1] \}.$$

Note $K \neq \emptyset$ (take t = 0 and x = f(0)) is compact and $K \cap \partial U = \emptyset$ (since $x \notin f(tF(x))$ for $x \in \partial U$ and $t \in (0,1)$) so there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $N : E \to 2^E$ be given by

$$\mathsf{N}(\mathsf{x}) = \begin{cases} \mu(\mathsf{x})\mathsf{F}(\mathsf{x}), & \mathsf{x} \in \overline{\mathsf{U}}, \\ \{0\}, & \mathsf{x} \in \mathsf{E} \backslash \overline{\mathsf{U}}. \end{cases}$$

Now $N \in A(E, E)$ so fN is an admissible compact map. Then Theorem 1.1 guarantees that there exists a $x \in E$ with $x \in f(N(x))$. If $x \in E \setminus U$, then x = f(0), a contradiction since $f(0) \in U$. Thus $x \in U$ so $x \in f(\mu(x)F(x))$ and as a result $x \in K$. Thus $\mu(x) = 1$ and so $x \in f(F(x))$.

Now we prove a Furi-Pera type result. Here E will be a locally convex metrizable topological vector space and Q a closed convex subset of E. In our next result we assume $\partial Q = Q$ (the case when $int(Q) \neq \emptyset$ is also easily handled; see Remark 2.13).

Theorem 2.12. Let E be a locally convex metrizable topological vector space, Q a closed convex subset of E, $\partial Q = Q$, $F \in A(Q, E)$ (*i.e.*, $F : Q \to K(E)$ a upper semi-continuous, compact map) and $f : E \to E$ a continuous single valued map with $f(0) \in Q$. In addition assume

 $\begin{cases} if \{(x_j, \lambda_j)\}_{j=1}^{\infty} \text{ is a sequence in } \partial Q \times [0, 1] \text{ converging to } (x, \lambda) \text{ with } x \in f(\lambda F(x)) \text{ and } 0 \leq \lambda < 1, \\ then \{f(\lambda_j F(x_j))\} \subseteq Q \text{ for } j \text{ sufficiently large.} \end{cases}$ (2.4)

Then there exists a $x \in Q$ with $x \in f(F(x))$.

Proof. From Dugundji's theorem we know there exists a retraction $r : E \to Q$. Let

$$\Omega = \{ x \in E : x \in f(F(r(x))) \}$$

Note $\Omega \neq \emptyset$ from Theorem 1.1 (note fFr is a compact admissible map) and Ω is compact. We claim $\Omega \cap Q \neq \emptyset$. To show this we argue by contradiction. Suppose $\Omega \cap Q = \emptyset$. Then since Ω is compact and Q is closed there exists a $\delta > 0$ with dist $(Q, \Omega) > \delta$. Choose $\mathfrak{m} \in \{1, 2, ...\}$ with $1 < \delta \mathfrak{m}$ and let

$$U_{\mathfrak{i}} = \left\{ x \in E : d(x,Q) < \frac{1}{\mathfrak{i}} \right\} \text{ for } \mathfrak{i} \in \{\mathfrak{m},\mathfrak{m}+1,\ldots\};$$

here d is the metric associated with E. Fix $i \in \{m, m+1, \ldots\}$. Since $dist(Q, \Omega) > \delta$ we see that $\Omega \cap \overline{U_i} = \emptyset$. Now Remark 2.11 (note Fr has acyclic values so Fr is a compact acyclic map and $f(0) \in Q \subseteq U_i$) guarantees that there exists $\lambda_i \in (0, 1)$ and $y_i \in \partial U_i$ with $y_i \in f(\lambda_i Fr(y_i))$. Since $y_i \in \partial U_i$ we have

$$\{f(\lambda_i Fr(y_i))\} \not\subseteq Q \text{ for } i \in \{m, m+1, \ldots\}.$$
(2.5)

Let

$$D = \{x \in E : x \in f(\lambda Fr(x)) \text{ for some } \lambda \in [0, 1]\}.$$

Now $D \neq \emptyset$ (see Theorem 1.1 and take $\lambda = 1$) and D is compact. This together with

$$d(y_j, Q) = \frac{1}{j} \text{ and } |j_j| \leq 1 \text{ for } j \in \{m, m+1, \ldots\}$$

implies that we may assume without loss of generality that $\lambda_j \to \lambda^* \in [0, 1]$ and $y_j \to y^* \in \partial Q$. In addition since f and r are continuous, F is upper semicontinuous and $y_j \in f(\lambda_j Fr(y_j))$, we have $y^* \in f(\lambda^* Fr(y^*))$. Thus, since $r(y^*) = y^*$, we have $y^* \in f(\lambda^* Fy^*)$. If $\lambda^* = 1$, then $y^* \in f(Fy^*)(= f(Fr(y^*))$, which contradicts $\Omega \cap Q = \emptyset$. Thus $0 \leq \lambda^* < 1$. Now (2.4) with $x_j = r(y_j)$ (note $y_j \in \partial U_j$ and $r(y_j) \in \partial Q$) and $x = y^* = r(y^*)$ and $y^* \in f(\lambda^* F(y^*))$ implies

 $\{f(\lambda_j Fx_j)\} \subseteq Q$ for j sufficiently large.

This contradicts (2.5). Thus $\Omega \cap Q \neq \emptyset$ so there exists a $x \in Q$ with $x \in f(Fr(x)) = f(Fx)$.

Remark 2.13. In Theorem 2.12 we assumed $\partial Q = Q$. However this is easily removed since if $int(Q) \neq \emptyset$ (assume without loss of generality that $0 \in int(Q)$), then one can take the retraction $r : E \to Q$ as

$$r(x) = \frac{x}{max\{1, \mu(x)\}} \text{ for } x \in E,$$

where μ is the Minkowski functional on Q (i.e., $\mu(x) = \inf\{\alpha > 0 : x \in \alpha Q\}$. Note $r(z) \in \partial Q$ if $z \in E \setminus Q$. The argument in Theorem 2.12 now remains the same.

However when $0 \in int(Q)$, condition (2.4) can be linked to $x \notin f(\lambda F(x))$ for $x \in \partial U$ and $\lambda \in (0, 1)$ in Theorem 2.10 (Remark 2.11); here U = int(Q). For simplicity take f = i (identity), U = intQ and let $F : \overline{U} \to E$ be a continuous single valued compact map with $x \neq Fx$ for $x \in \partial U$. Now we <u>claim</u> if (2.4) holds (i.e., if $\{(x_j, \lambda_j)\}_{j=1}^{\infty}$ is a sequence in $\partial Q \times [0, 1]$ converging to (x, λ) with $x = \lambda Fx$ and $0 \leq \lambda < 1$, then $\lambda_j F(x_j) \in Q$ for j sufficiently large), then if $x \in \partial U$ and $\lambda \in (0, 1)$, then $x \neq \lambda Fx$. Suppose the claim is false. Then there exists a $x \in \partial U$ and $\lambda \in (0, 1)$ with $x = \lambda Fx$. Let $\{(x_j, \lambda_j)\}_{j=1}^{\infty}$ be a sequence in $\partial Q \times [0, 1]$ with $x_j = x$, $\lambda_j \to \lambda$ and $\lambda_j > \lambda$. Now (2.4) implies that $\lambda_j Fx \in Q$ for j sufficiently large. However

$$\mu(\lambda_{j}Fx) = \mu\left(\frac{\lambda_{j}}{\lambda}\lambda Fx\right) = \mu\left(\frac{\lambda_{j}}{\lambda}x\right) = \frac{\lambda_{j}}{\lambda}\mu(x) = \frac{\lambda_{j}}{\lambda} > 1$$

so $\lambda_j Fx \notin Q$, a contradiction. Thus $x \neq \lambda Fx$ for $x \in \partial U$ and $\lambda \in (0, 1)$. Theorem 2.10 guarantees that F has a fixed point in U.

Remark 2.14. Note one can choose d to be a translational invariant metric associated with E so each U_i ($i \in \{1, 2, ...\}$) in the proof of Theorem 2.12 could be convex.

To take (2.2) into account in the topological transversality theorem one could replace the definition of EM-essential in $A_{\partial U}(\overline{U}, E)$ with the following definition.

Definition 2.15. We say $F \in A_{\partial U}(\overline{U}, E)$ is EM-essential in $A_{\partial U}(\overline{U}, E)$ if for any map $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ and $J \cong F$ in $A_{\partial U}(\overline{U}, E)$ there exists a $x \in U$ with $x \in f(J(x))$.

Theorem 2.16. Let E be a completely regular topological space and U an open subset of E. Let $F \in A_{\partial U}(\overline{U}, E)$ and suppose $G \in A_{\partial U}(\overline{U}, E)$ is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15). Also suppose

for any map
$$J \in A_{\partial U}(\overline{U}, E)$$
 with $J|_{\partial U} = F|_{\partial U}$, and $J \cong F$ in $A_{\partial U}(\overline{U}, E)$, we have $G \cong J$, in $A_{\partial U}(\overline{U}, E)$. (2.6)

Then F is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15).

Proof. Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ and $J \cong F$ in $A_{\partial U}(\overline{U}, E)$. From (2.1) there exists a upper semicontinuous compact map $H^J : \overline{U} \times [0,1] \to 2^E$ with $H^J_t \in A(\overline{U}, E)$ for each $t \in (0,1)$, $x \notin f(H^J_t(x))$ for $x \in \partial U$ and $t \in (0,1)$ (here $H^J_t(x) = H^J(x,t)$), $H^J_0 = G$ and $H^J_1 = J$. Let

$$\mathsf{K} = \left\{ x \in \overline{U} : x \in \mathsf{f}(\mathsf{H}^J_t(x)) \text{ for some } t \in [0,1] \right\}.$$

Now $K \neq \emptyset$ is compact, $K \cap \partial U = \emptyset$ so there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(K) = 1$. Let $R(x) = H_{\mu(x)}^{J}(x)$ for $x \in \overline{U}$. Now $R \in A_{\partial U}(\overline{U}, E)$ with $R|_{\partial U} = G|_{\partial U}$. We now claim $G \cong R$ in $A_{\partial U}(\overline{U}, E)$. If the claim is true, then since G is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15) there exists a $x \in U$ with $x \in f(R(x))$, i.e., $x \in f(H_{\mu(x)}^{J}(x))$. Thus $x \in K$ so $\mu(x) = 1$ and as a result $x \in f(H_{1}^{J}(x)) = f(J(x))$ and we are finished. It remains to prove the claim. To see this let $Q : \overline{U} \times [0,1] \to 2^{E}$ be given by $Q(x,t) = H^{J}(x,t\mu(x)) = H_{t\mu(x)}^{J}(x)$ and note $Q : \overline{U} \times [0,1] \to 2^{E}$ is a upper semicontinuous compact map with $Q_{s} = H_{s\mu(.)}^{J} \in A(\overline{U}, E)$ for each $s \in [0,1]$ and $x \notin f(Q_{t}(x))$ for $x \in \partial U$ and $t \in (0,1)$ (note if $x \in \partial U$ and $t \in (0,1)$, then $Q_{t}(x) = H_{t\mu(x)}^{J}(x) = H_{t}^{J}(x)$ since $x \in K$).

Theorem 2.17. Let E be a completely regular topological space and U an open subset of E. Let F and G be two maps in $A_{\partial U}(\overline{U}, E)$ with $F \cong G$ in $A_{\partial U}(\overline{U}, E)$. Now F is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15) if and only if G is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15).

Proof. Assume G is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15). Let $J \in A_{\partial U}(\overline{U}, E)$ with $J|_{\partial U} = F|_{\partial U}$ and $J \cong F$ in $A_{\partial U}(\overline{U}, E)$. Now since $F \cong G$ in $A_{\partial U}(\overline{U}, E)$ we have $G \cong J$ in $A_{\partial U}(\overline{U}, E)$, i.e., (2.6) holds. Now Theorem 2.16 guarantees that F is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15). Similarly if F is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15), then G is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15).

Now we present a general Leray-Schauder type result.

Theorem 2.18. Let E be a completely regular topological space, U an open subset of E, $u_0 \in E$ with $f(u_0) \in U$, and $F \in A_{\partial U}(\overline{U}, E)$. Suppose the following:

for any
$$\Phi \in A(E, E)$$
 with $\Phi \cong \{u_0\}$ in $A(E, E)$, there exists a $z \in E$ with $z \in f(\Phi(z))$. (2.7)

Finally suppose $F \cong \{u_0\}$ in $A_{\partial U}(\overline{U}, E)$. Then F is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15).

Remark 2.19. We say $\Phi \cong \{u_0\}$ in A(E, E) if there exists a upper semicontinuous, compact map $R : E \times [0,1] \rightarrow 2^E$ with $R_t \in A(E, E)$ for each $t \in [0,1]$, $R_0 = \Phi$ and $R_1 = \{u_0\}$.

Proof. Let $J(x) = \{u_0\}$ for $x \in E$. We show J is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15) so, then F is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15) from Theorem 2.17. Let $G \in A_{\partial U}(\overline{U}, E)$ with $G|_{\partial U} = J|_{\partial U}$ and $G \cong J$ in $A_{\partial U}(\overline{U}, E)$. We must show there exists a $x \in U$ with $x \in f(G(x))$. Since $G \cong J$ in $A_{\partial U}(\overline{U}, E)$ there exists a upper semicontinuous, compact map $\Psi : \overline{U} \times [0, 1] \to 2^E$ with $\Psi_t \in A_{\partial U}(\overline{U}, E)$ for each $t \in [0, 1]$, $\Psi_0 = J$ and $\Psi_1 = G$. Let

$$\Omega = \left\{ x \in \overline{U} : x \in f(\Psi_t(x)) \text{ for some } t \in [0,1] \right\}.$$

Note $\Omega \neq \emptyset$ (take t = 0 and $x = f(u_0)$) is compact and $\Omega \cap (E \setminus U) = \emptyset$ (note $\Psi_t \in A_{\partial U}(\overline{U}, E)$ for $t \in [0, 1]$ so $x \notin f(\Psi_t(x))$ for $x \in \partial U$ and $t \in (0, 1)$). Now there exists a continuous map $\sigma : E \to [0, 1]$ with $\sigma(\Omega) = 1$ and $\sigma(E \setminus U) = 0$. Define $\Theta : E \times [0, 1] \to 2^E$ by

$$\Theta(x,t) = \begin{cases} \Psi(x,t\sigma(x)), & x \in \overline{U}, \\ \{u_0\}, & x \in E \setminus U. \end{cases}$$

Note $\Theta : E \times [0,1] \to 2^E$ is an upper semicontinuous, compact map with $\Theta_t \in A(E, E)$ for each $t \in [0,1]$, so as a result $\Theta_1 \cong \Theta_0 = J$ in A(E, E). Now (2.7) guarantees that there exists a $x \in E$ with $x \in f(\Theta_1(x))$. If $x \in E \setminus \overline{U}$, then $x = f(u_0)$, a contradiction since $f(u_0) \in U$. Consequently $x \in U$ so $x \in f(\Psi(x, \sigma(x))) = f(\Psi_{\sigma(x)}(x))$ and as a result $x \in \Omega$ which implies $\sigma(x) = 1$ and so $x \in f(\Psi_1(x)) = f(G(x))$.

Theorem 2.20. Let E be a (metrizable) ANR, U an open subset of E, $u_0 \in E$ with $f(u_0) \in U$, $F \in A_{\partial U}(\overline{U}, E)$ and suppose $F \cong \{u_0\}$ in $A_{\partial U}(\overline{U}, E)$. Then F is EM-essential in $A_{\partial U}(\overline{U}, E)$ (Definition 2.15).

Proof. The result follows from Theorem 2.18 once we show (2.7). Let $\Phi \in A(E, E)$ with $\Phi \cong \{u_0\}$ in A(E, E). Then there exists a upper semicontinuous, compact map $R : E \times [0,1] \to 2^E$ with $R_t \in A(E, E)$ for each $t \in [0,1], R_1 = \Phi$ and $R_0 = \{u_0\}$. Note E can be regarded as a closed subset of a normed space X (see the Arens-Eells theorem). Since $E \in ANR$ there is an open neighborhood V of E in X and a retraction (continuous) $r : \overline{V} \to E$. Let $\lambda : X \to [0,1]$ be a continuous function with $\lambda(X \setminus V) = 0$ and $\lambda(E) = 1$ and let

$$Q(\mathbf{x}) = \begin{cases} R(\mathbf{r}(\mathbf{x}), \lambda(\mathbf{x})), & \mathbf{x} \in \overline{V}, \\ \{\mathbf{u}_0\}, & \mathbf{x} \in X \setminus V. \end{cases}$$

(note if $x \in \partial V$, then $Q(x) = R(r(x), 0) = R_0(r(x)) = \{u_0\}$). Also note $Q \to 2^X$ is a upper semi-continuous, compact map and for fixed $x \in X$ note Q(x) is acyclic valued, so $Q \in A(X, X)$. Thus fQ is an admissible compact map so Theorem 1.1 guarantees that there exists a $x_0 \in X$ with $x_0 \in f(Q(x_0))$. If $x_0 \in X \setminus V$, then $x_0 = f(u_0)$, a contradiction since $f(u_0) \in U \subseteq E \subseteq V$. If $x_0 \in \overline{V} \setminus E$, then since $Q : X \to 2^E$ (note $R : E \times [0,1] \to 2^E$) and since $x_0 \in f(Q(x_0))$ one has $x_0 \in E$, a contradiction. Thus $x_0 \in E$ and so $r(x_0) = x_0$, $\lambda(x_0) = 1$ and as a result $x_0 \in f(R(x_0, 1)) = f(\Phi(x_0))$, i.e., (2.7) holds.

References

- [1] S. Eilenberg, D. Montgomery, *Fixed point results for multi-valued transformations*, Amer. J. Math., **68** (1946), 214–222.
- [2] R. Engelking, General Topology, PWN-Polish Scientific Publishers, Warszawa, (1989). 2
- [3] P. M. Fitzpartrick, W. V. Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings, Pac. J. Math., 54 (1974), 12–23. 1
- [4] M. Furi, P. Pera, A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Pol. Math., 47 (1987), 331–346. 1
- [5] L. Gorniewicz, *Topological fixed point theory of multivalued mappings*, Kluwer Academic Publishers, Dordrecht, (1999). 1, 1
- [6] A. Granas, Sur la méthode de continuité de Poincaré, C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 983–985. 1
- [7] A. Granas, J. Dugundji, *Fixed Point Theory*, Springer-Verlag, New York, (2003). 1
- [8] D. O'Regan, Fixed point theory on extension type spaces on topological spaces, Fixed Point Theory and Applications, 1 (2004), 13–20. 1, 1
- [9] D. O'Regan, Some general theorems for compact acyclic maps, Mathematics, 7 (2019), 11 pages. 1
- [10] D. O'Regan, A topological coincidence theory for multifunctions via homotopy, Mathematics, 8 (2020), 8 pages. 1