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Abstract

In this paper, we first propose a new smoothing approach to the nonsmooth penalty function for constrained optimization
problems, and then show that an approximate optimal solution of the original problem can be obtained by solving an optimal
solution of the smoothed optimization problem. Based on the perturbed smooth exact penalty function, we develop an algorithm
respectively to finding an approximate optimal solution of the original constrained optimization problem and prove the con-
vergence of the proposed algorithm. The effectiveness of the smoothed penalty function is illustrated through three examples,
which show that the algorithm seems efficient.
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1. Introduction

Consider the following constrained optimization problem:

min f(x)

s.t. gi(x) 6 0, i ∈ I = {1, 2, . . . ,m},
x ∈ Rn,

(P)

where f : Rn → R and gi : Rn → R, i ∈ I, are twice continuously differentiable functions. Let
X0 = {x ∈ Rn | gi(x) 6 0, i ∈ I} be the feasible set of (P) and we assume that X0 is not empty. This problem
is widely applied in the fields such as mathematical programming, economy, transportation, network
structures, etc, and it has received extensive attention on a related problem, for example, interval-valued
optimization problems, equilibrium problem, bilevel programming, etc (see, e.g., [1, 8, 11, 15, 17–19]). Up
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to now, some efficient methods have been studied for solving general constrained optimization problem,
including the penalty function methods. The penalty function methods have been proposed in order to
transform a constrained optimization problem to an unconstrained optimization problem. Since exact
penalty function method in solving (P) was proposed by Zangwill [24], it has attracted researchers and
lots of penalty functions have been introduced in literature.

According to Zangwill [24], the l1 exact penalty function has been defined by

ω1
ρ(x) = f(x) + ρ

m∑
i=1

max{0,gi(x)},

where ρ > 0 is a penalty parameter. It is proved that there exists a fixed constant ρ0 > 0, for any
ρ > ρ0, any global solution of the exact penalty problem is also a global solution of the original problem.
Therefore, the exact penalty function methods have been widely used for solving constrained optimization
problems (see, e.g., [2, 7, 9, 10, 16, 23, 24]).

Recently, a class of lower order penalty functions has been investigated in [20] as the following form

ωkρ(x) = f(x) + ρ

m∑
i=1

max{0,gi(x)}k, k ∈ (0, 1). (1.1)

Obviously, the lower order penalty problem and the original problem have the same set of global minima
when the penalty parameter is sufficiently large. If k = 1 the lower order penalty function ωkρ(x) is
reduced to the l1 exact penalty function. However, both the penalty function ωkρ(x) (0 < k < 1) and
the l1 exact penalty function are non-smooth (non-Lipschitz). One of the important tools for solving
these types of non-smooth problems is the smoothing approach. The smoothing approach is based on
making some modification on the objective function or approximate the objective function by smooth
functions. Thus smoothing approach for the exact penalty function have been proposed in the literature
(see, e.g., [3–6, 12, 14, 21, 22, 25]). Pinar and Zenios [14] first proposed a smoothing method to the
exact penalty functions, it was shown that an approximate solution of the original convex programming
problem can be obtained by solving the smoothed penalty problem. Meng et al. [12] discussed two
smoothing approximations to the lower order penalty function (1.1) with k = 1

2 . Wu et al. [21] proposed
a quadratic smoothing approximation to the l1 exact penalty function. It is shown that under certain
conditions, any global minimizer of the smoothed penalty problem is a global minimizer of the original
problem when the penalty parameter is sufficiently large. Wu et al. [20] and Binh [4] presented the ε-
smoothing of (1.1), and obtained a modified exact penalty function under some mild conditions. Binh et
al. [5] also proposed two new perturbed smoothing approach to the lower order exact penalty function,
which was proved to have good prospects in solving a global approximate solution to the constrained
optimization problem.

In this paper, we introduce a new smoothing method for the low order penalty function and compare
it with the existing methods. With a different segmentation method, we will give a new piecewise smooth
function and propose a new method to smooth the lower order penalty function (1.1).

The rest of this paper is organized as follows. In Section 2, we propose a new smoothing method
and prove some results for error estimates among the optimal objective function values of the nonsmooth
penalty problem, smoothed penalty problem and original constrained optimization problem. In Section
3, we construct the minimization algorithm to finding an approximate optimal solution of the inequality
constrained optimization problems. In Section 4, some numerical examples are given. Finally, conclusions
are discussed in Section 5.

2. A new perturbed smoothing method

For any k ∈ (0, 1), let:

qk(t) =

{
0, if t 6 0,
tk, if t > 0.
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Then, we have the following low order penalty function:

ωkρ(x) = f(x) + ρ

m∑
i=1

qk(gi(x)), (2.1)

and the corresponding penalty problem

min ωkρ(x), s.t. x ∈ Rn. (Pρ)

For the penalty problem (Pρ), in order to establish the global exact penalization, the following as-
sumption is given in [20]. We will consider a new perturbed smoothing method under the following
assumption.

Assumption 2.1.

(i) f(x) satisfies the following coercive condition:

lim
‖x‖→+∞ f(x) = +∞.

(ii) The set G(P) is a finite set, where G(P) is the set of global solutions of (P).

Under Assumption 2.1, problem (P) is equivalent to the following problem:

min f(x),
s.t. gi(x) 6 0, i ∈ I,
x ∈ X ⊂ Rn,

(P ′)

where X is a box with int(X) 6= ∅.
For any k ∈ (0, 1), problem (Pρ) is equivalent to the following problem:

min ωkρ(x), s.t. x ∈ X. (P ′ρ)

Now, we consider the perturbed smooth exact penalty function. For 1
2 6 k < 1, ε > 0 and ρ > 0, the

function qkε,ρ(t) is defined as:

qkε,ρ(t) =



0, if t 6 −
(
ε
mρ

)k
,

kmρ

2ε

[
t+

(
ε

mρ

)k]2

, if −
(
ε
mρ

)k
< t < 0,(

t+
ε

mρ

)k
+
k

2

(
ε

mρ

)2k−1

−

(
ε

mρ

)k
, if t > 0.

Remark 2.2. Obviously, qkε,ρ(t) has the following attractive properties:

(i) qkε,ρ(t) is continuously differentiable for 1
2 6 k < 1 on R, where

[qkε,ρ(t)]
′ =



0, if t 6 −
(
ε
mρ

)k
,

kmρ

ε

[
t+

(
ε

mρ

)k]
, if −

(
ε
mρ

)k
< t < 0,

k

(
t+

ε

mρ

)k−1

, if t > 0;
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(ii) lim
ε→0+

qkε,ρ(t) = q
k(t);

(iii) qk(t) 6 qkε,ρ(t), ∀t ∈ R.

The behavior of qk(t) and qkε,ρ(t) is illustrated in Figure 1.
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Figure 1: The behavior of qk(t) and qkε,ρ(t).

Based on this, consider the perturbed smooth exact penalty function as follows:

ωkε,ρ(x) = f(x) + ρ

m∑
i=1

qkε,ρ (gi(x)) ,

where ε > 0, ρ > 0. Clearly, ωkε,ρ(x) is continuously differentiable at any x ∈ Rn. The corresponding
smoothed optimization problem is:

min ωkε,ρ(x), s.t. x ∈ X. (SPε,ρ)

Lemma 2.3. For any x ∈ X, ε > 0 and ρ > 0, then

−
k

2
ε2k−1(mρ)2(1−k) 6 ωkρ(x) −ω

k
ε,ρ(x) < ε

k(mρ)1−k, k ∈
[

1
2

, 1
)

.

Proof. For any x ∈ X, we have

ωkρ(x) −ω
k
ε,ρ(x) = ρ

m∑
i=1

(
qk(gi(x)) − q

k
ε,ρ(gi(x))

)
.

Note that

qk (gi(x)) − q
k
ε,ρ (gi(x))
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=



0, if gi(x) 6 −
(
ε
mρ

)k
,

−
kmρ

2ε

[
gi(x) +

(
ε

mρ

)k]2

, if −
(
ε
mρ

)k
< gi(x) < 0,

[gi(x)]
k −

[
gi(x) +

ε

mρ

]k
−
k

2

(
ε

mρ

)2k−1

+

(
ε

mρ

)k
, if gi(x) > 0,

for any i ∈ I. If gi(x) > 0, let gi(x) = u. Then, we have u > 0. Consider the function

G(u) = uk −

(
u+

ε

mρ

)k
, u > 0,

and we have

G ′(u) = k

[
uk−1 −

(
u+

ε

mρ

)k−1
]

, u > 0.

Obviously, G(u) is monotonically increasing in u > 0 for 1
2 6 k < 1. One has

−

(
ε

mρ

)k
6 [gi(x)]

k −

[
gi(x) +

ε

mρ

]k
6 0.

It follows that

−
k

2

(
ε

mρ

)2k−1

6 qk (gi(x)) − q
k
ε,ρ (gi(x)) 6

(
ε

mρ

)k
.

When −
(
ε
mρ

)k
< gi(x) < 0, one has

−
k

2

(
ε

mρ

)2k−1

< qk (gi(x)) − q
k
ε,ρ (gi(x)) < 0.

So, we have

−
k

2

(
ε

mρ

)2k−1

6 qk (gi(x)) − q
k
ε,ρ (gi(x)) <

(
ε

mρ

)k
, i = 1, 2, . . . ,m.

Adding up for all i, we obtain

−
k

2

(
ε

mρ

)2k−1

mρ 6 ρ
m∑
i=1

(
qk(gi(x)) − q

k
ε,ρ(gi(x))

)
<

(
ε

mρ

)k
mρ.

Therefore,

−
k

2
ε2k−1(mρ)2(1−k) 6 ωkρ(x) −ω

k
ε,ρ(x) < ε

k(mρ)1−k.

Lemma 2.3 means that the gap between ωkρ(x) and ωkε,ρ(x) can be arbitrarily small if the smoothing
parameter ε is sufficiently small.

Theorem 2.4. Let {εj}→ 0, ∀εj > 0, and xj be a solution of (SPεj,ρ) for ρ > 0,k ∈
[ 1

2 , 1
)
. Assume that x ′ is an

accumulation point of {xj}. Then x ′ is an optimal solution of (Pρ).
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Proof. Since xj is a solution of (SPεj,ρ), we have

ωkεj,ρ(xj) 6 ω
k
εj,ρ(x).

By Lemma 2.3, we have

ωkρ(xj) < ω
k
εj,ρ(xj) + ε

k
j (mρ)

1−k 6 ωkεj,ρ(x) + ε
k
j (mρ)

1−k 6 ωkρ(x) +
k

2
ε2k−1
j (mρ)2(1−k) + εkj (mρ)

1−k.

Since {εj}→ 0 and x ′ is an accumulation point of {xj}, we obtain

ωkρ(x
′) 6 ωkρ(x).

Thus x ′ is an optimal solution of (Pρ).

Theorem 2.5. Let x∗ρ be an optimal solution of (P ′ρ) and x∗ε,ρ ∈ X be an optimal solution of (SPε,ρ) for some ρ > 0
and ε > 0. Then we have

−
k

2
ε2k−1(mρ)2(1−k) 6 ωkρ(x

∗
ρ) −ω

k
ε,ρ(x

∗
ε,ρ) < ε

k(mρ)1−k, k ∈
[

1
2

, 1
)

.

Proof. From Lemma 2.3, we obtain

−
k

2
ε2k−1(mρ)2(1−k) 6 ωkρ(x

∗
ρ) −ω

k
ε,ρ(x

∗
ρ) 6 ω

k
ρ(x
∗
ρ) −ω

k
ε,ρ(x

∗
ε,ρ) 6 ω

k
ρ(x
∗
ε,ρ) −ω

k
ε,ρ(x

∗
ε,ρ) < ε

k(mρ)1−k.

Therefore,

−
k

2
ε2k−1(mρ)2(1−k) 6 ωkρ(x

∗
ρ) −ω

k
ε,ρ(x

∗
ε,ρ) < ε

k(mρ)1−k.

Theorem 2.6. Suppose that Assumption 2.1 holds, and for any x∗ ∈ G(P), there exists a µ ∈ Rm+ such that the
pair (x∗,µ∗) satisfies the second-order sufficiency condition of problem (P) (in [20]). Let x∗ be an optimal solution
of (P) and x∗ε,ρ ∈ X be an optimal solution of (SPε,ρ). Then there exists ρ0 > 0 such that for any ρ > ρ0, it holds
that

−
k

2
ε2k−1(mρ)2(1−k) 6 f(x∗) −ωkε,ρ(x

∗
ε,ρ) < ε

k(mρ)1−k.

Proof. From [20, Corollary 2.3], we have that x∗ is an optimal solution of (P ′ρ). By Theorem 2.5, we have
the following:

−
k

2
ε2k−1(mρ)2(1−k) 6 ωkρ(x

∗) −ωkε,ρ(x
∗
ε,ρ) < ε

k(mρ)1−k.

Note that

ωkρ(x
∗) = f(x∗) + ρ

m∑
i=1

qk(gi(x
∗)).

Since
∑m
i=1 q

k(gi(x
∗)) = 0, we have ωkρ(x∗) = f(x∗). Thus, we obtain

−
k

2
ε2k−1(mρ)2(1−k) 6 f(x∗) −ωkε,ρ(x

∗
ε,ρ) < ε

k(mρ)1−k.

Definition 2.7. A point x∗ε ∈ X is called ε-feasible solution of (P), if it satisfies gi(x∗ε) 6 ε, ∀i ∈ I.
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Theorem 2.8. Let x∗ρ be an optimal solution of (P ′ρ) and x∗ε,ρ ∈ X be an optimal solution of (SPε,ρ) for some ρ > 0
and ε > 0. If x∗ρ is a feasible solution of (P), and x∗ε,ρ is an ε-feasible solution of (P), then we have

−
k

2
ε2k−1(mρ)2(1−k) 6 f(x∗ρ) − f(x

∗
ε,ρ) < 2kεk(mρ)1−k +

k

2
ε2k−1(mρ)2(1−k).

Proof. By Theorem 2.5, we have

−
k

2
ε2k−1(mρ)2(1−k) 6 f(x∗ρ) + ρ

m∑
i=1

qk(gi(x
∗
ρ)) −

(
f(x∗ε,ρ) + ρ

m∑
i=1

qkε,ρ(gi(x
∗
ε,ρ))

)
< εk(mρ)1−k.

Since x∗ρ is a feasible solutions of (P), we have
∑m
i=1 q

k(gi(x
∗
ρ)) = 0. It follows that

−
k

2
ε2k−1(mρ)2(1−k) + ρ

m∑
i=1

qkε,ρ(gi(x
∗
ε,ρ)) 6 f(x

∗
ρ) − f(x

∗
ε,ρ)

< εk(mρ)1−k + ρ

m∑
i=1

qkε,ρ(gi(x
∗
ε,ρ)).

(2.2)

Note that gi(x∗ε,ρ) 6 ε, ∀i ∈ I. Thus, it follows from the definition of qkε,ρ(t) that

0 6 ρ
m∑
i=1

qkε,ρ(gi(x
∗
ε,ρ)) 6 2kεk(mρ)1−k +

k

2
ε2k−1(mρ)2(1−k) − εk(mρ)1−k. (2.3)

Combining equations (2.2) and (2.3), we have

−
k

2
ε2k−1(mρ)2(1−k) 6 f(x∗ρ) − f(x

∗
ε,ρ) < 2kεk(mρ)1−k +

k

2
ε2k−1(mρ)2(1−k).

By Theorem 2.8, an optimal solution of (P) can be controlled through the smoothing parameter ε, and
the optimal solution of (SPε,ρ) is an approximate optimal solution of (P) if x∗ε,ρ is an ε-feasible solution of
(P).

Definition 2.9. A feasible solution x∗ of (P) is called a KKT point, if there exists a µ∗ ∈ Rm such that the
pair (x∗,µ∗) satisfies the following conditions

∇f(x∗) +
m∑
i=1

µ∗i∇gi(x∗) = 0, (2.4)

µ∗igi(x
∗) = 0, gi(x∗) 6 0, µ∗i > 0, i ∈ I. (2.5)

Theorem 2.10. Suppose the functions f, gi (i ∈ I) in problem (P) are convex. Let x∗ be an optimal solution of (P)
and x∗ε,ρ ∈ X be an optimal solution of (SPε,ρ). If x∗ε,ρ is feasible of (P), and there exists a µ∗ ∈ Rm such that the
pair (x∗ε,ρ,µ∗) satisfies the conditions in equations (2.4) and (2.5), then we have

0 6 f(x∗ε,ρ) − f(x
∗) <

k

2
ε2k−1(mρ)2(1−k) + εk(mρ)1−k.

Proof. Since f, gi (i ∈ I) are continuously differentiable and convex, we see that

f(x∗) > f(x∗ε,ρ) +∇f(x∗ε,ρ)
T (x∗ − x∗ε,ρ), (2.6)

gi(x
∗) > gi(x

∗
ε,ρ) +∇gi(x∗ε,ρ)

T (x∗ − x∗ε,ρ), i = 1, 2, . . . ,m. (2.7)
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By Equations (2.1), (2.4), (2.5), (2.6) and (2.7), we have the following:

ωkρ(x
∗) = f(x∗) + ρ

m∑
i=1

qk(gi(x
∗))

> f(x∗ε,ρ) +∇f(x∗ε,ρ)
T (x∗ − x∗ε,ρ)

= f(x∗ε,ρ) −

m∑
i=1

µ∗i∇gi(x∗ε,ρ)
T (x∗ − x∗ε,ρ)

> f(x∗ε,ρ) −

m∑
i=1

µ∗i
[
gi(x

∗) − gi(x
∗
ε,ρ)

]
= f(x∗ε,ρ) −

m∑
i=1

µ∗igi(x
∗) > f(x∗ε,ρ).

From Lemma 2.3, we obtain
ωkρ(x

∗) < ωkε,ρ(x
∗) + εk(mρ)1−k.

It follows that

f(x∗ε,ρ) < ω
k
ε,ρ(x

∗) + εk(mρ)1−k = f(x∗) + ρ

m∑
i=1

qkε,ρ(gi(x
∗)) + εk(mρ)1−k

6 f(x∗) +
k

2
ε2k−1(mρ)2(1−k) + εk(mρ)1−k.

(2.8)

Since x∗ε,ρ is feasible of (P), which is
f(x∗) 6 f(x∗ε,ρ). (2.9)

Combining equations (2.8) and (2.9), we have

f(x∗) 6 f(x∗ε,ρ) < f(x
∗) +

k

2
ε2k−1(mρ)2(1−k) + εk(mρ)1−k,

which is
0 6 f(x∗ε,ρ) − f(x

∗) <
k

2
ε2k−1(mρ)2(1−k) + εk(mρ)1−k.

3. Algorithm for minimization procedure

In this section, by considering the above smoothed penalty function, we propose algorithm to find an
approximate optimal solution of (P), defined as Algorithm 3.1.

Algorithm 3.1 (Algorithm for solving problem (P)).

Step 1: Determine the initial point x0
1 ∈ X and a stopping tolerance ε > 0. Determine ε1 > ε, ρ1 > 0, 0 <

γ < 1 and N > 1, let j = 1 and go to Step 2.

Step 2: Start from the point x0
j and solve the following problem:

(SPεj,ρj) : min
x∈Rn

ωkεj,ρj(x) = f(x) + ρj

m∑
i=1

qkεj,ρj (gi(x)) .

Let x∗εj,ρj be an optimal solution of (SPεj,ρj). Here x∗εj,ρj is obtained by the BFGS method given in [13].

Step 3: If x∗εj,ρj is an ε-feasible of (P), then the algorithm stops and x∗εj,ρj is an approximate optimal
solution of problem (P). Otherwise, determine ρj+1 = Nρj, εj+1 = γεj, x0

j+1 = x∗εj,ρj and j = j+ 1, then
go to Step 2.
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Remark 3.2. Since N > 1, 0 < γ < 1, let Nγ2k−1 < 1, as j → +∞, the sequence {εj} converges to 0, the
sequence {ρj} converges to +∞ and {ρjε

2k−1
j } converges to 0, as j→ +∞.

Theorem 3.3. For 1
2 6 k < 1, suppose that for any ε ∈ (0, ε1], ρ ∈ [ρ1,+∞), the set

arg min
x∈Rn

ωkε,ρ(x) 6= ∅.

Let {x∗εj,ρj} be the sequence generated by Algorithm 3.1 satisfying Nγ2k−1 < 1. If the sequence {ωkεj,ρj(x
∗
εj,ρj)} is

bounded, and Assumption 2.1 holds, then {x∗εj,ρj} is bounded and the limit point of {x∗εj,ρj} is a solution of (P).

Proof. First, we prove that {x∗εj,ρj} is bounded. Note that

ωkεj,ρj(x
∗
εj,ρj) = f(x

∗
εj,ρj) + ρj

m∑
i=1

qkεj,ρj(gi(x
∗
εj,ρj)), j = 0, 1, . . . , (3.1)

and by the definition of pkε,ρ(t), we have

ρj

m∑
i=1

qkεj,ρj(gi(x
∗
εj,ρj)) > 0. (3.2)

Suppose on the contrary that the sequence {x∗εj,ρj} is unbounded. Without any loss of generality ‖x∗εj,ρj‖ →
+∞ as j → +∞. Then, lim

j→+∞ f(x∗εj,ρj) = +∞ by Assumption 2.1, and from equations (3.1) and (3.2), we

have
ωkεj,ρj(x

∗
εj,ρj) > f(x

∗
εj,ρj)→ +∞, j = 0, 1, . . . ,

which contradicts with the sequence {ωkεj,ρj(x
∗
εj,ρj)} being bounded. Thus, {x∗εj,ρj} is bounded.

Next, we prove that the limit point of {x∗εj,ρj} is the solution of (P). Without loss of generality, we
assume x∗εj,ρj → x∗ as j → ∞. To prove x∗ is an optimal solution of (P), it is sufficient to show that
x∗ ∈ X0, and f(x∗) 6 f(x), ∀x ∈ X0.

(i) To show that x∗ ∈ X0, we outline a proof by contradiction. Suppose x∗ /∈ X0. Then, there exist θ0 > 0
and the subset J ⊂ N, such that gi ′(x∗εj,ρj) > θ0 > εj for any j ∈ J and some i ′ ∈ I, where N is the natural
number set.

From the definition of qkε,ρ(t) and x∗εj,ρj is the optimal solution according j-th values of the parameters
εj, ρj for any x ∈ X0, we have

f(x∗εj,ρj) + ρj

[(
θ0 +

εj

mρj

)k
+
k

2

(
εj

mρj

)2k−1

−

(
εj

mρj

)k]
6 ωkεj,ρj(x

∗
εj,ρj)

6 ωkεj,ρj(x) 6 f(x) +
k

2
mρj

(
εj

mρj

)2k−1

.

It follows that

f(x∗εj,ρj) + ρj

[(
θ0 +

εj

mρj

)k
−

(
εj

mρj

)k]
6 f(x) + (m− 1)

kρjε
2k−1
j

2(mρj)2k−1 ,

which contradicts with ρj → +∞, εj → 0, and ρjε2k−1
j → 0, as j→∞. Then, we have that x∗ ∈ X0.

(ii) For any x ∈ X0, it holds that

f(x∗εj,ρj) 6 ω
k
εj,ρj(x

∗
εj,ρj) 6 ω

k
εj,ρj(x) 6 f(x) +

kmρjε
2k−1
j

2(mρj)2k−1 .

Letting j→∞ yields that
f(x∗) 6 f(x).
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4. Numerical examples

In this section, we apply the Algorithm 3.1 to test problems. In each example, we let ε = 10−6 is
expected to get an ε-solution of (P) with Algorithm 3.1, j be the number of iterations, x∗εj,ρj be the optimal
solution of the j-th iteration, f(x∗εj,ρj) be the objective value at x∗εj,ρj , gi(x

∗
εj,ρj), i ∈ I is a constrain value

at x∗εj,ρj , and the numerical results are presented in the tables as following.

Example 4.1. Consider the following problem ([21], Example 3.3)

min f(x) = −2x1 − 6x2 + x
2
1 − 2x1x2 + 2x2

2

s.t. g1(x) = x1 + x2 − 2 6 0,
g2(x) = −x1 + 2x2 − 2 6 0,
x1, x2 > 0.

(4.1)

Let x0
1 = (1, 1), ρ1 = 2, N = 8, ε1 = 0.1, γ = 0.01. With different k, the results of Algorithm 3.1 for

solving problem 4.1 are shown in Tables 1, 2, and 3.

Table 1: Results of Algorithm 3.1 with k = 2
3 for problem 4.1.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj)

1 2 0.1 (2.000000, 1.993789) -11.987500 1.993789 -0.012422
2 16 0.001 (1.217802, 1.337227) -8.656528 0.555029 -0.543348
3 128 0.00001 (0.800000, 1.200000) -7.200000 -0.000000 -0.400000

Table 2: Results of Algorithm 3.1 with k = 3
5 for problem 4.1.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj)

1 2 0.1 (4.059684, 2.997685) -15.991521 5.057369 -0.064313
2 16 0.001 (0.820632, 1.322433) -7.575229 0.143065 -0.175767
3 128 0.00001 (0.800002, 1.199998) -7.199999 -0.000000 -0.400006

Table 3: Results of Algorithm 3.1 with k = 6
7 for problem 4.1.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj)

1 2 0.1 (2.826217, 2.402502) -14.115896 3.228719 -0.021214
2 16 0.001 (0.808600, 1.191516) -7.199961 0.000116 -0.425569
3 128 0.00001 (0.799693, 1.200307) -7.199999 -0.000000 -0.399080

The results in Tables 1-3 show that, the convergence Algorithm 3.1 and the obtained approximate
optimal solutions are similar. In [21], the obtained approximate optimal solution is x∗ = (0.8000, 1.2000)
with objective function value f(x∗) = −7.2000. Numerical results obtained by our algorithm are similar to
the results in [21].

Example 4.2. Consider the following problem ([12], Example 4.2)

min f(x) = x2
1 + x

2
2 + 2x2

3 + x
2
4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x

2
2 + x

2
3 + 2x1 + x2 + x4 − 5 6 0,

g2(x) = x
2
1 + x

2
2 + x

2
3 + x

2
4 + x1 − x2 + x3 − x4 − 8 6 0,

g3(x) = x
2
1 + 2x2

2 + x
2
3 + 2x2

4 − x1 − x4 − 10 6 0.

(4.2)
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For k = 2
3 , let x0

1 = (5, 5, 5, 5), ρ1 = 10, N = 8, ε1 = 0.1, γ = 0.01. The results of Algorithm 3.1 for
solving problem 4.2 are shown in Table 4.

Table 4: Results of Algorithm 3.1 with x0
1 = (5, 5, 5, 5) for problem 4.2.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj) g3(x

∗
εj,ρj)

1 10 0.1 (0.042482, 0.996409, -43.979820 -0.159503 0.039639 -0.871644
1.957354, -1.068548)

2 80 0.001 (0.169560, 0.835531, -44.233826 -0.000004 -0.000004 -1.883130
2.008634, -0.964876)

For k = 1
2 , let x0

1 = (7, 7, 7, 7), ρ1 = 10, N = 9, ε1 = 0.01, γ = 0.1. The results of Algorithm 3.1 for
solving problem 4.2 are shown in Table 5.

Table 5: Results of Algorithm 3.1 with x0
1 = (7, 7, 7, 7) for problem 4.2.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj) g3(x

∗
εj,ρj)

1 10 0.01 (0.228405, 0.827990, -47.791667 0.729868 1.666709 -0.119102
2.195021, -1.162955)

2 90 0.001 (0.168417, 0.836036, -44.233824 -0.000001 -0.000002 -1.880298
2.009003, -0.964650)

For k = 3
4 , let x0

1 = (1, 1, 1, 1), ρ1 = 10, N = 8, ε1 = 0.1, γ = 0.1. The results of Algorithm 3.1 for
solving problem 4.2 are shown in Table 6.

Table 6: Results of Algorithm 3.1 with x0
1 = (1, 1, 1, 1) for problem 4.2.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj) g3(x

∗
εj,ρj)

1 10 0.1 (0.164525, 0.852259, -44.276228 0.062573 -0.001386 -1.855209
2.013672, -0.954093)

2 80 0.01 (0.169557, 0.835528, -44.233725 -0.000041 -0.000041 -1.883165
2.008628, -0.964875)

The results in Tables 4-6 show that, the convergence of Algorithm 3.1 and the obtained approximate
optimal solutions are similar. By Table 4, an approximate optimal solution to problem 4.2 is obtained after
2 iterations with objective function value f(x∗) = −44.233826. In [4], the obtained approximate optimal
solution is x∗ = (0.170446, 0.834248, 2.008753, − 0.964559) with function value f(x∗) = −44.233627. In the
paper [12], the obtained approximate optimal solution is x∗ = (0.169234, 0.835656, 2.008690, − 0.964901)
with function value f(x∗) = −44.233582. Numerical results obtained by our algorithm are slightly better
than the results in [4, 12].

Example 4.3. Consider the following problem ([21], Example 3.2)

min f(x) = −x1 − x2

s.t. g1(x) = −2x4
1 + 8x3

1 − 8x2
1 + x1 − 2 6 0,

g2(x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 6 0,

0 6 x1 6 3,
0 6 x2 6 4.

(4.3)
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Let k = 3
4 , ρ1 = 8, N = 6, ε1 = 0.4, γ = 0.1. With different starting points, the results of Algorithm

3.1 for solving problem 4.3 are shown in Tables 7, 8, and 9.

Table 7: Results of Algorithm 3.1 with x0
1 = (0, 3) for problem 4.3.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj)

1 8 0.4 (2.112066, 3.900188) -6.012254 0.000021 0.000028
2 48 0.04 (2.112096, 3.900107) -6.012203 -0.000012 -0.000001

Table 8: Results of Algorithm 3.1 with x0
1 = (2, 1) for problem 4.3.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj)

1 8 0.4 (2.112028, 3.900313) -6.012341 0.000063 0.000085
2 48 0.04 (2.112101, 3.900094) -6.012195 -0.000018 -0.000004

Table 9: Results of Algorithm 3.1 with x0
1 = (3, 1) for problem 4.3.

j ρj εj x∗εj,ρj f(x∗εj,ρj) g1(x
∗
εj,ρj) g2(x

∗
εj,ρj)

1 8 0.4 (2.112028, 3.900313) -6.012341 0.000063 0.000085
2 48 0.04 (2.112087, 3.900025) -6.012112 -0.000002 -0.000099

The results in Tables 7-9 show that, the convergence Algorithm 3.1 and the obtained approximate
optimal solutions are similar. That is to say, the numerical results of Algorithm 3.1 does not depend
on the starting point x0 for this example. By Table 7, an approximate optimal solution to problem 4.3
is obtained after 2 iterations with objective function value f(x∗) = −6.012203. In [21], the obtained
global solution is x∗ = (2.3295, 3.1784) with objective function value f(x∗) = −5.5080. In the paper
[22], the obtained approximate optimal solution is x∗ = (2.112103, 3.900086) with objective function value
f(x∗) = −6.012190. Numerical results obtained by our algorithm are much better than the results in [21]
and find the correct solutions as in [22].

5. Conclusions

In this paper, we proposed a new perturbed smooth penalty function for inequality constrained opti-
mization. Furthermore, we proved that the algorithm based on the smoothed penalty functions is globally
convergent under mild conditions. The numerical results given in Section 4 show that the Algorithm 3.1
has a good convergence for an approximate optimal solution.
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