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Abstract

In this paper, we use both weight functions and composition techniques together for solving non-linear equations. We
designed a new fourth order iterative method to increase the order of convergence without increasing the functional evaluations
in a drastic way. This method uses one evaluation of the function and two evaluations of the first derivative. The new method
attains the optimality with efficiency index 1.587. The convergence analysis of our new methods is discussed. Furthermore, the
correlations between the attracting domains and the corresponding required number of iterations have also been illustrated and
discussed. The comparison with several numerical methods and the use of complex dynamics and basins of attraction show that
the new method gives good results.
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1. Introduction

Numerical analysis has interesting applications in several branches of pure and applied science that
can be studied in the general framework of the non-linear equations [2, 12, 17, 26, 32]. Searching out a
solution for non-linear equations is highly significant. Due to their importance, several numerical methods
have been suggested and analyzed under different conditions [1, 6, 9, 12, 21, 23, 25, 30]. These numerical
methods have been constructed by using different techniques for solving the non-linear equations such
as Taylor series, quadrature formula, the variational iteration method, and the decomposition method
[3, 7, 11, 15, 18, 20, 21, 33].

In this research, we describe a new iterative method from the first derivative to find a simple root
r of a non-linear equation by using both weight functions and composition techniques together. We
designed a new iterative method to increase the order of convergence without increasing the functional
evaluations in a drastic way. We can achieve the optimal order without difficulties, as we will show,
the obtained two-step method is of fourth-order of convergence and requires three evaluations of the
function f(x). Commonly in literature, the efficiency of an iterative method is measured by the efficiency
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index defined as I ≈ p1/d, where p is the order of convergence and d is the total number of functional
evaluations per iteration. Therefore, this method has efficiency index 41/3 ≈ 1.5874 that is the new
method which reaches the optimal order of convergence four. In this research, we also study and analyze
the stability of the designed method by using tools of complex dynamics. Through the use of these tools,
it is possible to compare different algorithms in terms of their basins of attraction and the dynamical
behavior of the iterative method on the complex plane [19, 28, 29, 31]. Furthermore, comparisons with
several numerical methods, and the use of complex dynamics and basins of attraction are done in this
paper [4, 5, 8, 10, 13, 14, 24, 27].

2. The fourth-order method

To constrict the method of optimal fourth order of convergence, we designed the following iterative
methods through the composition of two steps, in which the first step is similar to Jarrett’s method [14],
and by using a weight function W depending on which is included in the second step. Provided that the
number of functional evaluations per full iteration is three; thus, we consider the iterative expression as
follows:

yn = xn −
2f(xn)
3f ′(xn)

, xn+1 = yn −
f(xn)

f ′(xn) + f ′(yn)
W (η) , (2.1)

where W(η) = 1
6 [a+ bη+ c ln( 2 − η)] , 2 − η > 1 and η =

f ′(x)
f ′(y) without the index n. The following

theorem indicates the conditions on the weight functions in (2.1), such that the order of convergence will
arrive at the optimal level four.

Theorem 2.1. Let en = xn − r be a real sufficiently differentiable function in an open interval I and let r ∈ I be a
simple root of f(x) = 0. If x0 is close enough to α and W(η) that satisfies a = 1,b = 3, and c = −4, then iterative
family (2.1) converges to r with order of convergence four, and its error equation is

en+1 =
1

234
(299c3

2 − 234c2c3 + 27c4)e
4
n +O(e5

n),

where cn =
f(k)(r)

n! f ′ (r)
,n > 2.

Proof. Let en = xn − r be the error at nth computing step. By using Taylor’s expansion of xn for the root
r, we get

f(xn) = f
′(r)[en + c2e

2
n + c3e

3
n + c4e

4
n +O(e5

n)], (2.2)

and

f ′(xn) = f
′(r)[1 + 2c2en + 3c3e

2
n + 4c4e

3
n + 5c5e

4
n +O(e5

n)]. (2.3)

Now from (2.2) and (2.3), we have

f(xn)

f ′(xn)
= en − c2e

2
n + 2(c2

2 − c3)e
3
n + (7c2c3 − 4c3

2 + 3c4)e
4
n +O(e5

n). (2.4)

From (2.1) and (2.4), we get

yn =
r

3
+

2
3
c2e

2
n +

4
3
(c3 − c

2
2)e

3
n +

2
3
(4c3

2 − 7c2c3 + 3c4)e
4
n +O(e5

n). (2.5)

From (2.5), we get

f ′(yn) = f
′(r)[1 +

2
3
c2en +

1
3
(c3 + 4c2

2)e
2
n + 4(c2c3 −

2
3
c3

2 +
1
27
c4)e

3
n

+ (
8
3
(2c4

2 + c
2
3
− 4c2

2
c3) +

44
9
c2c4 +

5
81
c5)e

4
n +O(e5

n).
(2.6)
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The expansion of the weight function variable η is

η =
f ′(xn)

f ′(yn)
= 1 −

4
3
c2en +

4
9
(−5c2

2 + 6c3)2e
2
n +

8
27

(8c3
2 − 21c2c3 + 13c4)e

3
n

−
4
81

(8c4
2 − 135c2

2
c3 + 27c2

3 + 155c2c4 − 100c5)e
4
n +O(e5

n),

and therefore, weight function W(η) around zero results in:

W (η) =
1
6
(a+ b) +

2
9
(b− c)c2en −

2
27
(
c2

2(5b− 3c) − 6c3(b− c)
)
e2
n

+
4

243
[2c3

2(12b− c) + 9c2c3(3c− 7b) + 39c4(b− c)]e
3
n

+
2

243
[2c4

2(4b+ 21c) − 3c2
2c3(45b+ 19c) + 72c2

3b

+ c2c4(155b− 51c) + 100c5(c− b)]e
4
n +O(e5

n).

(2.7)

And so, from (2.2), (2.3), and (2.6) we have

f(xn)

f ′(xn) + f ′(yn)
=

1
2
en −

1
6
c2e

2 −
1
9
(c2

2
+ 3c3)e

3
n +

1
54

(50c3
2 − 15c2c3 − 29c4)e

4
n +O(e5

n). (2.8)

Finally, when using (2.7) and (2.8), the error equation of any method of (2.1) is:

xn+1 − r = yn −
f(xn)

f ′(xn) + f ′(yn)
W (η) − r,

en+1 =
1
12

(4 − a− b)en +
1
36
c2(24 + a− 3b+ 4c)e2

n

+
1
54

[3c3(24 + a− 3b+ 4c) + c2
2(a+ 13b− 8c− 72)]e3

n

+
1

972
[(c3

2(2592 − 150a− 378b+ 28c) + 9c2c3(5a+ 77b − 40c− 504)

+ c4(648 + 29a− 75b+ 104c)]e4
n +O(e5

n).

(2.9)

The conditions on the weight function W are:

4 − a− b = 0, 24 + a− 3b+ 4c = 0, a+ 13b− 8c− 72 = 0.

The solution of this system is: a = 1,b = 3, and c = −4. Upon the input of these values on (2.9), the error
equation of any method of (2.1) is:

en+1 =
1

234
(299c3

2 − 234c2c3 + 27c4)e
4
n +O(e5

n),

where en+1 = xn+1 − r. Therefore, the typical algorithms for our proposed method can be written in the
following explicit form:

yn = xn −
2f(xn)
3f ′(xn)

,

xn+1 = yn −
f(xn)

6 (f ′(xn) + f ′(yn))

[
1 + 3

f ′(xn)

f ′(yn)
− 4 ln

(
2 −

f ′(xn)

f ′(yn)

)]
.

(MHK)

Let us remark that in terms of computational cost, the developed method (MHK) requires only three
functional evaluations per step. So, they have efficiency indices, that is, the new form of method (MHK)
which reaches the optimal order of convergence four, conjectured by Kung and Traub [16]. Also, it should
be remarked that many literatures have used similar techniques; however, they introduced different meth-
ods that are less efficient than the method suggested here [4, 5, 8, 13, 24, 27].
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3. Graphical comparison by means of attraction basins

It is known that a good selection of initial guesses plays an important role in iterative methods;
therefore, all methods converge if the initial estimation is chosen suitably. As a result, the use of classical
comparison between different numerical methods is unsuitable. Because of that, to show that a new
method is better than an established one, the proposer usually applies his/her new algorithm to find a
root of a function and compares its convergence rate with that of an established method. Unfortunately,
this procedure does not prove anything as the proposer might have randomly picked a starting point that
belongs to the convergent regions of the new method. This can raise a contradictory result such as shown
in, e.g., [22]. However, the study of convergence and stability of the iterative method based on basins
of attractions of the function gives important information and comprehension of the method behavior at
a glance. Therefore, it is an appropriate and important tool to do this. The basic strategy to generate
a picture illustrating the global behavior of methods for a polynomial f(z) is as follows. We choose a
rectangular region D of the complex plane only for the domain of convergence which contains all roots of
concerned nonlinear equation f(z). We finally subdivide the region into rectangles, say 360×360 for each
of them, corresponding to a complex number. We apply the iterative methods from each point of complex
numbers as an initial guess z0 and color its point according to which root the sequence converges. If the
sequence does not converge to a root, we mark it as a black point. Note that the black color denotes the
lack of convergence to any of the roots. This happens particularly when the method converges to a fixed
point that is not a root or if it ends in a periodic cycle or at infinity. Different colors are used for different
roots. In the basins of attraction, the number of iterations needed to achieve the root is shown by the
brightness of colors. Brighter color means less iteration steps, and dark color is assigned for showing
more iteration. It should be noted that the presence of black dots in the image does not necessarily
mean that the method is not convergent at these points or that it is unable to find a solution at these
points; however, it means that the method failed to find the solution under the conditions established for
convergence, such as the number of steps and the fixed stopping criterion of error allowed in the solution
(tolerance).

In order to graphically compare by means of attraction basins, we investigate the dynamics of the new
methods with the most recent, most famous, and most effective methods of optimal fourth order.

Because numerical methods for solving nonlinear equations have developed greatly, they are now able
to solve any simple equations. Therefore, very complicated equations must be chosen to test the efficiency
of the new methods. That is why we also consider the corresponding figure for finding the roots of the
function.

For comparisons, in addition to the Newton’s method, we will use the more efficient fourth-order
methods as mentioned in Table 1, where yn = xn − 2

3
f(xn)
f ′(xn)

, and the methods in Table 2 of which the first

step is Newton’s method, where P1(xn,yn) = 2
(
f(yn)−f(xn)

yn−xn

)
− f ′(xn).

Table 1: Some formulas which are used to solve the problems.
Method Second step of the method
Jarratt (JR) [14] xn+1 = xn −

5f(xn)
8f ′(xn)

−
3f(xn)f ′(xn)

8f ′2(yn)

Jaiswal (JPJ) [13] xn+1 = xn −
(

2f ′(yn)
3f ′(yn)−f ′(xn)

)[
3
2 −

3f ′(yn)
4f ′(xn)

+
( f ′(yn)

2f ′(xn)

)2
]
f(xn)
f ′(xn)

Changbum (CMB) [5] xn+1 = xn −
16f(xn)f ′(xn)

−5f ′2(xn)+30f ′(xn)f ′(yn)−9f ′2(yn)

Sharma (SB) [24, 27] xn+1 = xn −
(
−1
2 +

9f ′(xn)
8f ′(yn)

+
3f ′(yn)
8f ′(xn)

)
f(xn)
f ′(xn)



M. A. Hafiz, M. Q. Khirallah, J. Math. Computer Sci., 23 (2021), 86–97 90

Table 2: Second step of the method
Method Second step of the method
Behzad (BG)[8] xn+1 = yn −

f(xn)+f(yn)
f(xn)−f(yn)

f(yn)
f ′(xn)

Chicharro (FC) [4] xn+1 = xn −
f2(xn)+f(xn)f(yn)+2f2(yn)

f(xn)f ′(xn)

HBM [10] xn+1 = yn −
[

4f(yn)
f ′(xn)+P1(xn,yn)

−
f(yn)
f ′(xn)

]
4. Numerical examples in complex domain

In this section, we present some examples, (6 examples), to illustrate the efficiency of the new proposed
iterative method to find complex roots of complex function f:C→C. We compare between the new fourth
order iterative method, namely (MHK) and eight different methods as Jaiswal method (JPJ) [13], Sharma
Methods (SB) [24, 27], Changbum method (CMB) [5], Jarratt method (JR)[14], Behzad method (BG)[8],
Chicharro method (FC)[4], classical Newton’s method (NM), and Bahgat method (HBM) [10]. All these
examples are solved in complex domain, and the method proposed used in this paper is by using Mathe-
matica program.

The proposed methods are studied in the complex plane by using basins of attraction. The comparison
illustrates the superiority of our proposed method (MHK) in several cases.

Table 3: Some examples and their roots in complex domain.
Functions Roots
f1(z) = z

2 − 1 ± 1.
f2(z) = z

3 − 1 -0.5 ± 0.866025 I, 1.
f3(z) = z

4 − 1 ± I, ± 1.
f4(z) = z

11 − 1 -0.959493 ± 0.281733 I, -0.654861 ± 0.75575 I,
-0.142315 ± 0.989821 I, 0.415415 ± 0.909632 I, 0.841254 ± 0.540641 I, 1,

f5(z) = z
2 − z+ 1/z 0.877439 ± 0.744862 I, -0.754878

f6(z) = z
6 + 10z3 − 8 0.906359, -0.45318 ± 0.78493 I, -2.20663, 1.10332 ± 1.911 I

Table 4: Examples 1 and 2.
f1(z) = z

2 − 1 Black Points Time f2(z) = z
3 − 1 Black Points Time

Method N = 8, step= 0.01 Method N = 20, step= 0.01
(MHK) 100 8.83 (MHK) 166 7.64
JPJ [13] 4080 10.77 JPJ [13] 8445 10.08
SB [24, 27] 678 9.73 SB [24, 27] 7409 13.84
CMB [5] 2375 10.37 CMB [5] 13517 10.67
JR [14] 3621 15.41 JR [14] 5393 17.43
BG [8] 1126 12.37 BG [8] 9219 12.36
FC [4] 4080 8.86 FC [4] 19188 12.06
NM 797 6.94 NM 12197 6.66
HBM[10] 2835 7.14 HBM[10] 10566 19.2

From Figures 1-6, we illustrate the efficiency of the new proposed iterative method to find complex
roots of complex functions, and we compare between the new fourth order iterative method (MHK) and
six different methods (JPJ), (SB), (CMB), (JR), (BG), and (HBM). All these examples are solved in complex
domain, and the method proposed and used in this paper is by using Mathematica program (11).

From examples 1-6 in Table 4-6 and the Figures 1-6, we see that (MHK) method is better than the other
method, and it gives good results.
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Table 5: Examples 3 and 4.
f3(z) = z

4 − 1 Black Points Time f4(z) = z
11 − 1 Black Points Time

Method N = 8, step= 0.01 Method N = 20, step= 0.01
(MHK) 1729 11.39 (MHK) 14082 9.41
JPJ [13] 19446 8.08 JPJ [13] 27587 21.18
SB [24, 27] 23174 11.39 SB [24, 27] 41012 12.22
CMB [5] 27706 16.5 CMB [5] 34524 10.78
JR [14] 15237 10.55 JR [14] 41561 24.31
BG [8] 26904 12.71 BG [8] 45622 14.29
FC [4] None - FC [4] None
NM 30999 9.47 NM 74982 8.95
HBM [10] 10810 31.82 HBM [10] 18978 22.43

Table 6: Examples 5 and 6.
f5(z) = z

2 − z+ 1/z Black Points Time f6(z) = z
6 + 10z3 − 8 Black Points Time

Method N = 8, step= 0.01 Method N = 20, step= 0.01
(MHK) 4 13.46 (MHK) 692 33.96
JPJ [13] 197 7.6 JPJ [13] 7752 36.97
SB [24, 27] 177 11.92 SB [24, 27] 16998 45.88
CMB [5] 1902 10.33 CMB [5] 15343 46.27
JR [14] 424 23.87 JR [14] 16350 67.22
BG [8] 134 13.45 BG [8] 24417 36.83
FC [4] 846 15.27 FC [4]
NM 494 9.47 NM 24823 37.21
HBM [10] 7703 24.63 HBM [10] 5061 47.7

Figure 1: Example 1, f1 = z2 − 1.
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Figure 2: Example 2, f2 = z3 − 1.

Figure 3: Example 3, f2 = z4 − 1.

Figure 4: Example 4, f2 = z11 − 1.
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Figure 5: Example 5, f5 = z2 − z+ 1/z.

Figure 6: Example 6, f6 = z6 + 10z3 − 8.

5. Numerical examples in real domain

In numerical analysis, many methods produce sequences of real numbers such as the iterative methods
for solving nonlinear equations. Sometimes, the convergence of these sequences is slow and their utility in
solving practical problems is quite limited. Convergence acceleration methods try to transform a slowly
converging sequence into a fast convergent one. Due to this, this paper has aimed to give a rapidly
convergent two-point class for approximating simple roots. The highest possible convergence order was
attained by using the smallest possible number of evaluations per full cycle. The local order of our class
of iterations was established theoretically, and it has been seen that our class supports the optimality
conjecture of Kung-Traub [15]. In the sequel, numerical examples have been used in order to show the
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efficiency and accuracy of the novel methods from our suggested second derivative-free class.
In this section, we have developed a new optimal fourth-order iterative method for solving non-linear

equations. Using both weight functions and composition techniques together, we designed this method
to increase the order of convergence without increasing the functional evaluations in a drastic way.

We considered some numerical examples to demonstrate the performance of the new fourth order
iterative method, namely (MHK), and we compared this new method with Jaiswal method (JPJ) [13],
Sharma Methods (SB) [24, 27], Changbum method (CMB) [5], Jarratt method(JR) [14], Behzad method
(BG)[8], Chicharro method (FC)[4], classical Newton’s method (NM), and Bahgat method (HBM) [10]. All
these examples were solved in real domain.

In Table 7, our examples are tested with precision ε = 10−200. The following stopping criterion is used
for computer programs: |f(xn+1)| < ε.

And the computational order of convergence (COC) can be approximated using the following formula:

COC ≈ ln | (xn+1 − xn)/(xn − xn−1)|

ln | (xn − xn−1)/(xn−1 − xn−2)|

Table 7 shows the difference of the root r and the approximation xn to r, where r is the exact root
computed with 2000 significant digits, but only 25 digits are displayed for xn. In Table 1, we listed the
number of iterations for various methods. The absolute values of the function f(xn) and the computational
order of convergence (COC) are also shown in Tables 3 and 4. All the computations are performed using
Maple 15. The following examples are used for numerical testing:

f1(x) = x
3 + 4x2 − 10, x0 = 1, f2(x) = sin2 x− x2 + 1, x0 = 1.3,

f3(x) = x
2 − ex − 3x+ 2, x0 = 2, f4(x) = cos x− x, x0 = 1.7,

f5(x) = (x− 1)3 − 1, x0 = 2.5, f6(x) = x
3 − 10, x0 = 2,

f7(x) = e
x2+7x−30 − 1, x0 = 3.1.

Table 7: Comparisons of the number of iterations with the various methods required, such that |f(xn+1)| < 10−200.
Method f1 f2 f3 f4 f5 f6 f7

Guess 1 1.3 2 1.7 2.5 2 3.1
(MHK) 5 4 5 5 5 4 5
JPJ [13] 5 4 5 5 5 4 5
SB [24, 27] 5 4 5 5 5 4 5
CMB [5] 7 8 8 8 9 8 9
JR [14] 8 8 8 8 9 8 9
BG [8] 5 4 5 5 5 4 5
FC [4] 5 4 5 5 5 4 6
NM 9 8 8 8 9 8 10
HBM [10] 5 4 5 5 5 4 5

Results are summarized in Table 7 as shown, and new algorithms are comparable with all of the
methods and in most cases give better or equal results.

6. Comparison of different methods

Finally, it should be noted that, like all other iterative methods, the new methods from the classes
(HBM1)-(HBM5) have their own domains of validity and in certain circumstances should not be used.
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Table 8: Comparison of different methods.
Method x0 x5 COC |x5 −x4| ‖f(x5)‖ Time
f1 1
(MHK) 1.36523001341409 4 0.2e-173 0.4e-694 0.11
JPJ [13] 1.36523001341409 4 0.2e-152 0.4e-610 0.03
SB [24, 27] 1.36523001341409 4 0.1e-139 0.3e-558 0.05
CMB [5] 1.36523001341409 4 0.7e-144 0.1e-575 0.06
JR [14] 1.36523001341409 4 0.8e-168 0.1e-671 0.06
BG [8] 1.36523001341409 4 0.1e-126 0.3e-506 0.08
FC [4] 1.36523001341409 4 0.1e-98 0.3e-393 0.06
NM 1.365230013414096 2 2.1e-9 3.6e-19
HBM[10] 1.365230013414096 3.99 1.5e-125 3.1e-505
f2 1.3
(MHK) 1.40449164821534 4 0.1e-66 0.2e-267 0.19
JPJ [13] 1.40449164821534 4 0.1e-253 0.1e-1014 0.25
SB [24, 27] 1.40449164821534 4 0.1e-238 0.1e-954 0.23
CMB [5] 1.40449164821534 4 0.1e-244 0.5e-978 0.20
JR [14] 1.40449164821534 4 0.2e-261 0.8e-1046 0.23
BG [8] 1.40449164821534 4 0.6e-227 0.4e-908 0.17
FC [4] 1.40449164821534 4 0.4e-204 0.2e-816 0.22
NM 1.404491648215341 2 1.5e-15 4.8e-33 0.09
HBM[10] 1.404491648215341 4 6.1e-226 4.8e-907 0.21
f3 2
(MHK) 0.25753028543986 4 0.2e-65 0.5e-384 0.08
JPJ [13] 0.25753028543986 4 0.2e-101 0.6e-408 0.08
SB [24, 27] 0.25753028543986 4 0.4e-133 0.4e-535 0.09
CMB [5] 0.25753028543986 4 0.3e-117 0.4e-471 0.06
JR [14] 0.25753028543986 4 0.1e-108 0.3e-437 0.06
BG [8] 0.73908513321516 4 0.2e-157 0.2e-632 0.06
FC [4] 0.73908513321516 4 0.1e-138 0.2e-557 0.09
NM 0.257530285439860 2 9.8e-12 3.4e-25 0.04
HBM[10] 0.257530285439860 4 2.2e-156 2.9e-231 0.09
f4 1.7
(MHK) 0.73908513321516 4 0.4e-196 0.1e-786 0.22
JPJ [13] 0.73908513321516 4 0.1e-194 0.1e-780 0.19
SB [24, 27] 0.73908513321516 4 0.5e-192 0.6e-770 0.19
CMB [5] 0.73908513321516 4 0.4e-193 0.1e-774 0.19
JR [14] 0.73908513321516 4 0.3e-195 0.6e-783 0.20
BG [8] 0.73908513321516 4 0.9e-185 0.7e-741 0.17
FC [4] 0.73908513321516 4 0.2e-180 0.2e-723 0.19
NM 0.739085133215160 1.99 2.3e-14 2.0e-30 0.10
HBM[10] 0.739085133215160 3.99 9.7e-184 6.9e-740 0.21
f5 2.5
(MHK) 2 4 0.1e-116 0.3e-467 0.09
JPJ [13] 2 4 0.4e-110 0.1e-440 0.06
SB [24, 27] 2 4 0.3e-95 0.7e-383 0.06
CMB [5] 2 4 0.1e-108 0.4e-434 0.06
JR [14] 2 4 0.4e-10 0.3e-20 0.06
BG [8] 2 4 0.4e-89 0.3e-356 0.06
FC [4] 2 4 0.3e-77 0.2e-308 0.06
NM 2.000000000000011 2 1.0e-5 3.4e-12 0.03
HBM[10] 2 3.99 4.7e-88 3.9e-355 0.08
(MHK) 2.15443469003188 4 0.3e-72 0.2e-289 0.09
JPJ [13] 2.15443469003188 4 0.3e-257 0.1e-1101 0.06
SB [24, 27] 2.15443469003188 4 0.8e-259 0.1e-1035 0.03
CMB [5] 2.15443469003188 4 0.1e-256 0.1e-1061 0.06
JR [14] 2.15443469003188 4 0.4e-283 0.6e-1133 0.06
BG [8] 2.15443469003188 4 0.3e-247 0.4e-989 0.06
FC [4] 2.15443469003188 4 0.5e-224 0.6e-896 0.08
NM 2.154434690031883 2 2.2e-16 3.2e-33 0.03
HBM[10] 2.154434690031883 4 3.2e-246 4.0e-988 0.07
f7 3.1
(MHK) 3 4 0.7e-94 0.5e-373 0.14
JPJ [13] 3 4 0.2e-83 0.7e-331 0.09
SB [24, 27] 3 4 0.8e-65 0.3e-256 0.09
CMB [5] 3 4 0.6e-71 0.1e-280 0.09
JR [14] 3 4 0.1e-78 0.2e-311 0.09
BG [8] 3 4 0.1e-58 0.8e-232 0.08
FC [4] 3 4 0.5e-48 0.2e-188 0.09
NM 3.000000000089992 2.03 3.6e-4 1.1e-7 0.04
HBM[10] 3 3.99 1.0e-57 8.7e-231 0.10
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7. Conclusion

In this work, we have proposed an optimal method of fourth order for finding the roots in complex
domain and real domain of non-linear equations. The correlations between the attracting domains and
the corresponding required a number of iterations, which also have been illustrated and discussed. Com-
parisons with several numerical methods and the use of complex dynamics and basins of attraction show
that the new method gives good results.
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