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Abstract

This article aims to construct the presence and diversity principles of minimum one or two positive solutions for a Caputo-
type fractional-order nonlinear differential equation (CFONLDE for short) with an advanced argument under three-point bound-
ary value conditions (BVCs for short). Guo-Krasnoselskii’s fixed point theorem and Fixed-point index theory in cone spaces are
used to analyze this article. First, the Green’s function of the corresponding boundary value problem for a linear fractional dif-
ferential equation with an advanced argument has been established. Next, several essential properties of that Green’s function
have been proved. Finally, in cone spaces, some novel presence and diversity principles of minimum of one or two positive
solutions for a CFONLDE with an advanced argument are obtained. To support the analytic proof, some particular examples
are included.
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1. Introduction

Literature may contain a huge number of applications of boundary value problem (BVP for short)
with fractional order differential equations at different physical, mechanical, biological and chemical
phenomena, for instance find the books of Kilbas et al. [27], Lakshmikantham et al. [28], Podlubny [32]
and their cited references. Fractional order differential equations (FODEs for short) based model is more
acceptable than integer order differential equations based model for its high degrees of freedom. From
this context FODEs are obtaining a great consideration in the development of modern mathematics, for
details one can visit the monographs of Ahmad and Nieto [4], Chang and Nieto [11], Goodrich [20] and
Nieto [30] as well as their cited references.
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During the last few decades diversity of positive solutions of different BVPs for fractional order non-
linear differential equation (FONLDE for short) has extensively considered by using various techniques,
for instance see the articles of Agarwal et al. [2, 3], Afshari et al. [1], Asaduzzaman and Ali [5], Bai [8],
Chen et al. [12], Cu et al. [13], Devi et al.[17], Sun et al. [34], and Torres [36] as well as for lower and
upper solutions to the integro-differential and iterative hybrid type fractional differential equations see,
Damag et al. [14] and Damag et al. [15] and for positive solutions of nonlinear dissipative type equations,
see Asaduzzaman et al. [6].

On the other hand, Gupta [22] initiated the research on diversity of positive solutions to integer
order nonlinear differential equation (IONLDE for short) with three-point BVCs. After Gupta [22] several
researchers studied the diversity of positive solutions to IONLDE with three-point BVCs, for instance find
the articles of Ma [29], Sun et al. [35], Webb [38] and Xu [39].

The IONLDE with advanced arguments have frequently been used by the researches associated to the
field of mathematical physics, mechanical engineering and economics, for instance read the monographs
of Agarwal et al. [3], Burton [10], and Jankowski [23, 25]. More about on the practical uses of IONLDE
with advanced argument could be found in Augustynowicz et al. [7], Banaei et al. [9], El-Sayed [18],
Jankowski [26], and Yang et al. [40]. From the applicable point of view, FONLDE with advanced argument
is more significant than IONLDE with advanced argument. For this reason, now a days many researchers
are interested to work on the solvability of FONLDE with advanced argument, for instance find the
articles of Jankowski [24], Ntouyas et al. [31], Rizqan and Dhaigude [33], Wang et al.[37] and their cited
references.

There is a small number of works related to presence of positive solutions of BVPs associated to
FONLDE with advanced argument. Current progress on presence of positive solutions of FONLDE with
advanced argument could be found in the articles of Ntouyas et al. [31], Rizqan and Dhaigude [33], and
Wang et al. [37].

Inspired by the above-mentioned works on FONLDE with advanced argument, here we study the
following CFONLDE with an advanced argument by means of Guo-Krasnoselskii’s fixed point theorem
[21] and Fixed-point index theory [16]:{

CD
γ
0+y(x) + b(x)g(y(ϕ(x))) = 0, x ∈ (0, 1), 2 < γ 6 3,

y(0) = 0, y′′(0) = 0, y(1) = βy(ξ),
(1.1)

wherever, CDγ0+ represents Caputo’s fractional differential operator of order and γ ∈ (2, 3], ξ ∈ (0, 1), β ∈(
0, 1
ξ

)
and g, b(x), ϕ(x) satisfy following hypothesis:

(H1) g : [0, ∞)→ [0, ∞) is continuous;
(H2) b ∈ L∞[0, 1] and ∃m > 0 such that (s.t. for short) b(x) > m, a.e. (almost everywhere) for every

x ∈ [0, 1];
(H3) ϕ : (0, 1)→ (0, 1) is continuous satisfying x 6 ϕ(x) 6 1, for every x ∈ (0, 1).

From the work of Wang et al. [37], we observed that they considered the same problem as like (1.1) and
established a presence principle of minimum one positive solution by means of Guo-Krasnoselskii’s fixed
point theorem. But in that work of Wang et al. [37], we devised a certain gap about the construction of
Green’s function of corresponding linear BVP of the nonlinear BVP given by (1.1). From this context here
we reconsider the nonlinear BVP given by (1.1) and first construct the Green’s function of corresponding
linear BVP of the nonlinear BVP given by (1.1) and established the presence and diversity principles
of minimum one or two positive solutions of nonlinear BVP given by (1.1) applying Guo-Krasnoselskii’s
fixed point theorem and Fixed-point index theory. Rest of this article is given by the following consecutive
sections. Section 2 is used to introduce some basic facts and fundamental results. Section 3 is devoted to
state and prove the presence and diversity principles of positive solutions of BVP given by (1.1). Finally,
Section 4 is used to verify some illustrative examples.
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2. Material and methods

Here, we recall some preliminaries facts and fundamental results from the monographs of Deimling
[16], Guo and Lakshmikantham [21], Kilbas et al. [27], Podlubny [32], Yang et al. [40], and establish some
essential lemmas which are used as tools to establish main results of this article.

Definition 2.1. Let g : (0, ∞) → R (set of real numbers) be a continuous function. Then the Riemann-
Liouville fractional integral of order γ > 0 is defined by

I
γ
0+g(x) =

1
Γ(γ)

∫x
0
(x− z)γ−1g(z)dz, x > 0,

where Γ(γ) denotes Gamma function of γ.

Definition 2.2. Let g : (0, ∞) → R be a continuous function. Then the Riemann-Liouville fractional
derivative of order γ > 0 is defined by

D
γ
0+g(x) =

1
Γ(n− γ)

(
d

dx

)n ∫x
0
(x− z)n−γ−1g(z)dz, n = [γ] + 1,

where [γ] denotes integer part of real number γ.

Definition 2.3. Let g : (0, ∞) → R be a continuous function. Then the Caputo’s fractional derivative of
order γ > 0 is defined by

CD
γ
0+g(x) =

1
Γ(n− γ)

∫x
0
(x− z)n−γ−1g(n)(z)dz, n− 1 < γ 6 n, n = [γ] + 1.

Lemma 2.4. Let n− 1 < γ 6 n, y ∈ Cn[0, 1]. Then

I
γ
0+
CD

γ
0+y(x) = y(x) − c1 − c2x− · · ·− cnxn−1,

whenever c1, c2, . . . , cn ∈ R and n = [γ] + 1.

Lemma 2.5. The relation Iγ0+I
σ
0+y(x) = I

γ+σ
0+ is valid in the following cases

Re(σ) > 0, Re(γ+ σ) > 0, y(x) ∈ L1(0, 1).

Lemma 2.6. If βξ 6= 1 and h(x) ∈ C[0, 1] for all x ∈ (0, 1), then for the BVP{
CD

γ
0+y(x) + h(x) = 0, x ∈ (0, 1), 2 < γ 6 3,

y(0) = 0, y′′(0) = 0, y(1) = βy(ξ),
(2.1)

there exists a unique solution

y(x) =

∫ 1

0
G1(x, z)h(z)dz+

βx

1 −βξ

∫ 1

0
G2(ξ, z)h(z)dz, (2.2)

whenever

G1(x, z) =
1
Γ(γ)

{
x(1 − z)γ−1 − (x− z)γ−1, 0 6 z 6 x 6 1,
x(1 − z)γ−1, 0 6 x 6 z 6 1,

G1(x, z) =
1
Γ(γ)

{
ξ(1 − z)γ−1 − (ξ− z)γ−1, 0 6 z 6 ξ 6 1,
ξ(1 − z)γ−1, 0 6 ξ 6 z 6 1.

(2.3)
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Proof. Combining the Lemma 2.4 and BVP given by (2.1), we obtain

y(x) = −Iγ0+h(x) + c1 + c2x+ c3x
2, (2.4)

where c1, c2, c3 ∈ R.
Taking derivative on both sides of (2.4) and applying the lemma 2.5, we get

CD1
0+y(x) = −CD1

0+I
γ
0+h(x) + c2 + 2c3x = −CD1

0+I
1
0+I
γ−1
0+ h(x) + c2 + 2c3x,

that is
y′(x) = −Iγ−1

0+ h(x) + c2 + 2c3x, (2.5)

and
y′′(x) = −Iγ−2

0+ h(x) + 2c3. (2.6)

Applying the three-point boundary conditions of (2.1) in the equations (2.4), (2.5), and (2.6), we get

c1 = c3 = 0

and

c2 =
1
Γ(γ)

· 1
1 − ξβ

[∫ 1

0
(1 − z)γ−1h(z)dz−β

∫ξ
0
(ξ− z)γ−1h(z)dz

]
.

Hence, the equation (2.4) yield that

y(x) = −Iγ0+h(x) +
1
Γ(γ)

· 1
1 − ξβ

[∫ 1

0
(1 − z)γ−1h(z)dz−β

∫ξ
0
(ξ− z)γ−1h(z)dz

]

=
1
Γ(γ)

∫x
0
(x− z)γ−1h(z)dz+

x

Γ(γ)(1 − ξβ)

∫ 1

0
(1 − z)γ−1h(z)dz−

βx

Γ(γ)(1 − ξβ)

∫ξ
0
(ξ− z)γ−1h(z)dz

=
1
Γ(γ)

∫x
0
(x− z)γ−1h(z)dz+

[
x

Γ(γ)
+

xξβ

Γ(γ)(1 − ξβ)

] ∫ 1

0
(1 − z)γ−1h(z)dz

−
βx

Γ(γ)(1 − ξβ)

∫ξ
0
(ξ− z)γ−1h(z)dz

=
1
Γ(γ)

[∫x
0

[
x(1 − z)γ−1 − (x− z)γ−1]h(z)dz+ ∫ 1

x

x(1 − z)γ−1h(z)dz

]

+
βx

Γ(γ)(1 − ξβ)

[∫ξ
0

[
ξ(1 − z)γ−1 − (ξ− z)γ−1]h(z)dz+ ∫ 1

ξ

ξ(1 − z)γ−1h(z)dz

]
.

This proves the lemma.

Lemma 2.7. For Green’s function G1(x, z) given by (2.3), following are true:

(i) 0 6 G1(x, z) 6 G1(1, z);
(ii) minη6x61G1(x, z) > ηG1(1, z), where η ∈ (0, 1).

Proof.

(i) Since 2 < γ 6 3, so for 0 6 z 6 x 6 1, we have

G1(x, z) =
1
Γ(γ)

[
x(1 − z)γ−1 − (x− z)γ−1] > 0,

and for 0 6 x 6 z 6 1, we have

G1(x, z) =
1
Γ(γ)

· x(1 − z)γ−1 > 0.
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Thus, G1(x, z) > 0, for all z ∈ [0, 1].
Now, for both 0 6 z 6 x 6 1 and 0 6 x 6 z 6 1, we have ∂G1(x,z)

∂x and this ensures that G1(x, z) is
increasing on x. Therefore, we obtain

0 6 G1(x, z) 6 G1(1, z).

(ii) Considering η 6 x 6 1, we have

min
η6x61

G1(x, z) = G1(η, z),

where

G1(η, z) =
1
Γ(γ)

{
η(1 − z)γ−1 − (η− z)γ−1, 0 6 z 6 η,
η(1 − z)γ−1, η 6 z 6 1.

Case-I: For 0 6 z 6 η, we have

min
η6x61

G1(x, z) =
1
Γ(γ)

(
η(1 − z)γ−1 − (η− z)γ−1) . (2.7)

On the other hand,

ηG1(1, z) =
η(1 − z)γ−1

Γ(γ)
−
η(1 − z)γ−1

Γ(γ)
= 0. (2.8)

Since 2 < γ 6 3 and γ− 1 > 1, η ∈ (0, 1) ⇒ ηγ−1 < η, z 6 η ⇒ z
η 6 1 ⇒ 1 − z

η > 0, η < 1 ⇒ 1 < 1
η ⇒

−z 1
η < −z⇒ 1 − z

η < 1 − z, thus, we have
(

1 − z
η

)γ−1
< (1 − z)γ−1 and

(η− z)γ−1 =

(
η

(
1 −

z

η

))γ−1

= ηγ−1
(

1 −
z

η

)γ−1

6 η

(
1 −

z

η

)γ−1

< η (1 − z)γ−1 ,

i.e.,
η(1 − z)γ−1 − (η− z)γ−1 > 0. (2.9)

From (2.7) and (2.9), we have
min
η6x61

G1(x, z) > 0. (2.10)

Therefore, it follows from (2.8) and (2.10) that (ii) holds.

Case-II: For η 6 z 6 1, we have

min
η6x61

G1(x, z) =
η(1 − z)γ−1

Γ(γ)
, (2.11)

and

ηG1(1, z) =
η2(1 − z)γ−1

Γ(γ)
. (2.12)

Since, 0 < η < 1 thus, we have η2 < η. Hence,

η2(1 − z)γ−1

Γ(γ)
6
η(1 − z)γ−1

Γ(γ)
. (2.13)

Therefore, it follows from (2.11), (2.12), and (2.13) that (ii) holds.

Definition 2.8. A solution y of a BVP is positive if it satisfies y(x) > 0 for all x ∈ (0, 1).

Lemma 2.9. If η ∈ (0, 1), h(x) : [0, 1]→ [0, ∞) is continuous and h(x) > 0, then the BVP given by (2.1) retains
a unique nonnegative solution y(x) and the inequality minη6x61 y(x) > η‖y‖ holds.
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Proof. Taking double derivative on both sides of (2.2), we yield

y′′ = −
1

Γ(γ− 2)

∫x
0
(x− z)γ−3h(z)dz 6 0,

which confirm that the graph of y(x) is concavely downward on (0, 1). Furthermore, putting x = 1 and
x = 0 in (2.2), we obtain

y(1) =
β

Γ(γ)(1 − ξβ)

[∫ξ
0

[
ξ(1 − z)γ−1 − (ξ− z)γ−1]h(z)dz+ ∫ 1

ξ

ξ(1 − z)γ−1h(z)dz

]
> 0,

and
y(0) = 0.

Hence, y is a unique nonnegative solution of BVP given by (2.1).
Now, applying Lemma 2.7 in (2.2), we get

y(x) 6
∫ 1

0
G1(1, z)h(z)dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)h(z)dz.

So,

‖y‖ 6
∫ 1

0
G1(1, z)h(z)dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)h(z)dz. (2.14)

Again, from (2.2) we have

y(x) >
∫ 1

0
ηG1(1, z)h(z)dz+

ηβ

1 −βξ

∫ 1

0
G2(ξ, z)h(z)dz

= η

[∫ 1

0
G1(1, z)h(z)dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)h(z)dz

]
.

(2.15)

Hence, (2.14) and (2.15) yield that y(x) > η‖y‖ and this is the required inequality.

Definition 2.10. Let (B, ‖ · ‖) be a Banach space and K ⊆ B which is nonempty, closed, and convex. Then
we define K as a cone on B if it satisfies the following properties:

(i) λc ∈ K for c ∈ K, λ > 0;
(ii) c, −c ∈ K implies c = θ,

where θ denotes the null element of B.

Throughout this paper, we suppose that B = C[0, 1] and norm is defined as ‖y‖ = max06x61 y(x).

Theorem 2.11 (Guo-Krasnoselskii’s fixed point Theorem). Let B be a Banach space and K ⊆ B be a cone on
B. Suppose that Ω1 and Ω2 are two open subsets of B with 0 ∈ Ω1, Ω̄1 ⊆ Ω2 and T : K ∩ (Ω̄2 \Ω1) → K is a
completely continuous map with

(i) ‖Ty‖ 6 ‖y‖, for all y ∈ K∩ ∂Ω1 and ‖Ty‖ > ‖y‖, for all y ∈ K∩ ∂Ω2; or

(ii) ‖Ty‖ > ‖y‖, for all y ∈ K∩ ∂Ω1 and ‖Ty‖ 6 ‖y‖, for all y ∈ K∩ ∂Ω2.
Then T has a fixed point in K∩ (Ω̄2 \Ω1).

Now, we give a brief description on fixed-point index using the following lemma.

Lemma 2.12. Let K be a closed convex subset of a Banach space B and let D be a bounded open set s.t. DK =
D∩K 6= ∅. Let T : D̄K → K be a compact map. Suppose that Tx 6= x for all x ∈ ∂DK (boundary of DK).
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(i) If I(T , DK, K) 6= 0, then T has a fixed point in DK.
(ii) If y ∈ DK, then I(ŷ, DK, K) = 1, where ŷ(x) = y for x ∈ D̄K.

(iii) Let µ : [0, 1]× D̄K → K be a compact map s.t. x 6= µ(t, x) for x ∈ ∂DK and t ∈ [0, 1]. Then

I(µ(0, ·), DK, K) = I(µ(1, ·), DK, K).

(iv) If U1, U2 are disjoint relatively open subsets of DK s.t. Tx 6= x for x ∈ D̄K \ (U1 ∪U2), then

I(T , DK, K) = I(T , U1, K) + I(T , U2, K),

where I(T , Uj, K) = I(T \ Ūj, Uj, K), j = 1, 2.

Now, we state fixed-point index theory from a book of Deimling [16].

Theorem 2.13 (Fixed-point index theory). Let B be a Banach space and K ⊆ B be a cone in B. For r > 0, define
Kr = {y ∈ K : ‖y‖ 6 r} and assume that T : Kr → K is a completely continuous operator s.t. Ty 6= y for y ∈ ∂Kr.
Then the following hold:

(1) If ‖Ty‖ 6 ‖y‖, for all y ∈ ∂Kr, then I(T , Kr, K) = 1;
(2) If ‖Ty‖ > ‖y‖, for all y ∈ ∂Kr, then I(T , Kr, K) = 0,

where I is the point index on K.

Remark 2.14. According to Lemma 2.6, we can convert the BVP given by (1.1) to

y(x) =

∫ 1

0
G1(x, z)b(z)g(y(ϕ(z)))dz+

βx

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz, (2.16)

where G1(x, z) and G2(ξ, z) are given by (2.3).
Obviously, y = y(x) for all x ∈ (0, 1], is a solution of the BVP given by (1.1), if and only if it is a

solution of integral equation (2.16).
Furthermore, if we define a cone K on B in the following way

K =

{
y ∈ B : y(ϕ(x)) > 0, min

η6x61
y(ϕ(x)) > η‖y‖, η ∈ (0, 1)

}
, (2.17)

and the operator T : K→ B in the following way

Ty(ϕ(x)) =

∫ 1

0
G1(x, z)b(z)g(y(ϕ(z)))dz+

βx

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz, (2.18)

then it is easy to prove that the BVP given by (1.1) may have a solution y(x) if and only if the integral
operator T may exists a fixed point y(x) .

Lemma 2.15. Integral operator T define by (2.18) is completely continuous and T(K) ⊆ K, where K is a cone on
C[0, 1] defined by (2.17).

Proof. By Lemma 2.9, it is obvious that T(K) ⊆ K. According to the definition of G1(x, z), G2(ξ, z) and
b(x)g(y(ϕ(x))), it is clear that T is continuous.

Suppose that Ω is a bounded subset of K, then we get ‖y(ϕ(x))‖ 6M for all y(ϕ(x)) ∈ Ω and M > 0.
Now, if we set L = max06y(ϕ(x))6M | g(y(ϕ(x))) |, then for y(ϕ(x)) ∈ Ω, Lemmas 2.7 and 2.9 give us

| Ty(ϕ(x)) |

6
1
Γ(γ)

∫ 1

0
(1 − z)γ−1 | b(z) | | g(y(ϕ(z))) | dz+

βξ

Γ(γ)(1 −βξ)

∫ 1

0
(1 − z)γ−1 | b(z) | | g(y(ϕ(z))) | dz

6

[
L‖b‖∞
Γ(γ)

+
βξ · L‖b‖∞
Γ(γ)(1 −βξ)

] ∫ 1

0
(1 − z)γ−1dz

=
L‖b‖∞
Γ(γ)

· 1
1 −βξ

∫ 1

0
(1 − z)γ−1dz =

L‖b‖∞
Γ(γ+ 1)

· 1
1 −βξ

= l(say).
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This proves that T(Ω) is bounded. Again, for y(ϕ(x)) ∈ Ω, x1, x2 ∈ [0, 1] with x1 < x2, we have

| Ty(ϕ(x2)) − Ty(ϕ(x1)) | 6 L‖b‖∞ ·
[∫ 1

0
[G1(1, z) −G1(1, z)]dz+

β | x2 − x1 |

1 −βξ
·
∫ 1

0
G2(ξ, z)dz

]

= L‖b‖∞ · βξ | x2 − x1 |

Γ(γ)(1 −βξ)
·
∫ 1

0
(1 − z)γ−1dz

= L‖b‖∞ · βξ | x2 − x1 |

Γ(γ+ 1)(1 −βξ)
6 l· | x2 − x1 | .

Hence, by an application of Arzela-Ascoli theorem which is taken from Fréchet [16], it is obvious that
the continuity of T is complete.

Throughout this paper, we suppose that

gc = lim
y→c

inf
g(y(ϕ(x)))

y(ϕ(x))
, gd = lim

y→d
sup

g(y(ϕ(x)))

y(ϕ(x))
,

where c, d = 0+ or∞,

M1 = η2m

[∫ 1

η

G1(1, z)dz+
β

1 −βξ

∫ 1

η

G2(ξ, z)dz

]
,

and

M2 = ‖b‖∞
[∫ 1

0
G1(1, z)dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)dz

]
.

3. Main results

Here, we state and prove three theorems which represents main outcomes of this article. Before
starting these theorems, we have required some assumptions which are as follows:

(A1) g0+ = 0 and g∞ =∞;
(A2) g0+ =∞ and g∞ = 0;
(A3) g0+ =∞ and g∞ =∞;
(A4) g0+ = 0 and g∞ = 0;
(A5) 0 6 g0+ < M−1

2 and M−1
1 < g∞ 6∞;

(A6) M−1
1 < g0+ 6∞ and 0 6 g∞ < M−1

2 ;
(A7) g(y(ϕ(x))) < M−1

2 ρ and 0 < y(ϕ(x)) 6 ρ, for all ρ > 0;
(A8) g(y(ϕ(x))) > M−1

1 ρ andρ < y(ϕ(x)) 6 ρ
β , for all ρ > 0.

Now, we are ready to present our main results.

Theorem 3.1. Suppose that (H1), (H2), and (H3) are satisfied. If one of the assumptions (A1), (A2), (A5), (A6)
holds, then for the BVP given by (1.1) exists minimum a positive solution.

Proof.

Case-I: When (A1) holds.
Since, g0+ = 0, ∃ a positive constant h1 s.t. g(y(ϕ(x))) 6 δy(ϕ(x)), wherever 0 < y(ϕ(x)) 6 h1 and

δ > 0.
Then for y(ϕ(x)) ∈ K∩ ∂Ω1, where Ω1 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h1}, we get

Ty(ϕ(x)) =

∫ 1

0
G1(x, z)b(z)g(y(ϕ(z)))dz+

βx

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz
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6
∫ 1

0
G1(1, z)b(z)g(y(ϕ(z)))dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz

6
∫ 1

0
G1(1, z)‖b‖∞δy(ϕ(z))dz+ β

1 −βξ

∫ 1

0
G2(ξ, z)‖b‖∞δy(ϕ(z))dz

6 δ

[
‖b‖∞

(∫ 1

0
G1(1, z)dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)dz

)]
‖y(ϕ(x))‖

= δM2‖y(ϕ(x))‖.

Now, if δM2 6 1 and taking the maximum in 0 6 x 6 1, we yield that

‖Ty(ϕ(x))‖ 6 ‖y(ϕ(x))‖.

Again, since g∞ =∞, ∃ a positive constant h̄2 s.t. g(y(ϕ(x))) > δ1y(ϕ(x)), where h̄2 6 y(ϕ(x)), x ∈ [η, 1]
and δ > 0.

For y(ϕ(x)) ∈ K∩ ∂Ω2, where Ω2 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h2} and h2 is maximum of 2h1 and h̄2
η .

Then y(ϕ(x)) ∈ K∩ ∂Ω2 implies that minη6x61 y(ϕ(x)) > η‖y(ϕ(x))‖ = ηh2 > h̄2 and

Ty(ϕ(x)) =

∫ 1

0
G1(x, z)b(z)g(y(ϕ(z)))dz+

βx

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz

>
∫ 1

η

G1(x, z)b(z)g(y(ϕ(z)))dz+
βx

1 −βξ

∫ 1

η

G2(ξ, z)b(z)g(y(ϕ(z)))dz

>
∫ 1

η

ηG1(1, z)mδ1y(ϕ(z))dz+
βη

1 −βξ

∫ 1

η

G2(ξ, z)mδ1y(ϕ(z))dz

>
∫ 1

η

η2G1(1, z)mδ1‖y(ϕ(z))‖dz+
βη2

1 −βξ

∫ 1

η

G2(ξ, z)mδ1‖y(ϕ(z))‖dz

> δ1

[
η2m

(∫ 1

η

G1(1, z)dz+
β

1 −βξ

∫ 1

η

G2(ξ, z)dz

)]
‖y(ϕ(x))‖

= δ1M1‖y(ϕ(x))‖.

Now, if δ1M1 > 1 and taking the maximum in 0 6 x 6 1, then

‖Ty(ϕ(x))‖ > ‖y(ϕ(x))‖.

Therefore, Theorem 2.11 and Lemmas 2.9 and 2.15, yield a positive fixed point of T in K ∩ (Ω̄2 \Ω1).
Hence for the BVP given by (1.1) exists minimum a positive solution.

Case-II: When (A2) holds.
In this case, since g0+ =∞, then same case arises as like second part of Case-I, so here we omit it.
Again, since g∞ = 0, ∃, a positive constant h̄2 s.t. g(y(ϕ(x))) 6 λy(ϕ(x)), where y(ϕ(x)) > h̄2, and

λ > 0 satisfies λM2 6 1. Now, if g is bounded, ∃ a positive L s.t. g(y(ϕ(x))) < L,

Ω2 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h2} ,

where h2 = max {2h1, LM2}. If y(ϕ(x)) ∈ K∩ ∂Ω2, then by Lemma 2.7, we get

Ty(ϕ(x)) =

∫ 1

0
G1(x, z)b(z)g(y(ϕ(z)))dz+

βx

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz

6
∫ 1

0
G1(1, z)b(z)g(y(ϕ(z)))dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz

6
∫ 1

0
G1(1, z)‖b‖∞Ldz+ β

1 −βξ

∫ 1

0
G2(ξ, z)‖b‖∞Ldz

= LM2 6 h2 = ‖y(ϕ(x))‖.
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Hence,
‖Ty(ϕ(x))‖ 6 ‖y(ϕ(x))‖.

And, if g is unbounded, then by our hypothesis (H1), there exists h2 > 0 s.t. h2 > max
{

2h1, h̄2
η

}
and

g(y(ϕ(x))) 6 g(h2) with 0 < y(ϕ(x)) 6 h2 and let Ω2 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h2}.
If y(ϕ(x)) ∈ K∩ ∂Ω2, then the Lemma 2.7 gives us

Ty(ϕ(x)) 6
∫ 1

0
G1(1, z)b(z)g(y(ϕ(z)))dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz

6
∫ 1

0
G1(1, z)‖b‖∞g(h2)dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)‖b‖∞g(h2)dz

6 λ

[
‖b‖∞

(∫ 1

0
G1(1, z)dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)dz

)]
h2

= λM2h2 6 h2 = ‖y(ϕ(x))‖.

Hence,
‖Ty(ϕ(x))‖ 6 ‖y(ϕ(x))‖.

Therefore, Theorem 2.11 and Lemmas 2.9 and 2.15 yield a positive fixed point of T in K∩ (Ω̄2 \Ω1). Hence
for the BVP given by (1.1) exists minimum a positive solution.

Case-III: When(A5) holds.
Since, 0 6 g0+) < M−1

2 , then ∃, h1 > 0, 0 < λ1 < M−1
2 s.t. g(y(ϕ(x))) < (M−1

2 − λ1)y(ϕ(x)), where
0 < y(ϕ(x)) 6 h2 and x ∈ [0, 1].

Now, for y(ϕ(x)) ∈ K∩ ∂Ω1 and Ω1 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h1}, Lemma 2.7 gives

Ty(ϕ(x)) 6
∫ 1

0
G1(1, z)b(z)g(y(ϕ(z)))dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)b(z)g(y(ϕ(z)))dz

6
∫ 1

0
G1(1, z)‖b‖∞(M−1

2 − λ1)y(ϕ(z))dz+
β

1 −βξ

∫ 1

0
G2(ξ, z)‖b‖∞(M−1

2 − λ1)y(ϕ(z))dz

< ‖y(ϕ(x))‖.

Hence,
‖Ty(ϕ(x))‖ 6 ‖y(ϕ(x))‖.

Again, since M−1
1 < g∞ 6 ∞, then ∃ h̄2 > 0, λ2 > 0 s.t. g(y(ϕ(x))) > (M−1

1 + λ2)y(ϕ(x)), where,
y(ϕ(x)) > h2 and x ∈ [η, 1].

Now, for h2 > max
{

2h1, h̄2
η

}
, Ω2 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h2} and y(ϕ(x)) ∈ K ∩ ∂Ω2, we have

minη6x61 y(ϕ(x)) > η‖y(ϕ(x))‖ = ηh2 > h2. Hence, the Lemma 2.7 gives

Ty(ϕ(x)) >
∫ 1

η

G1(x, z)b(z)g(y(ϕ(z)))dz+
βx

1 −βξ

∫ 1

η

G2(ξ, z)b(z)g(y(ϕ(z)))dz

>
∫ 1

η

ηG1(1, z)m(M−1
1 + λ2)y(ϕ(z))dz+

βη

1 −βξ

∫ 1

η

G2(ξ, z)m(M−1
1 + λ2)y(ϕ(z))dz

> (M−1
1 + λ2)

[
η2m

(∫ 1

η

G1(1, z)dz+
β

1 −βξ

∫ 1

η

G2(ξ, z)dz

)]
‖y(ϕ(x))‖

> ‖y(ϕ(x))‖.

Hence,
‖Ty(ϕ(x))‖ > ‖y(ϕ(x))‖.

Therefore, Theorem 2.11 and Lemmas 2.9 and 2.15 yield a positive fixed point of T in K∩ (Ω̄2 \Ω1). Hence
the BVP given by (1.1) exists minimum a positive solution.
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Case-IV: When (A6) holds.
In this case, since M−1

1 < g0+ 6 ∞ and 0 6 g∞ < M−1
2 , then same case arises as like Case-III. This

completes the proof of the theorem.

Theorem 3.2. If (H1), (H2), and (H3) are fulfilled, then under assumptions (A3) and (A7) the BVP given by (1.1)
has at least two positive solutions.

Proof. According to the assumption (A3), we have g0+ = ∞, then ∃ 0 < h3 < ρ s.t. g(y(ϕ(x))) >
M−1

1 y(ϕ(x)), with 0 < y(ϕ(x)) 6 h3 and x ∈ [η, 1].
Now, for y(ϕ(x)) ∈ K∩ ∂Ω1 and Ω1 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h3}, Lemma 2.7 gives us

Ty(ϕ(x)) >

∫ 1

η

ηG1(x, z)mM−1
1 y(ϕ(z))dz+

βη

1 −βξ

∫ 1

η

G2(ξ, z)mM−1
1 y(ϕ(z))dz

>M−1
1

[
η2m

(∫ 1

η

G1(1, z)dz+
β

1 −βξ

∫ 1

η

G2(ξ, z)dz

)]
‖y(ϕ(x))‖ = ‖y(ϕ(x))‖,

i.e.,
‖Ty(ϕ(x))‖ > ‖y(ϕ(x))‖.

Hence, Theorem 2.13 yields I(T , Kh3 , K) = 0.
Again, since g∞ =∞, then ∃ h̄4 > ρ, s.t. g(y(ϕ(x))) >M−1

1 y(ϕ(x)), where 0 < y(ϕ(x)) > h̄4 > 0 and
x ∈ [η, 1].

Now, if we set h4 = h̄4
η , Ω2 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h4}, then for y(ϕ(x)) ∈ K ∩ ∂Ω2, we have

minη6x61 y(ϕ(x)) > η‖y(ϕ(x))‖ = ηh4 = h̄4.
Thus, by Lemma 2.7, we have

Ty(ϕ(x)) >M−1
1

[
η2m

(∫ 1

η

G1(1, z)dz+
β

1 −βξ

∫ 1

η

G2(ξ, z)dz

)]
‖y(ϕ(x))‖ = ‖y(ϕ(x))‖,

i.e.,
‖Ty(ϕ(x))‖ > ‖y(ϕ(x))‖.

Thus, Theorem 2.13 yields I(T , Kh4 , K) = 0.
Now, if Ω3 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < ρ}, then y(ϕ(x)) ∈ K ∩ ∂Ω3 and assumption (A7) give

g(y(ϕ(x))) < M−1
2 ρ, for all x ∈ [0, 1] and hence

Ty(ϕ(x)) <

∫ 1

0
G1(1, z)‖b‖∞M−1

2 ρdz+
β

1 −βξ

∫ 1

0
G2(ξ, z)‖b‖∞M−1

2 ρdz 6M−1
2 M2ρ = ‖y(ϕ(x))‖.

This implies that ‖Ty(ϕ(x))‖ 6 ‖y(ϕ(x))‖. Hence, Theorem 2.13 gives I(T , Kρ, K) = 1. Therefore,
I(T , Kh4 \ K̄ρ, K) = −1 and I(T , Kρ \ K̄h3 , K) = 1. Then applications of Lemma 2.9, Lemma 2.15 and Theo-
rem 2.13, yield that T exists minimum two positive fixed points y1 ∈ K∩ (Ω̄3 \Ω1) and y2 ∈ K∩ (Ω̄2 \Ω3)
s.t. 0 < ‖y1‖ < ρ < ‖y2‖ and this means that the BVP given by (1.1) exists minimum two positive solutions
in K.

Theorem 3.3. If (H1), (H2) and (H3) are fulfilled, then under assumptions (A4) and (A8) the BVP given by (1.1)
exists minimum two positive solutions.

Proof. According to the assumption (A4), we have g0+ = 0, ∃ a positive constant h3 s.t. g(y(ϕ(x))) 6
δ2y(ϕ(x)), where 0 < y(ϕ(x)) 6 h3 and δ2 > 0. Then for y(ϕ(x)) ∈ K∩ ∂Ω1 and

Ω1 = {y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < h3} , Ty(ϕ(x))
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can be written as

Ty(ϕ(x)) 6
∫ 1

0
G1(1, z)‖b‖∞δ2y(ϕ(z))dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)‖b‖∞δ2y(ϕ(z))dz

6 δ2

[
‖b‖∞

(∫ 1

0
G1(1, z)dz+

β

1 −βξ

∫ 1

0
G2(ξ, z)dz

)]
‖y(ϕ(x))‖ = δ2M2‖y(ϕ(x))‖,

i.e.,
‖Ty(ϕ(x))‖ 6 ‖y(ϕ(x))‖.

Hence, Theorem 2.13 gives I(T , Kh3 , K) = 1.
Again, for g∞ = 0, ∃ a positive constant h̄4 s.t. g(y(ϕ(x))) 6 δ3y(ϕ(x)), where y(ϕ(x)) > h̄4, δ3 > 0,

and δ3M2 6 1. Then Case-II of Theorem 3.1 arises, hence we get

‖Ty(ϕ(x))‖ 6 ‖y(ϕ(x))‖.

Thus, by an application of Theorem 2.13, we have I(T , Kh4 , K) = 1. Finally, consider a set Ω3 =
{y(ϕ(x)) ∈ B : ‖y(ϕ(x))‖ < ρ}, then for any y(ϕ(x)) ∈ K ∩ ∂Ω3 the assumption (A8) gives g(y(ϕ(x))) >
M−1

1 ρ, for x ∈ [η, 1] and hence

Ty(ϕ(x)) >

∫ 1

η

ηG1(x, z)mM−1
1 ρdz+

βη

1 −βξ

∫ 1

η

G2(ξ, z)mM−1
1 ρdz

>
∫ 1

η

η2G1(1, z)mM−1
1 ρdz+

βη2

1 −βξ

∫ 1

η

G2(ξ, z)mM−1
1 ρdz >M−1

1 M1ρ = ‖y(ϕ(x))‖,

i.e.,
‖Ty(ϕ(x))‖ > ‖y(ϕ(x))‖.

Hence, the Theorem 2.13 gives I(T , Kρ, K) = 0. Therefore, I(T , Kh4 \ K̄ρ, K) = 1 and I(T , Kρ \ K̄h3 , K) = −1.
Then applications of Lemma 2.9, Lemma 2.15, and Theorem 2.13, yield that T , there exists at least two

positive fixed points y1 ∈ K ∩ (Ω̄3 \Ω1) and y2 ∈ K ∩ (Ω̄2 \Ω3) s.t. 0 < ‖y1‖ < ρ < ‖y2‖. Thus, the BVP
given by (1.1) has at least two positive solutions in K.

4. Examples

In this section, we provide some illustrative examples.

Example 4.1. Let us suppose a BVP associated to CFONLDE with an advanced argument in the following
way {

CD
5
2
0+y(x) + e

−xyσ(ϕ(x)) = 0, x ∈ (0, 1),
y(0) = 0, y′′(0) = 0, y(1) = βy(ξ),

(4.1)

wherever, σ > 1, 0 < ξ < 1, 0 < β < 1
ξ and ϕ(x) = xκ, 0 < κ < 1. Comparing the BVPs given by (4.1) and

(1.1), we obtain
g(y) = yσ, b(x) = e−x, andϕ(x) = xκ.

Which fulfilled the hypothesis given by (H1), (H2), (H3) and we get g0+ = 0 and g∞ = ∞. Therefore,
according to Theorem 3.1 with assumption (A1) we can say that the BVP given by (4.1) exists minimum a
positive solution.

Example 4.2. Let us suppose a BVP associated to CFONLDE with an advanced argument in the following
way {

CD
5
2
0+y(x) + e

−x(1 + yσ(ϕ(x))) = 0, x ∈ (0, 1),
y(0) = 0, y′′(0) = 0, y(1) = βy(ξ),

(4.2)

wherever, 0 < σ < 1, 0 < ξ < 1, 0 < β < 1
ξ and ϕ(x) = xκ, 0 < κ < 1. Comparing the BVPs given by (4.2)
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and (1.1), we get
g(y) = 1 + yσ, b(x) = e−x, and ϕ(x) = xκ.

Which fulfilled the hypothesis given by (H1), (H2), (H3) and we get g0+ = ∞ and g∞ = 0. Therefore,
Theorem 3.1 with assumption (A2) confirm that the BVP given by (4.2) has at least one positive solution.

Example 4.3. Let us suppose a BVP associated to CFONLDE with an advanced argument in the following
way {

CD
γ
0+y(x) + e

tanx(λln(1 + y(ϕ(x))) + y2(ϕ(x))) = 0, x ∈ (0, 1),
y(0) = 0, y′′(0) = 0, y(1) = βy(ξ),

(4.3)

wherever, 2 < γ 6 3, λ > 0 fixed and sufficiently small, 0 < ξ < 1, 0 < β < 1
ξ and ϕ(x) = x

1
2 . Comparing

the BVPs given by (4.3) and (1.1), we yield

g(y) = λ ln(1 + y(ϕ(x))) + y2(ϕ(x)), b(x) = etanx, andϕ(x) = x
1
2 .

Which fulfilled the hypothesis given by (H1), (H2), (H3) and we obtain g0+ = λ and g∞ = ∞. Now, for
ξ = 1

2 , β = 1, x = 1
2 , γ = 5

2 , η = 1
2 , we have 0 6 g0+ < M−1

2 , M−1
1 < g∞ 6 ∞. Therefore, according

to Theorem 3.1 with assumption (A5) we can say that the BVP given by (4.3) has at least one positive
solution.

Example 4.4. Let us suppose a BVP associated to CFONLDE with an advanced argument in the following
way {

CD
γ
0+y(x) + e

−x(y2(ϕ(x))e−y(ϕ(x)) + δ(siny(ϕ(x)))) = 0, x ∈ (0, 1),
y(0) = 0, y′′(0) = 0, y(1) = βy(ξ),

(4.4)

wherever, 2 < γ 6 3, δ > 0 fixed and sufficiently large, 0 < ξ < 1, 0 < β < 1
ξ and ϕ(x) = x

1
2 . Comparing

the BVPs given by (4.4) and (1.1), we obtain

g(y) = y2(ϕ(x))e−y(ϕ(x)) + δ(siny(ϕ(x))), b(x) = e−x, andϕ(x) = x
1
2 .

Hence, it is clear that hypothesis (H1), (H2), (H3) are satisfied and we get g0+ = δ and g∞ = 0. Now, if we
take ξ = 1

2 , β = 1, x = 1
2 , γ = 5

2 , η = 1
2 , then it is easy to shown that M−1

1 < g0+ 6∞ and 0 6 g∞ < M−1
2 .

Therefore, according to Theorem 3.1 with assumption (A6) we can say that the BVP given by (4.4) has at
least one positive solution.

Example 4.5. Consider a BVP associated to CFONLDE with an advanced argument as follows{
CD

γ
0+y(x) + y

v(ϕ(x)) + yw(ϕ(x)) − 1 = 0, x ∈ (0, 1),
y(0) = 0, y′′(0) = 0, y(1) = βy(ξ),

(4.5)

wherever, 2 < γ 6 3, 0 < ξ < 1, 0 < β < 1
ξ and ϕ(x) = x

1
2 . From the BVP given by (4.5), we obtain

g(y) = yv(ϕ(x)) + yw(ϕ(x)) − 1, b(x) = 1, andϕ(x) = x
1
2 .

Which fulfilled the hypothesis given by (H1), (H2), (H3). Now, taking v ∈ (0, 1), w > 1, ξ = 1
2 , β = 3

2 , x =
1
2 , γ = 5

2 , η = 1
2 , we get g0+ = ∞, g∞ = ∞ and g(y(ϕ(x))) < M−1

2 ρ, 0 < y(ϕ(x)) 6 ρ, where ρ = 1.
Therefore, according to Theorem 3.2 with assumptions (A3) and (A7), we can say that the BVP given by
(4.5) has at least two positive solutions y1, y2 and 0 < ‖y1‖ < 1 < ‖y2‖.

Example 4.6. Consider a BVP associated to CFONLDE with an advanced argument as follows{
CD

γ
0+y(x) + y

−v(ϕ(x)) + y−w(ϕ(x)) + 1 = 0, x ∈ (0, 1),
y(0) = 0, y′′(0) = 0, y(1) = βy(ξ),

(4.6)

wherever, 2 < γ 6 3, 0 < ξ < 1, 0 < β < 1
ξ and ϕ(x) = x

1
2 . From the BVP given by (4.6), we get
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g(y) = y−v(ϕ(x)) + y−w(ϕ(x)) + 1, b(x) = 1, andϕ(x) = x
1
2 .

Which fulfilled the hypothesis given by (H1), (H2), (H3). Now, taking v ∈ (0, 1), w > 1, ξ = 1
2 , β = 3

2 , x =
1
2 , γ = 5

2 , η = 1
2 , we get g0+ = 0, g∞ = 0 and g(y(ϕ(x))) > M−1

1 ρ, ρ < y(ϕ(x)) 6 ρ
β , where ρ = 1.

Therefore, according to Theorem 3.3 with assumptions (A4) and (A8), we can say that the BVP given by
(4.6) has at least two positive solutions y1, y2 and 0 < ‖y1‖ < 1 < ‖y2‖.

5. Conclusion

In this study, we established the general principles for checking presence and diversity of positive
solutions to a BVP given by (1.1). Here, we applied Guo-Krasnoselskii’s fixed point theorem and Fixed-
point index theory to prove our main results. By an application of Theorem 3.1, one may check the
presence of minimum a positive solution of BVP given by (1.1), whereas the Theorems 3.2 and 3.3 may
be used to cheek the presence of minimum two positive solutions to that BVP. The results of this article
provided easy and straightforward techniques to cheek the presence and diversity of positive solutions to
the CFONLDE with an advanced argument. Furthermore, outcomes of this article extended the equivalent
results of Jankowski [24], Ntouyas et al. [31], Rizqan and Dhaigude [33], and Wang et al. [37]. Finally,
we verified our main results by some particular examples. In the conceivable future we propose to study
the possibility of extending the results of this paper by replacing the Caputo’s fractional derivative with
Riemann-Liouville fractional derivative occurring in the BVP given by (1.1) using integral BVCs and/or
the infinite-point BVCs in place of three-point BVCs.
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[14] F. H. Damag, A. Kiliçman, A. T. Al-Arioi, On hybrid type nonlinear fractional integrodifferential equations, Mathemat-
ics, 8 (2020), 14 pages. 1

[15] F. H. Damag, A. Kilicman, H. Dutta, R. W. Ibrahim, A Note on the Lower and Upper Solutions of Hybrid-Type Iterative
Fractional Differential Equations, Natl. Acad. Sci. Lett., 43 (2020), 277–281. 1

[16] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, (1985). 1, 2, 2, 2
[17] A. Devi, A. Kumar, D. Baleanu, A. Khan, On stability analysis and existence of positive solutions for a general non-linear

fractional differential equations, Adv. Differ. Equ., 2020 (2020), 16 pages. 1
[18] W. G. El-Sayed, Solvability of a neutral differential equation with deviated argument, J. Math. Anal. Appl., 327 (2007),

342–350. 1
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