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Abstract
The aim of this study is to show that the Reduced Differential Transform Algorithm (RDTA) can be applied to highly

nonlinear evolution equations appearing in quantitative finance. In particular, we compute exact solutions of nonlinear PDEs
arising by relaxing the transaction-cost assumption in the illiquid Black-Scholes market. Moreover, we also aim to study the
impact of the absence and presence of price slippage impact in the illiquid Black-Scholes model with transaction-cost.
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1. Introduction

The classical assumptions of the Black-Scholes market are randomness of stocks, the constancy of
interest rate and volatility of stocks, no transaction on trading stocks, and liquidity of market (i.e., trading
can be done at any time, in any unit of fractions). Under these assumptions, the euro-type option prices
satisfy the following linear differential equations,

∂u

∂t
+
σ2s2

2
∂2u

∂s2 + rs
∂u

∂s
− ru = 0, (1.1)

where u is the value of option, σ is the volatility of stocks, r is the interest rate. For the investors who
invest with large investments and especially for the incomplete markets (i.e., where not every derivative
cannot be priced) these Black-Scholes assumptions give rise to unrealistic nonlinear models. In such cases
the volatility can be taken as time t-dependent, stock price s, and even on the premium u of the option
and its Greeks.

There have been several attempts to solve and analyze (1.1) analytically and numerically in abstract
and concrete spaces, see for example, Jódar [24]; Rodrigo [31]; Ponsoda [11]; Ankudinova [2]; Bohner
[5]; Cen [9], and Allahviranloo [1]. On assuming the market with friction and non-competitive and with
transaction cost, we will reach an illiquid/rigid market and in such a market, the prices of the derivative
will evolve non linearly. Bakstein [3] studied liquidity as a blend of transaction cost by the trader and the
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impact of price slippage. We aim to study such nonlinear equations involving transaction cost, feed-back
effect, and with & without price slippage impact.

The large trading effects in the illiquid markets have been studied by a number of authors. For
instance, Frey and Stremme in [19], and Frey and Patie in [18] studied these effects on the price and
concluded that the following choice of volatility should be made,

σ̂

(
t, s,

∂u

∂s
,
∂2u

∂s2

)
=

σ

1 − ρsλ(s)∂
2u
∂s2

, (1.2)

where σ is the standard volatility, ρ ∈ R is a measure of the market liquidity, and λ is the market price
of risk quantifying the liquidity profile of the market. In order to solve the nonlinear Black-Scholes
equation with volatility (1.2), Chmakova in [6] took λ as a constant. In [17, 19], a generalized version of
Black-Scholes pricing PDE was derived of the form,

∂u

∂t
+

σ2s2

2
(

1 − λ(s)∂
2u
∂s2

)2
∂2u

∂s2 + rs
∂u

∂s
− rV = 0, u(s, T) = h(s), where s > 0. (1.3)

The case h is assumed to be Lipchitz, the well-posedness of the solution have been shown in [28].
On treating the market price λ as λ(s) ≡ 1, recall the approximation 1

(1−x)2 ≈ 1+ 2x+O(x3), when x is

sufficiently small. Therefore by assuming that
∣∣∣ρs∂2u

∂s2

∣∣∣ is sufficiently small, and using the mentioned ap-

proximation we can rewrite the equation (1.3) as following. Financially assuming ρs∂
2u
∂s2 to be sufficiently

small corresponds to the case of low impact of hedging, see for instance A4 in [19],

∂u

∂t
+
s2

2

(
σ

√(
1 + 2ρs

∂2u

∂s2

))2
∂2u

∂s2 = 0, u(s, T) = h(s), where s > 0. (1.4)

An alternate, semi-martingale based derivation of the above problem has been given in [16]. By feed-
back effect in a transaction cost model means that the volatility σ

√
1 + 2ρSuss depends on the sign of

Greek”Gamma” uss. Moreover, following continuous-time feedback effects equation for illiquid markets
were modeled by Bakstein and Howison in [3],

∂u

∂t
+
σ2s2

2
∂2u

∂s2

(
1 + 2ρs

∂2u

∂s2

)
+
ρ2(1 −α)σ2s4

2

(
∂2u

∂s2

)3

+ rs
∂u

∂s
− ru = 0 (1.5)

subject to initial condition u(s, 0) = f(s), where f is the payoff derivative, ρ ∈ R− {0} is the measure of the
market liquidity, and α is the measure of the impact of price slippage impact, due to trade, experienced
by participants of market participants. The case when α = 1 corresponds to the no slippage condition
and equation (1.5) reduces to the following model,

∂u

∂t
+
σ2s2

2
∂2u

∂s2

(
1 + 2ρs

∂2u

∂s2

)
+ rs

∂u

∂s
− ru = 0. (1.6)

The fundamental objective is to study the evolution equations (1.4), (1.5), and (1.6) subject to some concrete
initial conditions using reduced differential transform (RDT) algorithm. The equations (1.1), (1.3), (1.4),
(1.6), and (1.5) are also closely related with several models appearing in natural sciences, for this we refer
to [26, 27, 33]. Moreover, we refer to some recent closely related work to studies done in this paper, see
[8, 21–23, 30, 32].

2. Brief description of reduced differential transform algorithm

This section is aimed to introduce the reduced differential transform algorithm to solve the nonlinear
evolution equation. We will define RDTA and list some of its basic definitions and important properties.
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2.1. Definition and properties of differential transform
Let us start by defining the 1-D reduced differential transform of a smooth (i.e., C∞(R) function.

Definition 2.1 ([25]). Suppose function u(t, x) be C∞(R)-function and is analytic, then the differential
transform of u(t, x) is followin,

uk(x) =
1
k!
∂ku

∂tk
(t, x)

∣∣
t=0 , k = 0, 1, 2, 3, . . . ,

where uk(x) can be treated as the the t-dimensional spectrum transformed function.
The differential inverse transform of uk(x) is defined as follows:

u(t, x) =
∞∑
k=0

uk(x)t
k =

∞∑
k=0

(
1
k!
∂ku

∂tk
(t, x)

∣∣
t=0

)
tk.

Based on the above we have the following theorem listing the basic properties of reduced differential
transform.

Theorem 2.2 ([25]). For any smooth functions u, v the reduce differential transform of u and v satisfies following
properties.

(i) Linearity: for any linear combination of u and v, i.e., w(t, x) = au(t, x) + bv(t, x), where a,b ∈ R, the
reduced differential transform is

Wk(x) = aUk(x) + Vk(x), k ∈N,

where uk, vk, and wk are differential transforms of u, v, and w, respectively.
(ii) If u(t, x) = xmtn, then reduce differential transform of u is uk(x) = xmδ(k−n), k ∈N.

(iii) If v(x, t) = xmtnu(x, t), then reduce differential transform of v is vk(x) = xmuk−n(x), k ∈N.
(iv) If w(x, t) = u(x, t)v(x, t), then reduce differential transform of w is,

Wk(x) =

k∑
r=0

Vr(x)Uk−r(x), k ∈N.

(v) ) If v(x, t) = ∂r

∂tru(x, t), then reduce differential transform of v is,

vk(x) =
(k+ r)!
k!

uk+r(x), k ∈N.

(vi) Space derivative of u is invariant under differential transform, more precisely, if v(t, x) = ∂u
∂x (x, t), then

reduce differential transform of v is vk(x) = ∂uk
∂x (x).

2.2. Applications of differential transform to nonlinear evolution equations: a generic algorithm
Consider the following nonlinear evolution equation,

ut(t, x) = Au(t, x) +Bu(t, x) + f(t,u(t, x)), u(0, x) = h(x), (2.1)

where A is linear operator, B is nonlinear linear operator and f is some linear smooth function of x.
Suppose that variables can be separated, i.e., u(t, x) can be written as product of functions of x and t,
i.e., u(t, x) = f(x)g(t), where f(x) and g(t) smooth functions of space and time variables, respectively.
Based on the properties of one dimensional differential transform, the function u(t, x) can be represented
as follows:

u(t, x) =

( ∞∑
i=0

F(i)xi

)( ∞∑
i=0

G(j)tj

)
=

∞∑
k=0

uk(x)t
k,
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where uk(x) is called t-dimensional spectrum function of u(t, x). Using Definition 2.1 and suitable proper-
ties from Theorem 2.2 we may take differential transform of problem (2.1) we get the following algorithm
consisting of recursive set of equations,

(k+ 1)uk+1(x) = Auk(x) +Buk(x) + F(uk(x)), k = 1, 2, 3, . . . , u0(x) = h(x),

where Auk(x), Buk(x), and F(uk(x)) are the transformations of the functions Au(t, x), Bu(t, x), and f(t, x),
respectively. Using the above relation one can compute the uk from uk−1, for all k = 1, 2, 3, . . . and get
sequence of smooth function (uk(x))

∞
k=0. Then the series solution of the evolution equation (2.1) can be

recovered from the following inverse differential transform,

ũn(t, x) =
n∑
k=0

uk(x)t
k.

Hence, taking limit of partial sums will lead to solution of evolution equation,

u(t, x) = lim
n→∞ ũn(t, x) =

∞∑
k=0

uk(x)t
k. (2.2)

2.3. Convergence of RDT algorithm
We now present some interesting recent results from [29] about the convergence of RDT algorithm.

Theorem 2.3. The solution series
∑∞
k=0 uk(x)t

k, described in (2.2), converges, if there exists γ ∈ (0, 1) such that
‖uk+1(x)t

k+1‖ 6 γ‖uk(x)tk‖, for all k ∈ N ∪ {0}. Moreover, if
∑∞
k=0 uk(x)t

k converges to u(t, x), then error
between the truncated sum

∑n
k=0 uk(x)t

k and u(t, x) can be controlled by following inequality,

‖u(t, x) −
n∑
k=0

uk(x)t
k‖ 6 γn+1

γ− 1
‖u0‖.

3. Pricing European option with transaction cost and price slippage impact

In this section, we aim to deal with the continuous-time feedback effects equation for illiquid markets
developed by Bakstein and Howison in [3]. Assume that market trades two kinds of assets, namely,
illiquid risky (say stock) asset and liquid risk-free (say bond or money market account). The model that
describes the evolution of the European option satisfies the following initial value problem (see Theorem
3.1 in [3, 14]),

∂u

∂t
+

1
2
σ2s2∂

2u

∂s2

(
1 + 2ρs

∂2u

∂s2

)
+

1
2
ρ2(1 −α)2σ2s4

(
∂2u

∂s2

)3

+ rs
∂u

∂s
− ru = 0, (3.1)

subject to initial condition

u(s, 0) =
1
ρ

[(
−1±

√
1 − (1 −α)2

(1 −α)2

(
ln
( s
k

)
+
s0

k

)
s

)
− s0]

]
. (3.2)

Here t denotes time, s is the current price of the stock, ρ > 0 is the measure of the market liquidity, σ is
volatility, u(s, t) is the option price, and α is the measure of the impact of price slippage on all participants
of the market. Using Definition 2.1 and properties of differential transform from Theorem 2.2 to equation
(3.1), we arrive at the following recursive Algorithm,

(k+ 1)uk+1 = −

[
σ2s2

2
∂2uk
∂s2 + ρσ2s3Ak +

ρ2(1 −α)2σ2s4

2
Bk + rs

∂uk
∂s

− ruk

]
, (3.3)
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where

Ak =

k∑
h=0

∂2u

∂s2 (s,k)
∂2u

∂s2 (s,k− h), Bk =

h∑
k=0

k∑
m=0

∂2u(s,m)

∂s2
∂2u(s,h−m)

∂s2
∂2u(s,h− k)

∂s2 .

Here uk(x) is the transformed function. Ak and Bk are the transformed functions for nonlinear terms.
Let us move towards computing the solution of the initial value problem by computing the uk, for all

k = 0, 1, 2, . . . , from recurrence relation (3.3).
When k = 0: From (3.3), we have,

u1 = −

[
σ2s2

2
∂2u0

∂s2 + ρσ2s3A0 +
ρ2(1 −α)2σ2s4

2
B0 + rs

∂u0

∂s
− ru0

]
. (3.4)

Now using the initial condition, we get,

∂u0

∂s
=

1
ρ

(
ln
( s
k

)
+
s0

k
+

1
ρ

)(
−1±

√
1 − (1 −α)2

(1 −α)2

)
,

∂2u0

∂s2 =
1
sρ

(
−1±

√
1 − (1 −α)2

(1 −α)2

)
.

Therefore,

A0 =

(
∂2u0

∂s2

)2

=

(
1
sρ

−1±
√

1 − (1 −α)2

(1 −α)2

)2

, B0 =

(
∂2u0

∂s2

)3

=

(
1
sρ

−1±
√

1 − (1 −α)2

(1 −α)2

)3

.

Substituting the values of u0, ∂u0
∂s , ∂

2u0
∂s2 , A0, and B0 in (3.4),

u1 = −
σ2s2

2

(
1
sρ

−1±
√

1 − (1 −α)2

(1 −α)2

)
− ρσ2s3

(
1
sρ

−1±
√

1 − (1 −α)2

(1 −α)2

)2

−
ρ2(1 −α)2σ2s4

2

(
1
sρ

−1±
√

1 − (1 −α)2

(1 −α)2

)3

−
rs

ρ

(
ln
( s
k

)
+
s0

k
+

1
ρ

)(
−1±

√
1 − (1 −α)2

(1 −α)2

)

+ r

(
1
ρ

−1±
√

1 − (1 −α)2

(1 −α)2

{
ln
( s
k

)
+
s0

k

}
s− s0

)
.

After simplifications we get,

u1 = −
1
ρ

[(
−1±

√
1 − (1 −α)2

(1 −α)2

)
rs+ rs0

]
. (3.5)

Now the case when k = 1 : Using k = 1 in equation (3.4), we get

2u2 = −

[
σ2s2

2
∂2u1

∂s2 + ρσ2s3A1 +
ρ2(1 −α)2σ2s4

2
B1 + rs

∂u1

∂s
− ru1

]
. (3.6)

Using (3.5) it follows that,

∂u1

∂s
= −

r

ρ

−1±
√

1 − (1 −α)2

(1 −α)2 ,
∂2u1

∂s2 = 0,

and therefore,

A1 = 2
(
∂2u0

∂s2

)(
∂2u1

∂s2

)
= 0, B1 = 2

(
∂2u0

∂s2

)2(
∂2u1

∂s2

)
= 0.
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Substituting the values of u1, ∂u1
∂s , ∂

2u1
∂s2 , A1, and A2 in equation (3.6) we get,

u2 =
1

2ρ

[
−1±

√
1 − (1 −α)2

(1 −α)2 {r(rs− rs)}− r2s0

]
= −

r2s0

2ρ
.

When k = 2: By putting k = 2, into the equation (3.3) we get

3u3 = −

[
σ2s2

2
∂2u2

∂s2 + ρσ2s3A2 +
ρ2(1 −α)2σ2s4

2
B2 + rs

∂u2

∂s
− ru2

]
.

By computing A2 and B2 we get,

A2 =
∂2u0

∂s2
∂2u2

∂s2 +
∂2u1

∂s2
∂2u1

∂s2 +
∂2u2

∂s2
∂2u0

∂s2 = 0, B2 = 2
(
∂2u0

∂s2

)2(
∂2u2

∂s2

)
+

(
∂2u1

∂s2

)2
∂2u0

∂s2 = 0.

Hence we get,

u3 = −
r3

6
1
ρ
s0.

Next, we claim inductively that,
Ak = Bk = 0, for all k > 2,

and

uk = −
rk

k!
s0

ρ
.

Suppose
Ai = Bi = 0, for all i ∈ [2,k− 1]∩N,

and

∂ui
∂s

= 0 and
∂2ui
∂s2 = 0, for all i ∈ [2,k− 1]∩N, ui = −

ri

i!
s0

ρ
, for all i ∈ [2,k− 1]∩N.

Therefore,

kuk = −

[
σ2s2

2
∂2uk−1

∂s2 + ρσ2s3Ak−1 +
1
2
ρ2(1 −α)2σ2s4Bk−1 + rs

∂uk−1

∂s
− ruk−1

]
= −r

(
rk−1

(k− 1)!
s0

ρ

)
,

uk = −
rk

k!
s0

ρ
, for all k > 2.

Finally, we are in a position to write the solution of initial value problem (3.1)-(3.2), which can be given
as,

u(s, t) = u0(s) +

∞∑
k=1

uk(s)t
k =

1
ρ

[(
−1±

√
1 − (1 −α)2

(1 −α)2

{
ln(
s

k
) +

s0

k

}
s

)
− s0

]
−
s0

ρ

∞∑
k=2

(rt)k

k!
.

Thus the exact solution of the problem is rapidly obtained as follows

u(s, t) =
1
ρ

[(
−1±

√
1 − (1 −α)2

(1 −α)2

({
ln
( s
k

)
+
s0

k

}
− rt}s

))
− s0e

rt

]
.

The above solution obtained through the reduced differential transform algorithm is in a complete agree-
ment with traveling waves solution obtained by Esekon in [14] (Theorem 3.2). The plot of the solution,
for (s, t) ∈ [0, 10]× [0, 10], and taking ρ = 0.01, s0 = 4, k = 10, and r = 0.06, is given in Figure 1.
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Figure 1

4. Pricing European option with transaction cost and no slippage impact

In this section, our aim is to study the nonlinear Black-Scholes evolution equations arising as a result
of incorporating the transaction and hence illiquidity of the market, in the absence of impact of price
slippage impact. For further details of the model, we refer to [13] (Theorem 3.0.2). The model leading the
evolution of the price of European option with transaction cost and no slippage leads to the following:

∂u

∂t
+
σ2s2

2
∂2u

∂s2

(
1 + 2ρs

∂2u

∂s2

)
+ rs

∂u

∂s
− ru = 0, (4.1)

subject to initial condition

u(s, 0) = s−
√
ss0

ρ
−
s0

4ρ
. (4.2)

Here s is the running price of the stock, ρ is a measure of the market liquidity, σ is volatility, u(s, t)
is the option price, and α is the measure of the impact of the price slippage experienced by all market
participants.

Using Definition 2.1 and properties of differential transform from Theorem 2.2 to equation (4.1), we
arrive at the following recursive algorithm,

(k+ 1)uk+1 = −

[
σ2s2

2
∂2uk
∂s2 + ρσ2s3Ak + rs

∂uk
∂s

− ruk

]
, (4.3)

where uk is the transformed function and Ak =
∑h
k=0

∂2u(s,k)
∂s2 · ∂

2u(s,h−k)
∂s2 , is the transformed function

for nonlinear terms.
When k = 0 : Using k = 0 in equation (4.3), we get

u1 = −

[
σ2s2

2
∂2u0

∂s2 + ρσ2s3A0 + rs
∂u0

∂s
− ru0

]
. (4.4)

From the above initial condition (4.2), we compute the first and the second partial derivatives of (4.2) and
A0 and then we have,

∂u0

∂s
= 1 −

1
2ρ

√
s0

s
,

∂2u0

∂s2 =
1

4sρ

√
s0

s
, A0 =

(
∂2u0

∂s2

)2

=

(
1

4sρ

√
s0

s

)2

.
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Substituting ∂u0
∂s , ∂

2u0
∂s2 , and A0 in equation (4.4), we get

u1 = −
σ2s2

2

(
1

4sρ

√
s0

s

)
+ ρσ2s3

(
1

4sρ

√
s0

s

)2

+ rs

(
1 −

1
2ρ

√
s0

s

)
− r

(
s−

√
ss0

ρ
−
s0

4ρ

)
= −

√
ss0

ρ

(
σ2

8
+
r

2

)
−
s0

4ρ

(
1
4
σ2 + r

)
.

(4.5)

When k = 1 : Using k = 1 in equation (4.3), we get

2u2 = −

[
σ2s2

2
∂2u1

∂s2 + ρσ2s3A1 + rs
∂u1

∂s
− ru1

]
. (4.6)

Now let us compute the first and the second partial derivative of (4.5) with respect to s to obtain the
following,

∂u1

∂s
= −

1
2ρ

√
s0

s

(
σ2

8
+
r

2

)
,

∂2u1

∂s2 =
1

4sρ

√
s0

s

(
σ2

8
+
r

2

)
,

and

A1 = 2
∂2u0

∂s2
∂2u1

∂s2 =
s0

8s3ρ2

(
σ2

8
+
r

2

)
. (4.7)

By substituting the values of ∂u1
∂s , ∂

2u1
∂s2 , and of A1 in equation (4.6), we get

2u2 = −
σ2s2

2

(
−

1
2ρ

√
s0

s

(
σ2

8
+
r

2

))
− ρσ2s3

(
s0

8s3ρ2

(
σ2

8
+
r

2

))
− rs

(
−

1
2ρ

√
s0

s

(
σ2

8
+
r

2

))
+
r
√
ss0

ρ

(
σ2

8
+
r

2

)
+
rs0

4ρ

(
σ2

4
+ r

)
,

= −

√
ss0

2ρ

(
σ2

8
+
r

2

)2

−
s0

8ρ

(
σ2

4
+ r

)2

.

When k = 2 : For k = 2 the equation (4.3) becomes,

3u3 = −

[
σ2s2

2
∂2u2

∂s2 + ρσ2s3A2 + rs
∂u2

∂s
− ru2

]
. (4.8)

Now using the equation (4.7) to compute,

∂u2

∂s
= −

1
4ρ

√
s0

s

(
σ2

8
+
r

2

)2

,
∂2u2

∂s2 =
1

8sρ

√
s0

s

(
σ2

8
+
r

2

)2

,

and

A2 =
∂2u0

∂s2
∂2u2

∂s2 +
∂2u1

∂s2
∂2u1

∂s2 +
∂2u2

∂s2
∂2u0

∂s2 =
s0

8s3ρ2

(
σ2

8
+
r

2

)2

.

By substituting the values of ∂u2
∂s , ∂

2u2
∂s2 , and A2 in (4.8) we get,

3u3 = −
σ2s2

2

(
1

8sρ

√
s0

s

(
σ2

8
+
r

2

)2
)
−
ρσ2s3

8s2ρ2
s0

s

(
σ2

8
+
r

2

)2

+
rs

4ρ

√
s0

s

(
σ2

8
+
r

2

)2

+
r
√
ss0

2ρ

(
σ2

8
+
r

2

)2

+
r

8ρ
s0

(
σ2

4
+ r

)2

.
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After some simplification, we get

u3 = −

√
ss0

6ρ

(
σ2

8
+
r

2

)3

−
s0

24ρ

(
σ2

4
+ r

)3

.

Inductively, it follows that

uk = −

√
ss0

k!ρ

(
σ2

8
+
r

2

)k
−

s0

4k!ρ

(
σ2

4
+ r

)k
,k ∈N. (4.9)

Thus we are in a position to explicitly write the solution of (4.1)-(4.2). Using (4.2) and (4.9) in the inverse
differential transformed, we get

u(s, t) = u0 (x) +

∞∑
k=1

uk(s)t
k

= s−

√
ss0

ρ
−
s0

4ρ
+

n∑
k=1

(
−

√
ss0

k!ρ

(
σ2

8
+
r

2

)k
−

s0

4k!ρ

(
σ2

4
+ r

)k)
tk

= s−

√
ss0

ρ

n∑
k=0

(
σ2

8 + r
2

)k
tk

k!
−
s0

4ρ

n∑
k=0

(
σ2

4 + r
)k
tk

k!

= s−

√
ss0

ρ
exp

(
σ2t

8
+
rt

2

)
−
s0

4ρ
exp

(
σ2t

4
+ rt

)
.

(4.10)

The solution obtained above is in a complete agreement with the solution presented in the Theorem 3.0.2
[13].

To illustrate the result numerically, we make some choice for different values of s and t, while treating
all other parameter constant. Hence, for r = 0.06, |ρ| = 0.01,σ = 0.4, and S0 = 4. The plot of solution
can be given as Figure 2. Now we compare the our solution uRDT , i.e., equation (4.10), obtained by

Figure 2

RDT algorithm with the solution uADM obtained through adomian decomposition method in [20], by
computing the relative error. For this we choose s0 = 4, r = 0, σ = 0.2, ρ = −0.01. See Figures 3-5.
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Figure 3: Comparison of uRDT and uADM for t = 0.5 years.

Figure 4: Comparison of uRDT and uADM for t = 1 years.

Figure 5: Comparison of uRDT and uADM for t = 1.5 years.



J. Hussain, J. Math. Computer Sci., 23 (2021), 263–278 273

5. Pricing European option under relaxed Black-Scholes assumptions

In this section, we aim to study two models proposed by Esekon in [12, 16] which govern the evolution
of the price of the European option under Black-Scholes relaxed assumptions. The key relaxation was the
inclusion of the transaction cost, which leads to the Black-Scholes market into illiquid and a nonlinear
PDE. Let us begin by considering the following model in [16].

∂u

∂t
+

1
2
σ2s2∂

2u

∂s2

(
1 + 2ρs

∂2u

∂s2

)
= 0, (5.1)

subject to initial condition

u(s, 0) =
1
ρ

(
−
√
se

δ
2 + s(1 − ln s)

(
1
4
−
c

σ2

)
−
σ2

16c
eδ
)

. (5.2)

Keep in view that the market-impact of hedging is directly proportional to the ρ. If ρ→ 0 or no hedging
demand, the asset’s price follows the standard Black-Scholes model with constant volatility.

For the solution of the equation (5.1), we aim to apply the reduced differential transformed algorithm.
Using Definition 2.1 and properties of differential transform from Theorem 2.2 to equation (5.1), we arrive
at the following recursive algorithm,

(k+ 1)uk+1 = −

[
σ2s2

2
∂2uk
∂s2 + ρσ2s3Ak

]
, (5.3)

where

Ak =

h∑
k=0

∂2u(s,k)
∂s2

∂2u(s,h− k)

∂s2 .

Let us now move towards the computation of the solution of the problem, (5.1)-(5.2).

When k = 0 : By putting k = 0 in the recurrence relation (5.3), we obtain

u1 = −

[
σ2s2

2
∂2u0

∂s2 + ρσ2s3A0

]
. (5.4)

Now we compute ∂
2u0
∂s2 and A0 by using the initial condition (5.2), as follows,

∂u0

∂s
=

1
ρ

[
−

1
2
√
s
e
δ
2 − ln s

(
1
4
−
c

σ2

)]
,

∂2u0

∂s2 =
1
ρ

[
1

4s
3
2
e
δ
2 −

1
s

(
1
4
−
c

σ2

)]
,

A0 =

(
∂2u0

∂s2

)2

=
1
ρ2

(
eδ

16s3 −
e
δ
2(1

4 −
c
σ2

) + 1
s2

(
1
4
−
c

σ2

)2
)

.

Using the values of ∂
2u0
∂s2 and A0 in equation (5.4), we get

u1 = −
σ2s2

2ρ

(
e
δ
2

4s
3
2
−

1
s

(
1
4
−
c

σ2

))
−
ρσ2s3

ρ2

(
eδ

16s3 −
e
δ
2

2s
5
2

(
1
4
−
c

σ2

)
+

1
s2

(
1
4
−
c

σ2

)2
)

,

=
1
ρ

[
−
√
se

δ
2
c

2
+ σ2s

(
1

16
−
c2

σ4

)
−
σ2eδ

16

]
.

(5.5)
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When k = 1 : By putting k = 1 in equation (5.3) we get,

2u2 = −

[
σ2s2

2
∂2u1

∂s2 + ρσ2s3A1

]
. (5.6)

Using (5.5) we have,

∂u1

∂s
=

1
ρ

[
−

1
2
√
s
e
δ
2
c

2
+ σ2

(
1

16
−
c2

σ4

)]
,

∂2u1

∂s2 =
1
ρ

[
1

4s
3
2
e
δ
2
c

2

]
,

A1 = 2
∂2u0

∂s2
∂2u1

∂s2 =
2
ρ2

[
ceδ

32s3 −
e
δ
2 c

8s
5
2

(
1
4
−
c

σ2

)]
.

Putting the values of ∂
2u1
∂s2 and A1 in equation (5.6) we get,

2u2 = −

[
σ2s2

16ρ
e
δ
2 c

s
3
2

+ ρσ2s3 · 2 1
ρ2

{
1

16s3 e
δ c

2
−

1

4s
5
2
e
δ
2
c

2

(
1
4
−
c

σ2

)}]
.

Simplification yields,

u2 =
1
ρ

(
−

1
2
√
se

δ
2

(c
2

)2
−
σ2eδc

32

)
. (5.7)

When k = 2 : For k = 2 the equation (5.3) becomes,

3u3 = −

[
1
2
σ2s2∂

2u2

∂s2 + ρσ2s3A2

]
.

Using (5.7) it follows that,

∂u2

∂s
= −

e
δ
2

4ρ
√
s

(c
2

)2
,

∂2u2

∂s2 =
e
δ
2

8ρs
3
2

(c
2

)2
.

Therefore,

A2 =
∂2u0

∂s2
∂2u2

∂s2 +
∂2u1

∂s2
∂2u1

∂s2 +
∂2u2

∂s2
∂2u0

∂s2

=
1
ρ

{
e
δ
2

4s
3
2
−

1
s

(
1
4
−
c

σ2

)}{
1
ρ

e
δ
2

8s
3
2

(c
2

)2
}

+

{
1
ρ

e
δ
2

4s
3
2

c

2

}2

+
1
ρ

{
1

8s
3
2
e
δ
2

(c
2

)2
}

1
ρ

{
e
δ
2

4s
3
2
−

1
s

(
1
4
−
c

σ2

)}
,

=
1
ρ2

[
σ2eδ

8s3

(c
2

)2
−
σ2e

δ
2

4s
5
2

( c

2σ2

)2
(

1
4
−
c

σ2

)]
.

Using ∂2u2
∂s2 and A2 into (5.7), we get

u3 =
1
ρ

(
−

√
se

δ
2

4

(c
2

)3
−
σ2eδc2

64

)
.

Inductively it can be easily shown that

uk =
1
ρ

(
−

√
se

δ
2

4

(c
2

)k
−
σ2eδ

16

(c
2

)k−1
)

, for all k ∈N.
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Hence we are in a position to obtain the solution of the problem (5.1)-(5.2),

u(s, t) =
∞∑
k=0

uk(x)t
k

u(s, t) = u0(x) + u1(x)t+ u2(x)t
2 + u3(x)t

3 + · · ·

=
1
ρ

(
−
√
se

δ
2 + s(1 − ln s)

(
1
4
−
c

σ2

)
−
σ2eδ

16c

)
+

1
ρ

(
−
√
se

δ
2
c

2
+ σ2s

(
1

16
−
c2

σ4

)
−
σ2eδ

16

)
t

+
1
ρ

(
−

1
2
√
se

δ
2

(c
2

)2
−

1
16

.
σ2eδc

2

)
t2 +

1
ρ

(
−

√
se

δ
2

4

(c
2

)3
−
σ2eδc2

64

)
t3 + · · · ,

ρu(s, t) = −
√
se

δ
2

∞∑
k=0

(
ct

2

)k
+ s(1 − ln s)

(
1
4
−
c

σ2

)
+ σ2st

(
1
16

−
c2

σ4

)
−
σ2

16c
eδ
(

1 + ct+
1
2
(ct)2 +

1
4
(ct)3 + · · ·

)
,

u(s, t) =
1
ρ

[
−
√
se(

δ+ct
2 ) + s(1 − ln s)

(
1
4
−
c

σ2

)
+ σ2st

(
1
16

−
c2

σ4

)
−
σ2

16c
e(δ+ct)

]
.

Thus we obtain the following solution which is in an exact agreement with the solution obtained by
Esekon in Theorem 4.1 of [16],

u(s, t) =
1
ρ

[
−
√
se(

δ+ct
2 ) + s(1 − ln s)

(
1
4
−
c

σ2

)
+ σ2st

(
1

16
−
c2

σ4

)
−
σ2

16c
e(δ+ct)

]
.

Let us now move towards the second model derived by Esekon in [12],

∂u

∂t
+

1
2
σ2s2∂

2u

∂s2

(
1 + 2ρs

∂2u

∂s2

)
= 0, (5.8)

subject to initial condition

u(s, 0) = s−
√
ss0

ρ
−
s0

4ρ
. (5.9)

For the solution of the above equation (5.8), we apply the reduce differential transformed Algorithm to
equation (5.8) and get the following,

(k+ 1)uk+1 = −

(
σ2s2

2
∂2uk
∂s2 + ρσ2s3Ak

)
, (5.10)

where

Ak =

h∑
k=0

∂2u(s,k)
∂s2

∂2u(s,h− k)

∂s2 .

Let us now move towards the computation of the problem (5.8)-(5.9).
When k = 0 : We put k = 0 in the recurrence relation (5.10) and obtain,

u1 = −

[
σ2s2

2
∂2u0

∂s2 + ρσ2s3A0

]
. (5.11)

Now we compute ∂
2u0
∂s2 and A0, using initial condition (5.9),

∂u0

∂s
= 1 −

1
2ρ

√
s0

s
,

∂2u0

∂s2 =
1

4sρ

√
s0

s
, A0 =

(
∂2u0

∂s2

)2

=

(
1

4sρ

√
s0

s

)2

.
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Using ∂2u0
∂s2 and A0 in equation (5.11), we get

u1 = −

[
σ2s2

2

(
1

4sρ

√
s0

s

)
+ ρσ2s3

(
1

4sρ

√
s0

s

)2]
= −

σ2

ρ

(√
s0s

8
+
s0

16

)
. (5.12)

When k = 1 : By putting k = 1 in equations (5.3), we get

2u2 = −

[
σ2s2

2
∂2u1

∂s2 + ρσ2s3A1

]
. (5.13)

Now let us compute using (5.12),

∂u1

∂s
= −

σ2

16ρ

√
s0

s
,

∂2u1

∂s2 =
σ2

32sρ

√
s0

s
, A1 = 2

∂2u0

∂s2
∂2u1

∂s2 =
σ2

64s2ρ2
s0

s
.

By using the values of ∂
2u1
∂s2 and A1 in equation (5.13) we get,

2u2 = −

[
1
2
σ2s2

(
σ2

32sρ

√
s0

s

)
+ ρσ2s3

(
σ2

64s2ρ2
s0

s

)]
= −

σ4

2ρ

(√
ss0

64
+
s0

64

)
. (5.14)

When k = 2 : For k = 2 the equation (5.3) becomes,

3u3 = −

[
1
2
σ2s2∂

2u2

∂s2 + ρσ2s3A2

]
. (5.15)

Using (5.14) it follows that,

∂u2

∂s
= −

1
256ρ

√
s0

s
σ4,

∂2u2

∂s2 =
1

512sρ

√
s0

s
σ4

A2 =
∂2u0

∂s2
∂2u2

∂s2 +
∂2u1

∂s2
∂2u1

∂s2 +
∂2u2

∂s2
∂2u0

∂s2 =
σ4s0

512s3ρ2 .

Substituting ∂2u2
∂s2 and A2 into (5.15), we get

3u3 = −

[
σ2s2

2

(
1

512sρ

√
s0

s
σ4
)
+ ρσ2s3

(
σ4s0

512s3ρ2

)]
= −

1
6ρ

(√
s0sσ

6

512
+
s0σ

6

256

)
.

We can see inductively that,

uk = −
1
ρ


(
σ2

8

)k
k!

+
s0

4

(
σ2

4

)k
tk

k!

 , for all k ∈N.

Hence we are in a position to explicitly write the exact solution of (5.8)-(5.9). Thus by the inverse RDT
algorithm we get,

u(s, t) = u0 (s) +

∞∑
k=1

uk(s)t
k

= s−

√
ss0

ρ
−
s0

4ρ
−
σ2

ρ

(√
ss0

8
+
s0

16

)
t−

σ4

2ρ

(√
ss0

64
+
s0

64

)
t2 −

σ6

6ρ

(√
ss0

512
+
s0

256

)
t3 + · · · ,

= s−

(√
ss0

ρ
+
σ2

ρ

√
ss0

8
t+

σ4

2ρ

√
ss0

8
t2 +

1
6ρ

√
ss0σ

6

512

)
−

(
s0

4ρ
+
σ2

ρ

s0

16
+
σ4

2ρ
s0

64
t2 +

σ6

6ρ
s0

256
t3 · · ·

)
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= s−

√
ss0

ρ

∞∑
k=0

(
σ2

8

)k
tk

k!
−
s0

4ρ

∞∑
k=0

(
σ2

4

)k
tk

k!
,

u(s, t) = s−
1
ρ

(
√
ss0 exp

(
σ2t

8

)
+
s0

4
exp

(
σ2t

4

))
.

The solution obtained above is in a complete agreement with the solution obtained in [12]. For numerical
illustration, we will consider some examples for different values of s and t, over fixed values for the other
parameters. Hence, for r = 0.06, |ρ| = 0.01,σ = 0.4, and S0 = 4. The plot of solution can be given as Figure
6.

Figure 6
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