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Abstract

In this paper, we generalize the recent hyperstability results obtained by Brzd ↪ek and concerning the Cauchy functional
equation

f(x1 + x2) = f(x1) + f(x2).

The obtained results are in (2,γ)-Banach spaces. The main tool used in the analysis is some fixed point theorem.
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1. Introduction

People working in almost all areas of mathematical analysis can ask the following question: When
is it true that a mathematical object (e.g. function) satisfying a certain property approximately must be
close to some object satisfying the property exactly? In the case of equations (e.g., difference, differential,
functional, integral), we can particularly ask whether functions satisfying an equation in an approximate
way must be (somehow) close to a solution of the equation. This could be the starting point of the stability
problem of various equations.

Stability theory popped up as a result of Ulam’s famous talk in 1940 at the University of Wisconsin
(see [23]), where (among others) he presented an open problem (see, e.g., [24] for more details). It should
be noted that many famous mathematicians interacted with Ulam’s problem. In particular, in 1941, Hyers
(see [23]) gave some answer to Ulam’s problem concerning Banach spaces. The result obtained by Hyers
was generalized further by many authors see e.g. [7, 9–13, 15, 23–26, 28, 30, 31].

In particular, in 1950, Aoki in [2] generalized the result obtained by Hyers for approximate additive
mappings and subsequently in 1978 Rassias [34] generalized the result further for approximate linear
mappings. The author in [17] investigates the stability of the functional equation of the p-Wright affine
functions in (2,α)-Banach spaces. In [29] the authors investigate some stability and hyperstability results
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for some Cauchy-Jensen functional equation in 2-Banach spaces by using Brzdȩk’s fixed point approach.
In 2015, Zhang in [36] obtained hypersatbility results of the generalized linear functional equation by
employing Brzdȩk’s fixed point theory. In [33] the authors generalized the results that have been obtained
in [36]. In other words, they obtained hyperstability results of the generalized linear functional equation
in several variables. The author in [35] proved some hyperstability results for the Drygas functional
equation on a restricted domain.

Roughly speaking, a given functional equation (see, e.g., [1, 16]) FE is called stable in some class of
functions if any function from that class, satisfying FE approximately (in some sense), is near (in some
way) to an exact solution of FE. It is well-known that the concept of an approximate solution and the
idea of nearness of two functions can be understood in numerous nonstandard ways, depending on the
needs and tools available in a particular situation. One of such non-classical measures of a distance can
be introduced by the notion of a 2-norm. As far as we know Gähler in [19] pioneered the notion of the
2-normed space, and it seems that the first work on the Hyers-Ulam stability of functional equations
in complete 2-normed spaces (that is, 2-Banach spaces) is [21] (see also, e.g., [14, 32] for some details
concerning such stability in 2-Banach spaces).

This article is organized as follows. In Section 2 we recall some basic definitions and present the
functional equation of our interest; in Section 3 we introduce the fixed point theorem that is our main
tool in the proofs; in Section 4 we investigate the hyperstability of the Cauchy functional equation, and in
Section 5 we conclude our work.

2. Preliminaries

Throughout the article, we use R to denote the set of reals, R+ the set of nonnegative reals, N to
denote the set of positive integers, N0 to denote N ∪ {0}, and AB denotes the family of all functions
mapping a set B into a set A. Let us recall first (see, for instance, [18]) some definitions.

Definition 2.1. By a linear 2-normed space we mean a pair (X, ‖., .‖) such that X is at least a two-dimensional
real linear space and

‖·, ·‖ : X×X→ R

is a function satisfying the following conditions:

(N1) ‖a,b‖ = 0 if and only if a and b are linearly dependent;
(N2) ‖a,b‖ = ‖b,a‖ for a,b ∈ X;
(N3) ‖a,b+ c‖ 6 ‖a,b‖+ ‖a, c‖ for a,b, c ∈ X;
(N4) ‖λa,b‖ = |λ|‖a,b‖ for λ ∈ R and a,b ∈ X.

A generalized version of a linear 2-normed spaces is the (2,γ)-normed space defined in the following
manner.

Definition 2.2. Let γ be a fixed real number with 0 < γ 6 1, and let X be a linear space over K with
dimX > 1. A function

‖., .‖γ : X×X→ R+

is called a (2,γ)-norm on X if and only if it satisfies the following conditions:

(G1) ‖x1, x2‖γ = 0 if and only if x1 and x2 are linearly dependent;
(G2) ‖x1, x2‖γ = ‖x2, x1‖γ for x1, x2 ∈ X;
(G3) ‖x1, x2 + x3‖γ 6 ‖x1, x2‖γ + ‖x1, x3‖γ for xi ∈ X, i = 1, 2, 3;
(G4) ‖λx1, x2‖γ = |λ|γ‖x1, x2‖γ for λ ∈ R and x1, x2 ∈ X.

The pair (X, ‖., .‖γ) is called a (2,γ)-normed space.

Definition 2.3. A sequence (xn)n∈N of elements of a linear (2,γ)-normed space X is called a Cauchy
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sequence if there are linearly independent y, z ∈ X such that

lim
n,m→∞ ‖xn − xm, z‖γ = 0 = lim

n,m→∞ ‖xn − xm,y‖γ,

whereas (xn)n∈N is said to be convergent if there exists an x ∈ X (called a limit of this sequence and
denoted by limn→∞ xn) with

lim
n,m→∞ ‖xn − x,y‖γ = 0,y ∈ X.

Definition 2.4. A linear (2,γ)-normed space in which every Cauchy sequence is convergent is called a
(2,γ)-Banach space.

Let us also mention that in linear (2,γ)-normed spaces, every convergent sequence has exactly one
limit and the standard properties of the limit of a sum and a scalar product are valid. Next, it is easily
seen that we have the following property.

Lemma 2.5. If X is a linear (2,γ)-normed space, x,y, z ∈ X, y, z are linearly independent, and

‖x,y‖γ = 0 = ‖x, z‖γ,

then x = 0.

Let us yet recall a version of a lemma from [32].

Lemma 2.6. If X is a linear (2,γ)-normed space and (xn)n∈N is a convergent sequence of elements of X, then

lim
n→∞ ‖xn, z‖γ = ‖ lim

n→∞ xn, z‖γ, z ∈ X.

We introduce a simple example of a (2,γ)-normed space.

Example 2.7. For x = (x1, x2), y = (y1,y2) ∈ X = R2, the (2,γ)-norm on X is defined by

‖x,y‖γ = |x1y2 − x2y1|
γ,

where γ is a fixed real number with 0 < γ 6 1.

In this article our target is to generalize the following two results obtained in [5, 6] and concerning the
hyperstability of the Cauchy functional equation

f(x1 + x2) = f(x1) + f(x2). (2.1)

Theorem 2.8. Let E1 and E2 be normed spaces, X ⊂ E1 \ {0} be nonempty, c = 0 and p < 0. Assume that there
exists a positive integer m0 with

−x,nx ∈ X, x ∈ X,n ∈N,n = m0.

Then every operator g : E1 → E2 with

‖g(x1 + x2) − g(x1) − g(x2)‖ 5 c(‖x1‖p + ‖x2‖p), x1, x2 ∈ X, x1 + x2 ∈ X,

is additive on X, i.e.,
g(x1 + x2) = g(x1) + g(x2), x1, x2 ∈ X, x1 + x2 ∈ X. (2.2)

Theorem 2.9. Let E1 and E2 be normed spaces, and X ⊂ E1 \ {0} be nonempty. Take c > 0 and let p,q be real
numbers with p+ q < 0. Assume that there exists a positive integer m0 with

x1,nx1 ∈ X, n ∈N,n > m0.

Then every operator g : E1 → E2, satisfying the inequality

‖g(x1 + x2) − g(x1) − g(x2)‖ 6 c‖x1‖p‖x2‖q, x1, x2 ∈ X, x1 + x2 ∈ X,

is additive on X, that is, fulfills condition (2.2).

That is, we obtain analogous results but in (2,γ)-Banach spaces. The method of the proof of the main
result corresponds to some observations in [9] and the main tool in it is a fixed point theorem.
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3. Fixed point theorem

In order to use the fixed point approach we need to assume the following three assumptions.

(A1) E is a nonempty set, (Y, ‖., .‖γ) is a (2,γ)-Banach space, Y0 is a subset of Y containing two linearly
independent vectors, j ∈N,

fi : E→ E, gi : Y0 → Y0,

and
Li : E× Y0 → R+ for i = 1, · · · , j.

(A2) T : YE → YE is an operator satisfying the inequality

‖Tξ(x) − Tµ(x),y‖γ 6
j∑
i=1

Li(x,y)‖ξ(fi(x)) − µ(fi(x)),gi(y)‖γ,

where ξ,µ ∈ YE, x ∈ E, andy ∈ Y0.
(A3) Λ : RE×Y0 → RE×Y0 is an operator defined by

Λδ(x,y) :=
j∑
i=1

Li(x,y)δ(fi(x),gi(y)), δ ∈ RE×Y0 , x ∈ E,y ∈ Y0.

Now, its the position to present the main tool used in the investigation of the hyperstability, namely, a
version of the fixed point theorem which is introduced in [9].

Theorem 3.1. Let assumptions (A1)-(A3) hold and functions

ε : E× Y0 → R+ and ϕ : E→ Y

fulfill the following two conditions:

‖Tϕ(x) −ϕ(x),y‖γ 6 ε(x,y), x ∈ E,y ∈ Y0, ε∗(x,y) :=
∞∑
i=1

(Λiε)(x,y) <∞, x ∈ E,y ∈ Y0.

Then, there exists a unique fixed point ψ of T for which

‖ϕ(x) −ψ(x),y‖γ 6 ε∗(x,y), x ∈ E, y ∈ Y0.

Moreover,
ψ(x) = lim

l→∞(Tlϕ)(x), x ∈ E.

4. Hyperstability results in (2,γ)-Banach spaces

A functional equation D is called hyperstable if any function f satisfying D approximately (in some
sense) must be actually a solution to D (see e.g. [8, 22]). It should be noted that the first hyperstability
result was published in [3] and concerned ring homomorphisms. However, the term hyperstability was
used for the first time in [27] by Maksa and Páles. It should be noted that the most classical result
concerning the hyperstability of the Cauchy equation (2.1) is Theorem 1.1 in both [5, 6], see also [2, 20] for
more details. In this article one propose is to generalize the results obtained in [5] in (2,γ)-Banach spaces
in the following way.

Theorem 4.1. Let E1 = E2 be (2,γ)-Banach spaces, X ⊂ E1 \ {0} be nonempty, c = 0, 0 < γ 6 1 and p < 0.
Assume that there exists a positive integer m0 with

−x,nx ∈ X, x ∈ X,n ∈N,n = m0.
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Then every operator g : E1 → E2 with

‖g(x1 + x2) − g(x1) − g(x2),y‖γ 5 c(‖x1,y‖pγ + ‖x2,y‖pγ), x1, x2 ∈ X, x1 + x2 ∈ X,y ∈ Y0 (4.1)

is additive on X, i.e.,
g(x1 + x2) = g(x1) + g(x2), x1, x2 ∈ X, x1 + x2 ∈ X.

Proof. Let f denote the restriction of g to the set X. Take m ∈N such that

(m+ 1)γp +mγp < 1

and m = m0. Note that (4.1), with x1 replaced by (m+ 1)x1 and x2 = −mx1, gives

‖f(x1) − f((m+ 1)x1) − f(−mx1),y‖γ 5 c((m+ 1)γp +mγp)‖x1,y‖pγ, x1 ∈ X,y ∈ Y0. (4.2)

Define operators T : EX2 → EX2 by

Tξ(x) := ξ((m+ 1)x) + ξ(−mx), x ∈ X, ξ ∈ EX2 ,

and Λ : RX+ → RX+ by
Λδ(x) := δ((m+ 1)x) + δ(−mx), x ∈ X, δ ∈ RX+.

Then it is easily seen that Λ has the form described in (A3) with j = 2 and

f1(x) = (m+ 1)x, f2(x) = −mx, L1(x) = L2(x) = 1

for x ∈ X. Further, (4.2) can be written in the form

‖Tf(x1) − f(x1),y‖γ 5 c((m+ 1)γp +mγp)‖x1,y‖pγ := ε(x1,y), x1 ∈ X,y ∈ Y0

and assumption (A2) holds, too. Note yet that we have

ε∗(x1,y) :=
∞∑
n=0

Λnε(x1,y) 5 c((m+ 1)γp +mγp)‖x1,y‖pγ
∞∑
n=0

((m+ 1)γp +mγp)n

=
c((m+ 1)γp +mγp)‖x1,y‖pγ

1 − (m+ 1)γp −mγp
, x1 ∈ X,y ∈ Y0.

Consequently, in view of Theorem 3.1, there exists a fixed point T∗ : X→ E2 of operator T such that

‖f(x1) − T∗(x1),y‖γ 5
c((m+ 1)γp +mγp)‖x1,y‖pγ

1 − (m+ 1)γp −mγp
, x1 ∈ X,y ∈ Y0, (4.3)

moreover, T∗ is given by the formula

T∗(x1) := lim
n→∞(Tnf)(x1), x1 ∈ X.

Clearly T∗ is a solution to the equation

T(x) = T((m+ 1)x) + T(−mx). (4.4)

Now, we show that

‖Tnf(x1 + x2) − T
nf(x1) − T

nf(x2),y‖γ 5 c((m+ 1)γp +mγp)(‖x1,y‖pγ + ‖x2,y‖pγ), y ∈ Y0, (4.5)
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for every n ∈ N0 and x1, x2 ∈ X with x1 + x2 ∈ X. Clearly, if n = 0, then (4.5) is simply (4.1). So, take
k ∈ N0 and suppose that (4.5) holds for n = k and every x1, x2 ∈ X with x1 + x2 ∈ X. Then, for every
x1, x2 ∈ X with x1 + x2 ∈ X

‖Tk+1f(x1 + x2) − T
k+1f(x1) − T

k+1f(x2),y‖γ
=‖Tkf((m+ 1)(x1 + x2)) + T

kf(−m(x1 + x2)) − T
kf((m+ 1)x1)

− Tkf(−mx1) − T
kf((m+ 1)x2) − T

kf(−mx2),y‖γ
5‖Tkf((m+ 1)x1 + (m+ 1)x2)) − T

kf((m+ 1)x1) − T
kf((m+ 1)x2),y‖γ

+ ‖Tkf(−mx1 −mx2) − T
kf(−mx1) − T

kf(−mx2),y‖γ
5c((m+ 1)γp +mγp)k(‖(m+ 1)x1,y‖pγ + ‖(m+ 1)x2,y‖pγ)
+ c((m+ 1)γp +mγp)k(‖mx1,y‖pγ + ‖mx2,y‖pγ)

=c((m+ 1)γp +mγp)k+1(‖x1,y‖pγ + ‖x2,y‖pγ).

(4.6)

Thus, by induction we have shown that (4.6) holds for every x1, x2 ∈ X with x1 + x2 ∈ X, y ∈ Y0, and
n ∈ N0. Letting n → ∞ in (4.6), we obtain that T∗ is additive on X. Next we prove that T∗ is the unique
operator that is additive on X and satisfies the condition

sup
x1∈X

‖f(x1) − T∗(x1),y‖γ‖x1,y‖−pγ <∞.

So let T∗∗ : X→ E2 be additive on X and

sup
x1∈X

‖f(x1) − T∗∗(x1),y‖γ‖x1,y‖−pγ <∞.

Then there is a real constant A such that

‖T∗(x1) − T∗∗(x1),y‖γ 5 ‖T∗(x1) − f(x1),y‖γ + ‖f(x1) − T∗∗(x1),y‖γ < A‖x1,y‖pγ, (4.7)

where x1 ∈ X and y ∈ Y0. We show that, for each j ∈N0,

‖T∗(x1) − T∗∗(x1),y‖γ 5 A‖x1,y‖pγ
∞∑
n=j

(mγp + (1 +m)γp)n, x1 ∈ X. (4.8)

The case j = 0 is exactly (4.7). So fix l ∈N0 and assume that (4.8) holds for j = l. Then, in view of (4.7),

‖T∗ − T∗∗,y‖γ =‖T∗((m+ 1)(x1)) + T∗(−mx1) − T∗∗((m+ 1)(x1)) − T∗∗(−mx1),y‖γ
5‖T∗((m+ 1)(x1)) − T∗∗((m+ 1)(x1)),y‖γ + ‖T∗(−mx1) − T∗∗(−mx1),y‖γ

5A(‖(m+ 1)x1,y‖pγ + ‖−mx1,y‖pγ)
∞∑
n=l

((m+ 1)γp +mγp)n

=A‖x1,y‖pγ
∞∑

n=l+1

((m+ 1)γp +mγp)n, x1 ∈ X,y ∈ Y0,

because T∗ and T∗∗ are solutions to equation (4.4). Thus we have shown that (4.8) holds true for every
j ∈ N0. Now, letting j → ∞ in (4.8) we get T∗ = T∗∗. In this way we have proved that for each m ∈ N,
m = m0, there exists a unique operator T∗ : X → Y that is additive on X and satisfies (4.3). Note that the
uniqueness of T∗ means that for x1 ∈ X, k,n ∈N, with k,n = m0

‖f(x1) − Tk(x1),y‖γ 5
c(nγp + (1 +n)γp)‖x1,y‖pγ

1 −nγp − (n+ 1)γp
, y ∈ Y0.



E.-S. El-Hady, J. Math. Computer Sci., 23 (2021), 354–363 360

In fact, if k,n ∈N,n = k = m0, then

‖f(x1) − Tn(x1),y‖γ 5
c(nγp + (1 +n)γp)‖x1,y‖pγ

1 −nγp − (n+ 1)γp
,5

c(kγp + (1 + k)γp)‖x1,y‖pγ
1 − kγp − (k+ 1)γp

, x1 ∈ X,y ∈ Y0, (4.9)

whence Tn = Tk, which implies (4.9). Letting n → ∞ and fixing k in (4.9), we get f = Tk, which implies
that f is additive on X.

In the following theorem we obtain also a generalized version of Theorem 1.3 in [6]. The theorem in
the generalized version takes the form.

Theorem 4.2. Let E1 = E2 be(2,γ)-Banach spaces, and X ⊂ E1 \ {0} be nonempty. Take c > 0, 0 < γ < 1 and let
p,q be real numbers with p+ q < 0. Assume that there exists a positive integer m0 with

x1,nx1 ∈ X; n ∈N;n > m0.

Then every operator g : E1 → E2, satisfying the inequality

‖g(x1 + x2) − g(x1) − g(x2),y‖γ 6 c‖x1,y‖pγ‖x2,y‖qγ, (4.10)

is additive on X, that is, fulfils the condition

g(x1 + x2) = g(x1) + g(x2), x1, x2 ∈ X, x1 + x2 ∈ X,y ∈ Y0.

Proof. Because of the assumption that p+q < 0, this means that we have either p < 0 or q < 0. Therefore,
it is sufficient to consider only the case where q < 0.

Let f denote the restriction of g to the set X. Fix m ∈N with m > m0 and

mγ(p+q) + (1 +m)γ(p+q) < 1.

Taking x2 = mx1 in (4.10),

‖f((m+ 1)x1) − f(x1) − f(mx1),y‖γ 6 cmγq‖x1,y‖p+qγ , x1 ∈ X,y ∈ Y0. (4.11)

Define operators T : EX2 → EX2 by

Tξ(x) := ξ((m+ 1)x) + ξ(−mx), x ∈ X, ξ ∈ EX2 ,

and Λ : RX+ → RX+ by
Λδ(x) := δ((m+ 1)x) + δ(−mx), x ∈ X, δ ∈ RX+.

Then Λ has the form described in (A3) with j = 2, f1(x) = (m+ 1)x, f2(x) = mx, L1(x) = L2(x) = 1 for
x ∈ X and (4.11) can be written as

‖Tf(x1) − f(x1),y‖γ 6 cmγq‖x1,y‖p+qγ =: ε(x,y), x1 ∈ X,y ∈ Y0.

Furthermore, (A2) is also valid. Since

ε∗(x1,y) :=
∞∑
n=0

Λnε(x1,y) 6 cmγq‖x1,y‖p+qγ

∞∑
n=0

(mγ(p+q) + (1 +m)γ(p+q))n, x1 ∈ X,y ∈ Y0,

we have

ε∗(x1,y) 6
cmγq‖x1,y‖p+qγ

1 −mγ(p+q) − (1 +m)γ(p+q)
, x1 ∈ X,y ∈ Y0.
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Hence, using Theorem 3.1, there is a solution Tm : X→ E2 of the equation

T(x) = T((1 +m)x) − T(mx), (4.12)

such that

‖f(x1) − Tm(x1),y‖γ 6
cmγq‖x1,y‖p+qγ

1 −mγ(p+q) − (1 +m)γ(p+q)
, x1 ∈ X,y ∈ Y0. (4.13)

Moreover,
Tm(x1) := lim

n→∞ Tnf(x1), x1 ∈ X.

Next, it can be easily shown by induction that, for every x1, x2 ∈ X with x1 + x2 ∈ X and n ∈N0,

‖Tnf(x1 + x2) − T
nf(x1) − T

nf(x2),y‖γ
5 c((m+ 1)γ(p+q) +mγ(p+q))n(‖x1,y‖pγ‖x2,y‖qγ), x1, x2 ∈ X,y ∈ Y0.

(4.14)

To this end, it is enough to observe that the case n = 0 is just (4.10) and, for every k ∈ N0 and x1, x2 ∈ X
with x1 + x2 ∈ X,

‖Tk+1f(x1 + x2) − T
k+1f(x1) − T

k+1f(x2),y‖γ
5 ‖Tkf((m+ 1)x1 + (m+ 1)x2) − T

kf((m+ 1)x1)

− Tkf((m+ 1)x2),y‖γ + ‖Tkf(mx1 +mx2) − T
kf(mx1) − T

kf(mx2),y‖γ, x1, x2 ∈ X,y ∈ Y0.

Letting n→∞ in (4.14), we obtain that

Tm(x1 + x2) = Tm(x1) + Tm(x2), x1, x2 ∈ X, x1 + x2 ∈ X. (4.15)

Next, we prove that Tm is the unique function mapping X into E2 that is additive on X and such that

sup
x1∈X

‖f(x1) − Tm(x1),y‖γ‖x1,y‖−p−qγ <∞.

So, suppose that T0 : X→ Y is additive on X and satisfies

sup
x1∈X

‖f(x1) − T0(x1),y‖γ‖x1,y‖−p−qγ <∞.

Then there is a positive real constant B with

‖Tm(x1) − T0(x1),y‖γ 6 B‖x1,y‖p+qγ , x1 ∈ X. (4.16)

We can easily show by induction that, for each j ∈N0,

‖Tm(x1) − T0(x1),y‖γ 6 B‖x1,y‖p+qγ

∞∑
n=j

(mγ(p+q) + (1 +m)γ(p+q))n, x1 ∈ X,y ∈ Y0. (4.17)

It is enough to note that the case j = 0 follows from (4.16) and, for each l ∈N0,

‖Tm(x1) − T0(x1),y‖γ 6 ‖Tm((m+ 1)x1) − T0((m+ 1)x1),y‖γ + ‖Tm(mx1) − T0(mx1),y‖γ, x1 ∈ X,y ∈ Y0,

because Tm and T0 are solutions to (4.12). Hence, letting j → ∞ in (4.17), we get Tm = T0. Thus we have
proved that, for each m ∈N, m > m0, there exists a unique solution Tm : X→ Y to (4.15) satisfying (4.13).
The uniqueness of Tm means that

‖f(x1) − Tk(x1),y‖γ 6
cnq‖x1,y‖p+qγ

1 −nγ(p+q) − (1 +n)γ(p+q)
, x1 ∈ X,y ∈ Y0, (4.18)

for every x1 ∈ X and k,n ∈N, n > m0 and k > m0 . In fact, if k,n ∈N,, n > k > m0, then

‖f(x1) − Tn(x1),y‖γ 6
cnq‖x1,y‖p+qγ

1 −nγ(p+q) − (1 +n)γ(p+q)
6

ckq‖x1,y‖p+qγ

1 − kγ(p+q) − (1 + k)γ(p+q)
, x1 ∈ X,y ∈ Y0,

whence Tn = Tk, which yields (4.18). Fixing k and letting n → ∞ in (4.18), we get f = Tk. This implies
that f is additive on the set X.
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5. Conclusion

In this article, we managed to generalize some of the recent results concerning the hyperstability of
the Cauchy functional equation. The main tool used is a fixed point. The results obtained in this article
may be further generalized to be in (n,γ)-Banach spaces for some n ∈N. This could be a potential future
work.
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[9] J. Brzd ↪ek, K. Ciepliński, On a fixed point theorem in 2-Banach spaces and some of its applications, Acta Math. Sci. Ser.

B (Engl. Ed.), 38 (2018), 377–390. 1, 2, 3
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