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Abstract
In this study, we employ the dislocated metric space stability result of an equation with one variable function to prove

different stabilities of a two variable equation involving rational function in the codomain of complete dislocated quasi-metric
spaces. We also extend the stabilities by taking different upper bounds.
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1. Introduction and preliminaries

The role of dislocated metric spaces is very significant in cybercrime and cryptography for protecting
data and information. In particular, the applications of these spaces are of great importance in elliptic
curve cryptography [35]. Hence, this raises many more applications in information and communication
technologies and other domains of computing. Let us revocate few essential ideas of dislocated metric
spaces.

Let B be a non-empty set with a metric d : B× B −→ R+ ∪ {0}, which satisfies the subsequent condi-
tions:

(i) d(ν, ξ) = d(ξ,ν) = 0 =⇒ ν = ξ;
(ii) d(ν, ξ) 6 d(ν, τ) + d(τ, ξ)

for all ν, ξ, τ ∈ B. The mapping d defined with the set B is called a dislocated quasi-metric (in short dq-
metric) and the pair (B,d) is said to be a dislocated quasi-metric space (in short dq-metric space) (Refer
[37, 49]). The pair (B,d) is called a metric-like space if the dq-metric d defined in B satisfies the symmetric
condition, that is, d(ν, ξ) = d(ξ,ν) for ν, ξ ∈ B (see [6]).
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Example 1.1. A mapping d : R2 −→ R+ ∪ {0} defined via d(ν, ξ) = |ν| for ν, ξ ∈ R is a dislocated
quasi-metric.

Example 1.2. A mapping d : R2 −→ R+ ∪ {0} = max{|ν|, |ξ|} for ν, ξ ∈ R, then the pair (R,d) is a metric-
like space.

Suppose (B,d) is a dq-metric space and suppose {νm} is a sequence of elements in B. Then the limit of
the sequence {νm} converges to ν ∈ B if and only if d(νm,ν)→ 0 and d(ν,νm)→ 0 and it can be verified
that this limit if it exists then it is unique. If the sequence {νm} converges to ν, then we can write it as
νm → ν. Precisely, suppose the there are two different limits α,β ∈ B of the sequence {νm}, then we have
0 6 d(ν, ξ) 6 d(ν, ξm) +d(νm, ξ). This implies that d(ν, ξ) = 0 and analogously, we have d(ξ,ν) = 0, and
hence we get ν = ξ.

Let {νm} be a sequence. Then it is said to be Cauchy if for all ε > 0, there exists M ∈ N, for all
r, s >M, d(νs,νr) < ε. If every Cauchy sequence is convergent in a dq-metric space (B,d), then it is said
to be complete.

The classical stabiity result of a one variable functional equation is obtained in the following theorem.
The proof of this theorem is available in [17]. This theorem plays a crucial key to prove our major results.
The following notations are used in the theorem. Let (B,d) be a dq-metric space with completeness, L be
a non-empty set, Φ : B −→ B, g : L −→ L, and fk : L −→ R+ ∪ {0} be mappings. Suppose the mapping Φ
satisfies the Lipschitz condition d(Φ(r),Φ(s)) 6 µd(r, s) for all r, s ∈ B and for k = 1, 2, where µ > 0 is a
Lipschitz constant, Fk(r) =

∑∞
k=0 µ

kfk
(
gk(r)

)
<∞ for every r ∈ L.

Theorem 1.3. Suppose a mapping h : L −→ B satisfies the following inequalities

d(Φ ◦ h ◦ g(r),h(r)) 6 f1(r), r ∈ L, d(h(r),Φ ◦ h ◦ g(r)) 6 f2(r), r ∈ L.

Then a mapping H : L −→ B exists defined by the existence of the limit H(r) = lim
k→∞Φk ◦ h ◦ gk(r) for all r ∈ L

and satisfies the equation Φ ◦H ◦ g = H such that

d(H(r),h(r)) 6 F1(r), r ∈ L, d(h(r),H(r)) 6 F2(r), r ∈ L.

The most active research area in the domain of analysis is stability theory. The investigation of
validity of stabilities of functional equations has become the crucial question for various research problems
and a number of motivating and novel results are published by many mathematicians. The vital question
raised in [56] became the backbone for the evolution of stability theory of equations. This fundamental
question is concerned with determining approximate group homomorphisms. The question can be stated
as “When an approximate homomorphism exists near to the given homomorphism?” This question
triggered to find the solution and it was first responded in [20] by considering fundamental Cauchy
additive equation χ(ν+ξ) = χ(ν)+χ(ξ) in the framework of Banach spaces. Later on, the results obtained
in [20] were dealt in different versions by many mathematicians [7, 10, 15, 16, 38, 40, 57]. A lot of
fundamental ideas about functional equations and inequalities are published as books [5, 9, 13, 28, 39,
41, 48]. The stability results of various other forms of functional equations are published in the form of
monographs in [21, 24]. There are lot of interesting information regarding stability results available in
[11, 12, 14, 22, 23, 29, 31, 45–47]. Quite recently for the past one decade, there are new and interesting
stability results of several functional equations are obtained in [3, 4, 25–27, 32–34, 36].

The pioneering multiplicative inverse functional equation in the dynamic research domain of stability
theory of equations is

h(r+ s) =
h(r)h(s)

h(r) + h(s)
. (1.1)

The solution and stability results of equation (1.1) were obtained in [43]. Later on, there are numerous
intriguing and noteworthy stability results, applications and intepretations of various forms of multi-
plicative inverse functional equations are published in [8, 18, 30, 42, 50, 51]. The solutions of these
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multiplicative inverse functional equations are of rational form provide exceptional contributions in var-
ious disciplines such as to compute the combined resistance of a parallel electric circuit with resistors
[44], to study physical properties of objects [52], to interpret them with a significant hypothesis arising in
electromagnetic theory and the relation of stiffness and length of diving board [53], to compute the total
focal length of combined lenses in optics [54], to interpret through an application in electromagnetism
[55].

The considerable contribution of these type functional equations in other spheres and the remarkable
results obtained in Theorem 1.3 influenced us to deal with the same approach to the stablesness of equa-
tion (1.1). Hence, in this article, by the approach of Theorem 1.3, we prove the stabilities of equation (1.1)
where h : L −→ B is a mapping with L as a non-empty set and B as a dq-metric space. We also extend
further stability results by taking different upper bounds.

2. Stability of equation (1.1) via the approach of Theorem 1.3

In this section, we apply the approach applied in Theorem 1.3 to prove stability results of equation
(1.1). Let us consider (A,+) is a square summetric groupoid which is divisible by 2 distinctively and
(B,d) is a dq-metric space satisfying the completeness property with the continuous binary operator
+. Let L ⊂ A be a non-empty set such that r 6= 0, r + s 6= 0, for all r, s ∈ L. Further assume that
ζ1, ζ2 : L× L −→ R+ ∪ {0} are mappings. We determine the stability result of equation (1.1) with these
assumptions in the ensuing result.

Theorem 2.1. Suppose ρ1, ρ2, θ ∈ (0,∞) exist with the conditions ρ1θ < 1 and ρ2θ < 1 and

ζk

( r
2

,
s

2

)
6 ρkζk(r, s), r, s ∈ L, k = 1, 2, d

(
1
2
h(r),

1
2
h(s)

)
6 θd(h(r),h(s)), r, s ∈ L.

If a mapping h : L −→ B satisifes the following conditions:

d

(
h(r)h(s)

h(r) + h(s)
,h(r+ s)

)
6 ζ1(r, s), d

(
h(r+ s),

h(r)h(s)

h(r) + h(s)

)
6 ζ2(r, s)

for all r, s ∈ L, r+ s ∈ L, then a mapping H : L −→ B exists which is unique, close to h and is a solution of (1.1)
satisfying the ensuing approximations

d(H(r),h(r)) 6
ρ1ζ1(r, r)
1 − ρ1θ

and d(h(r),H(r)) 6
ρ2ζ2(r, r)
1 − ρ2θ

for all r ∈ L.

Proof. Replacing (r, s) by
(
r
2 , r2

)
in the assumption, one can find

d

(
1
2
h
( r

2

)
,h(r)

)
6 ζ1

( r
2

,
r

2

)
for all r ∈ L, and analogously, one can also obtain

d

(
h(r),

1
2
h
( r

2

))
6 ζ2

( r
2

,
r

2

)
for all r ∈ L. Now, assuming Φ(r) = r

2 , µ = θ, fk(r) = ζk
(
r
2 , r2

)
, k=1,2, and g(r) = r

2 in Theorem 1.3, then
we have a mapping H : L −→ B defined by the existence of the limit H(r) = lim

m→∞ 2−mh (2−mr) for all

r ∈ L. The mapping H is unique and it satisfies the equation 2−1H
(
2−1r

)
= H(r), r ∈ L, such that for all

r ∈ L, we have

d((H(r),h(r)) 6
∞∑
k=0

θkζ1

( r

2k+1 ,
r

2k+1

)
6

∞∑
k=0

θkρkζ1

( r
2

,
r

2

)
6 ρ1ζ1(r, r)

∞∑
k=0

(ρ1θ)
k =

ρ1ζ1(r, r)
1 − ρ1θ

.



B. V. Senthil Kumar, K. Al-Shaqsi, S. Sabarinathan, J. Math. Computer Sci., 24 (2022), 140–146 143

Similarly, one can come up with for all r ∈ L,

d(h(r),H(r)) 6
ρ2ζ2(r, r)
1 − ρ2θ

.

Now, for all positive integers m, we find that

d

(
2−mh(2−mr)2−mh(2−ms)

2−mh(2−mr) + 2−mh(2−ms)
, 2−mh(2−m(r+ s))

)
6 θmd

(
h(2−mr)h(2−ms)
h(2−mr) + h(2−ms)

,h(2−m(r+ s))

)
6 θmζ1(2−mr, 2−ms)
6 (ρ1θ)

mζ1(r, s)

for all r, s ∈ L. Allowing m to ∞ in the above inequality and since ρθ < 1, we can observe that H
satisfies equation (1.1). By similar approach of the arguments as in Theorem 1.3, it is easy to show that
this mapping H is unique, which completes the proof.

In the following corollaries, we apply Theorem 2.1 by considering L to be the set of real numbers
containing elements r, s ∈ R with the conditions r 6= 0 and r+ s 6= 0.

Corollary 2.2. Suppose that k ∈ (0,∞) be a fixed constant and there exists a constant θ ∈ (0, 1) such that

d

(
1
2
h(r),

1
2
h(s)

)
6 θd(h(r),h(s)), r, s ∈ L.

Let h : L −→ B be a mapping satisfing the following inequalities

d

(
h(r)h(s)

h(r) + h(s)
,h(r+ s)

)
6 k and d

(
h(r+ s),

h(r)h(s)

h(r) + h(s)

)
6 k

for all r, s ∈ L. Then the equation (1.1) has a unique solution H : L −→ B and this solution H satisfies the following
approximations

d(H(r),h(r)) 6
k

1 − θ
and d(h(r),H(r)) 6

k

1 − θ

for all r ∈ L.

Corollary 2.3. Let k1 ∈ (0,∞) be a fixed constant. Let there exist θ,a ∈ (0,∞) with the condition that θ
2a < 1

and

d

(
1
2
h(r),

1
2
h(s)

)
6 θd(h(r),h(s)), r, s ∈ L.

Let h : L −→ B be a mapping satisfies the following inequalities

d

(
h(r)h(s)

h(r) + h(s)
,h(r+ s)

)
6 k1 (|r|

a + |s|a) and d

(
h(r+ s),

h(r)h(s)

h(r) + h(s)

)
6 k1 (|r|

a + |s|a)

for all r, s ∈ L. Then the equation (1.1) has a unique solution H : L −→ B and this solution H satisfies the following
approximations

d(H(r),h(r)) 6
2k1

2a − θ
|r|a and d(h(r),H(r)) 6

2k1

2a − θ
|r|a

for all r ∈ L.

Corollary 2.4. Let k∈(0,∞)0 be a fixed real constant. Let there exist θ,a,b ∈ (0,∞) with the condition that
c = a+ b and θ

2c < 1 and

d

(
1
2
h(r),

1
2
h(s)

)
6 θd(h(r),h(s)), r, s ∈ L.
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Let h : L −→ B be a mapping satisfies the following inequalities

d

(
h(r)h(s)

h(r) + h(s)
,h(r+ s)

)
6 k1

(
|r|a|s|b

)
and d

(
h(r+ s),

h(r)h(s)

h(r) + h(s)

)
6 k1

(
|r|a|s|b

)
for all r, s ∈ L. Then the equation (1.1) has a unique solution H : L −→ B and this solution H satisfies the following
approximations

d(H(r),h(r)) 6
k2

2c − θ
|r|c and d(h(r),H(r)) 6

k2

2c − θ
|r|c

for all r ∈ L.

3. Discussion of the stability results of equation (1.1) obtained

In Theorem 1.3, the stability results of fundamental Cauchy additive equation are obtained by con-
sidering a common control mapping only as an upper bound. But in this study, we have extended the
generalized stability by considering different upper bounds in the corollaries by taking L to be R such
that r 6= 0 and r+ s 6= 0 to avoid singularities to achieve the main results.

4. Conclusion

So for in the literature, several functional equations in rational form are dealt to investigate their
stabilities in the framework of different spaces. This is our first attempt to consider dq-metric space to
analyze the validity of stableness of equation (1.1). The dq-metric spaces are useful in logic programming,
theoretical computer science and electronics and hence the stability results obtained in this study can be
utilized to approach problems arising in the above fields [1, 2, 19].
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