On quasi bi-slant Lorentzian submersions from LP-Sasakian manifolds

Rajendra Prasad ${ }^{\text {a }}$, Fatemah Mofarreh ${ }^{\text {b }}$, Abdul Haseeb ${ }^{\text {c,*, }}$, Sandeep Kumar Verma ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India.
${ }^{\text {b }}$ Mathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11546, Saudi Arabia.
${ }^{c}$ Department of Mathematics, College of Science, Jazan University, Jazan-2097, Kingdom of Saudi Arabia.

Abstract

At this work, quasi bi-slant Lorentzian submersions from LP-Sasakian manifolds onto Riemannian manifolds have been studied. Further, the geometry of leaves of the distributions, integrability conditions and totally geodesic conditions have also been discussed. Finally, we construct some examples of this setting.

Keywords: LP-Sasakian manifolds, slant submersions, Lorentzian submersions, quasi bi-slant Lorentzian submersions.
2020 MSC: 53C12, 53C15, 53C25, 53C50, 55D15.
(C)2022 All rights reserved.

1. Introduction

Differential geometry is one of the most popular branch of mathematics and physics from ancient days. There are several topics in differential geometry which have very important applications in both, mathematics and physics [2, 14, 20]. Immersions and submersions are some of them. The properties of Riemannian submersions become an interesting subject in complex geometry as well as in contact geometry.

The theory of Riemannian submersions was first established by O'Neill [24] and Gray [8]. In 1976, Watson [32] introduced almost Hermitian submersions within almost Hermitian manifolds. In 1985, Chinea [5] generalized the idea of almost Hermitian submersion to different sub-classes of the almost contact manifolds. There are so many important and interesting results about Riemannian and almost Hermitian submersion which are studied at [4, 6, 30]. Recently, slant submersions, semi-invariant submersions as well as semi-slant submersions from almost Hermitian manifolds on Riemannian manifolds have been studied in [21,27, 28], respectively. Several types of Riemannian submersions between Riemannian manifolds endowed with various constructures were investigated by several geometers ([1, 3, 12, 13, 19, 26, 29]). In 2016, Sahin et al. [31] proved decomposition theorems for hemi-slant Riemannian submersions from Hermitian manifolds on Riemannian manifolds.

[^0]Magid [16] and Falcitelli et al. [7], introduced the theory of Lorentzian submersions. Matsumoto [17] started the idea of LP-Sasakian manifolds, while in 1992, related subject is investigated by Mihai and Rosca [18]. Recently, Gunduzalp [9] and Gunduzalp and Sahin [10] studied paracontact and Lorentzian almost paracontact structures. Kumar et al. [15] defined and studied conformal semi-slant submersions from LP-Sasakian manifolds onto Riemannian manifolds. Very recently, Prasad et al. [23] introduced the concept of quasi bi-slant submersions from Kaehler manifold on the Riemannian manifold.

In this research we undertake our work as follows. In Section 2, we present several main informations relating to quasi bi-slant Lorentzian submersion. At Section 3, certain interesting outcomes on quasi bislant Lorentzian submersions from an LP-Sasakian manifold onto the Riemannian manifold are obtained and studied the geometry of leaves of distributions that are included at this submersion. In the same section, certain conditions are obtained of similar submersions to become totally geodesic. Finally, some non-trivial examples for such submersions have constructed.

2. Preliminaries

The n-dimension smooth manifold \mathcal{M} admitting φ the (1,1)-tensor field, ζ : the structural vector field, η : the 1-form and g : the Lorentzian metric named the Lorentzian para Sasakian (in brief, LP-Sasakian) manifold [11, 25] satisfies:

$$
\begin{align*}
\varphi^{2} & =\mathrm{I}+\eta \otimes \zeta, \varphi \circ \zeta=0, \eta \circ \varphi=0 \tag{2.1}\\
\eta(\zeta) & =-1, \mathrm{~g}(\cdot, \zeta)=\eta(\cdot), \tag{2.2}\\
\mathrm{g}(\varphi \cdot, \varphi \cdot) & =\mathrm{g}+\eta \otimes \eta, \mathrm{g}(\varphi \cdot, \cdot)=\mathrm{g}(\cdot, \varphi \cdot) \tag{2.3}\\
\nabla \zeta & =\varphi \tag{2.4}\\
(\nabla \times \varphi) \mathrm{Y} & =\eta(\mathrm{Y}) \mathrm{X}+\mathrm{g}(\mathrm{X}, \mathrm{Y}) \zeta+2 \eta(\mathrm{X}) \eta(\mathrm{Y}) \zeta, \tag{2.5}
\end{align*}
$$

choosing X, Y at \mathcal{M}, where ∇ denotes Levi-Civita connection respecting to Lorentzian metric g.
In the LP-Sasakian manifold, clearly

$$
\operatorname{rank}(\varphi)=n-1
$$

Now, in case

$$
\Phi(\mathrm{X}, \mathrm{Y})=\Phi(\mathrm{Y}, \mathrm{X})
$$

for all X, Y on \mathcal{M}, then Φ is called symmetric $(0,2)$ tensor field, where $\Phi(X, Y)=g(X, \phi Y)$.
Lemma 2.1. Suppose \mathcal{W} is a subspace of dimension $\geqslant 1$ in the Lorentz vector space. Then the following are equivalent:

1. \mathcal{W} is timelike, hence is itself a Lorentz vector space;
2. \mathcal{W} includes two linearly independent null vectors;
3. \mathcal{W} contains a timelike vector.

Lemma 2.2. Suppose \mathcal{W} is a subspace of Lorentz vector space V and Suppose g is the metric (scalar product) of V , therefore the possible cases for \mathcal{W} are:

1. $\left.\mathrm{g}\right|_{\mathcal{W}}$ is positive definite, then \mathcal{W} is the inner product space;
2. $\left.\mathrm{g}\right|_{\mathcal{W}}$ is non-degenerate of index 1 , therefore \mathcal{W} is timelike;
3. $\left.\mathrm{g}\right|_{\mathcal{W}}$ is degenerate, therefore \mathcal{W} is lightlike.

Lemma 2.3. Let Z be the subspace spanned by the timelike vector in Lorentz vector space V , therefore the subspace Z^{\perp} is spacelike and V is a direct sum of Z and Z^{\perp}.

This argument shows, more generally, that the subspace \mathcal{W} is timelike if and only if \mathcal{W}^{\perp} is spacelike. Since $\left(\mathcal{W}^{\perp}\right)^{\perp}=\mathcal{W}$.
\mathcal{W} is lightlike if and only if \mathcal{W}^{\perp} is lightlike.
Lemma 2.4. For the subspace \mathcal{W} of the Lorentz vector space, the coming statements are equivalent:

1. \mathcal{W} is lightlike, that is, degenerate;
2. \mathcal{W} includes the null vector but not timelike vector;
3. $\mathcal{W} \cap \mathcal{A}=\mathcal{L}-\mathcal{O}$, where \mathcal{L} is the one dimensional subspace and \mathcal{A} is the null cone of V , which means

$$
\mathcal{L}=\mathcal{W} \cap \mathcal{W}^{\perp} .
$$

Note that we denote ($M, \varphi, \zeta, \eta, g_{M}$) : the almost contact metric manifold, $\left(\mathcal{K}, g_{\aleph}\right)$: the Riemannian manifold and $\operatorname{ker} h_{*}$: the vertical distribution of h in M. To use later, we recall the following definitions.

Definition 2.5 ([22]). The Riemannian submersion $h:\left(M, \varphi, \zeta, \eta, g_{M}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ is named an invariant Riemannian submersion in case

$$
\varphi\left(\operatorname{ker} h_{*}\right)=\operatorname{ker} h_{*} .
$$

Definition 2.6 ([19]). Suppose $h:\left(M, \varphi, \zeta, \eta, g_{M}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ is a Riemannian submersion such that (in brief, s.t.) $\varphi\left(\right.$ ker $\left.h_{*}\right) \subseteq\left(\text { ker } h_{*}\right)^{\perp}$. Therefore, h is called the anti-invariant Riemannian submersion.

Definition 2.7 ([1]). The Riemannian submersion $h:\left(M, \varphi, \zeta, \eta, g_{M}\right) \rightarrow\left(\kappa, g_{\aleph}\right)$ is called the semiinvariant Riemannian submersion in case there is the distribution $\mathfrak{D}_{1} \subseteq \operatorname{ker} h_{*}$, s.t.,

$$
\text { ker } h_{*}=\mathfrak{D}_{1} \oplus \mathfrak{D}_{2} \oplus\left\langle\zeta>, \quad \text { and } \quad \varphi\left(\mathfrak{D}_{1}\right)=\mathfrak{D}_{1}, \varphi\left(\mathfrak{D}_{2}\right) \subseteq\left(\text { ker } h_{*}\right)^{\perp}\right. \text {, }
$$

where \mathfrak{D}_{2} is orthogonal complementary distribution to \mathfrak{D}_{1} at ker h_{*}.
Suppose the complementary orthogonal subbundle to $\varphi\left(\operatorname{ker} \mathrm{h}_{*}\right)$ in $\left(\operatorname{ker} \mathrm{h}_{*}\right)^{\perp}$ is denoted by μ. Therefore we get

$$
\left(\operatorname{ker} \mathrm{h}_{*}\right)^{\perp}=\varphi\left(\mathfrak{D}_{2}\right) \oplus \mu .
$$

Clearly, μ is the invariant subbundle of (ker $\left.h_{*}\right)^{\perp}$ respecting to the almost contact constructor φ.
Definition 2.8 ([9]). The Riemannian submersion $h:\left(M, \varphi, \zeta, \eta, g_{M}\right) \rightarrow\left(\kappa, g_{\aleph}\right)$ is called a slant submersion, in case for all $X(\neq 0) \in\left(\operatorname{ker} h_{*}\right)_{p}, p \in M$, the angle $\theta(X)$ within φX and the space $\left(\operatorname{ker} h_{*}\right)_{p}$ is constant. The angle θ is called the slant angle of the submersion and in case $\theta \in\left(0, \frac{\pi}{2}\right)$, therefore h is named the proper slant submersion.

Definition 2.9 ([22]). The Riemannian map $h:\left(M, \varphi, \zeta, \eta, g_{M}\right) \rightarrow\left(\kappa, g_{\aleph}\right)$ named the semi-slant Riemannian map in case there are three orthogonal complementary distributions $\mathfrak{D}_{1}, \mathfrak{D}_{2}$ and $<\zeta>$ in $\operatorname{ker} \mathfrak{h}_{*}$, s.t.,

$$
\operatorname{ker}_{*}=\mathfrak{D}_{1} \oplus \mathfrak{D}_{2} \oplus\langle\zeta\rangle, \varphi\left(\mathfrak{D}_{1}\right)=\mathfrak{D}_{1}
$$

and the angle $\theta=\theta(X)$ (called a semi-slant angle) between $\varphi \mathrm{X}$ as well as the space $\left(\mathfrak{D}_{2}\right)_{\mathrm{p}}$ is constant of $X(\neq 0) \in\left(\mathfrak{D}_{2}\right)_{p}$ for $p \in M$, where $\mathfrak{D}_{1} \oplus \mathfrak{D}_{2} \oplus<\zeta>$ is an orthogonal decomposition for ker h_{*}.

Definition 2.10 ([31]). Suppose (M, g_{M}, J) is the almost Hermitian manifold and $\left(\kappa, g_{N}\right)$ is the Riemannian manifold. The Riemannian submersion $h:\left(M, g_{M}, J\right) \rightarrow\left(\kappa, g_{N}\right)$ named the hemi-slant submersion in case

$$
\text { ker } h_{*}=\mathfrak{D}^{9} \oplus \mathfrak{D}^{\perp} .
$$

The distribution \mathfrak{D}^{θ} is slant with an angle θ (named a hemi-slant angle) and \mathfrak{D}^{\perp} is anti-invariant.

Definition 2.11 ([9]). Suppose $\left(M, g_{M}\right)$ be a Lorentzian manifold and $\left(\mathcal{B}, g_{\mathcal{B}}\right)$ a Riemannian manifold. A Lorentzian submersion is a map $h:\left(M, g_{M}\right) \rightarrow\left(\mathcal{B}, g_{\mathcal{B}}\right)$ which is onto and satisfies the following three conditions.
$\left(A_{1}\right) h_{* p}$ is onto for all $p \in M$.
$\left(A_{2}\right)$ The fibers $h^{-1}(b)$ are semi-Riemannian (Lorentzian) submanifolds of M for each $b \in \mathcal{B}$.
$\left(A_{3}\right) h_{*}$ preserves scalar products of horizontal vectors.
Now, the concept of a quasi bi-slant Lorentzian submersion from LP-Sasakian manifolds onto Riemannian manifolds is introduced:
 manifold. The Lorentzian submersion

$$
h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{N}}\right) \rightarrow\left(\aleph, g_{\aleph}\right)
$$

named the quasi bi-slant Lorentzian submersion in case there are four mutually orthogonal distributions $\mathrm{D}, \mathrm{D}_{1}, \mathrm{D}_{2}$ and $<\zeta>$, s.t.,
(i) $\operatorname{ker} h_{*}=\mathrm{D} \oplus_{\text {orth }} \mathrm{D}_{1} \oplus_{\text {orth }} \mathrm{D}_{2} \oplus_{\text {orth }}<\zeta>$;
(ii) $\varphi(\mathrm{D})=\mathrm{D}$, which means D is invariant;
(iii) $\varphi\left(D_{1}\right) \perp D_{2}$ and $\varphi\left(D_{2}\right) \perp D_{1}$;
(iv) for any $X(\neq 0) \in\left(D_{1}\right)_{p}, p \in M$, the angle θ_{1} within φX and $\left(D_{1}\right)_{p}$ is constant and independent of the choice of point p and X in $\left(D_{1}\right)_{p}$;
(v) for all $Z(\neq 0) \in\left(D_{2}\right)_{q}, q \in M$, the angle θ_{2} within φZ and $\left(D_{2}\right)_{q}$ is constant and independent of the choice of point q and Z in $\left(D_{2}\right)_{q}$.
The angles θ_{1} and θ_{2} named slant angles of h, where D, D_{1} and D_{2} are spacelike subspaces and ker h_{*} is Lorentzian subspace.

Thus it is noted that:
(a) In case $\operatorname{dim} D \neq 0$ and $\operatorname{dim} D_{1}=\operatorname{dim} D_{2}=0$, therefore h is invariant submersion.
(b) In case $\operatorname{dim} D \neq 0, \operatorname{dim} D_{1} \neq 0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2}=0$, therefore h is proper semi-slant submersion.
(c) In case $\operatorname{dim} D=0, \operatorname{dim} D_{1} \neq 0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2}=0$, therefore h is slant submersion with slant angle θ_{1}.
(d) In case $\operatorname{dim} D=\operatorname{dim} D_{1}=0$ and $\operatorname{dim} D_{2} \neq 0,0<\theta_{2}<\frac{\pi}{2}$, therefore h is slant submersion with slant angle θ_{2}.
(e) In case $\operatorname{dim} D_{1} \neq 0, \operatorname{dim} D=0, \theta_{1}=\frac{\pi}{2}$ and $\operatorname{dim} D_{2}=0$, therefore h is the anti-invariant submersion.
(f) In case $\operatorname{dim} D_{1} \neq 0, \operatorname{dim} D \neq 0, \theta_{1}=\frac{\pi}{2}$ and $\operatorname{dim} D_{2}=0$, therefore h is semi-invariant submersion.
(g) In case $\operatorname{dim} D_{1} \neq 0, \operatorname{dim} D=0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2} \neq 0, \theta_{2}=\frac{\pi}{2}$, therefore h is the hemi-slant submersion.
(h) In case $\operatorname{dim} D_{1} \neq 0, \operatorname{dim} D=0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2} \neq 0,0<\theta_{2}<\frac{\pi}{2}$, therefore h is the bi-slant submersion.
(i) In case $\operatorname{dim} D \neq 0, \operatorname{dim} D_{1} \neq 0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2} \neq 0, \theta_{2}=\frac{\pi}{2}$, therefore h can be called a quasi-hemi-slant submersion.
(j) In case $\operatorname{dim} D \neq 0, \operatorname{dim} D_{1} \neq 0,0<\theta_{1}<\frac{\pi}{2}$ and $\operatorname{dim} D_{2} \neq 0,0<\theta_{2}<\frac{\pi}{2}$, therefore h is proper quasi bi-slant submersion.

Define O^{\prime} Neill's tensors \mathcal{T} and \mathcal{A} as

$$
\begin{align*}
\mathcal{A}_{\mathrm{E}} \mathrm{~L} & =\mathcal{H} \nabla_{\mathcal{H E}} \mathcal{V} \mathrm{L}+\mathcal{V} \nabla_{\mathcal{H E}} \mathcal{H} \mathrm{L} \tag{2.6}\\
\mathcal{T}_{\mathrm{E}} \mathrm{~L} & =\mathcal{H} \nabla_{\mathcal{V E}} \mathcal{V} \mathrm{L}+\mathcal{V} \nabla_{\mathcal{V}} \mathcal{H} \mathrm{L} \tag{2.7}
\end{align*}
$$

for all vector fields E, L at \mathcal{M}, where ∇ defines Levi-Civita connection of $g_{\mathcal{M}}$. Clearly, \mathcal{T}_{E} and \mathcal{A}_{E} are skewsymmetric operators at the tangent bundle of \mathcal{M} reversing vertical and horizontal distributions. Using equations (2.6) and (2.7), results in

$$
\begin{align*}
\nabla_{\mathrm{X}} \mathrm{Y} & =\mathcal{T}_{\mathrm{X}} \mathrm{Y}+\mathcal{V} \nabla_{\mathrm{X}} \mathrm{Y} \tag{2.8}\\
\nabla_{\mathrm{X}} \mathrm{~V} & =\mathcal{T}_{\mathrm{X}} \mathrm{~V}+\mathcal{H}_{\mathrm{X}} \mathrm{~V} \tag{2.9}\\
\nabla_{\mathrm{V}} \mathrm{X} & =\mathcal{A}_{\mathrm{V}} \mathrm{X}+\mathcal{V} \nabla_{\mathrm{V}} \tag{2.10}\\
\nabla_{\mathrm{V}} \mathrm{~W} & =\mathcal{H}_{\mathrm{V}} \mathrm{~W}+\mathcal{A}_{\mathrm{V}} \mathrm{~W} \tag{2.11}
\end{align*}
$$

for all $X, Y \in \Gamma\left(\operatorname{ker} h_{*}\right)$ and $V, W \in \Gamma\left(\operatorname{ker} h_{*}\right)^{\perp}$, where $\mathcal{H} \nabla_{X} V=\mathcal{A}_{V} X$, in case V is basic. It can be easily observed that \mathcal{T} works at the fibers as the second fundamental form, where \mathcal{A} works on horizontal distribution and measures obstruction to the integrability of the same distribution.

Clearly, for $\mathrm{q} \in \mathcal{M}, \mathrm{U} \in \mathcal{V}_{\mathrm{q}}$ and $\mathrm{Z} \in \mathcal{H}_{\mathrm{q}}$

$$
\mathcal{A}_{\mathrm{u}}, \mathcal{T}_{\mathrm{Z}}: \mathrm{T}_{\mathrm{q}} \mathcal{M} \rightarrow \mathrm{~T}_{\mathrm{q}} \mathcal{M}
$$

are skew-symmetric, such that

$$
g_{M}\left(\mathcal{A}_{\mathrm{U}} \mathrm{E}, \mathrm{~L}\right)=-\mathrm{g}_{\mathrm{M}}\left(\mathrm{E}, \mathcal{A}_{\mathrm{U}} \mathrm{~L}\right) \text { and } \mathrm{g}_{\mathrm{M}}\left(\mathcal{T}_{Z} \mathrm{E}, \mathrm{~L}\right)=-\mathrm{g}_{\mathrm{M}}\left(\mathrm{E}, \mathcal{T}_{Z} \mathrm{~L}\right)
$$

for each $E, L \in T_{q} \mathcal{M}$. Since \mathcal{T}_{Z} is skew-symmetric, therefore it is observed that h has totally geodesic fibres if and only if $\mathcal{T} \equiv 0$.
Definition 2.13. Let M and M^{\prime} be two smooth manifolds. Let ∇ and ∇^{\prime} be connections on M and M^{\prime}, respectively. A smooth map $h: M \rightarrow M^{\prime}$ is called connection preserving map if

$$
h_{*}\left(\nabla_{X} Y\right)=\nabla_{h_{*}}^{\prime}\left(h_{*} Y\right)
$$

for all vector fields X, Y on M.
A smooth map $h: M \rightarrow M^{\prime}$ is called geodesic preserving map if for each geodesic σ in $M, h \circ \sigma$ is geodesic in M^{\prime}.

It is known that if a map is connection preserving then it is also the geodesic preserving. Geodesic preserving map is also called totally geodesic map.

We also know if M and M^{\prime} be two smooth manifolds and h be a diffeomorphism from M onto M^{\prime}, then for a connection ∇^{\prime} on M^{\prime} there exist unique connection ∇ on M such that h is connection preserving map.

Suppose $\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{N}}\right)$ is an LP-Sasakian manifold, $\left(\mathbb{K}, g_{\aleph}\right)$ is the Riemannian manifold and $h: \mathcal{M} \rightarrow$ \mathcal{N} is a smooth map. Therefore the second fundamental form of h is

$$
\left(\nabla h_{*}\right)(\mathrm{U}, \mathrm{~V})=\nabla_{\mathrm{u}}^{\mathrm{h}} \mathrm{~h}_{*} \mathrm{~V}-\mathrm{h}_{*}(\nabla \mathrm{u} \mathrm{~V}), \text { for } \mathrm{U}, \mathrm{~V} \in \Gamma\left(\mathrm{~T}_{\mathrm{p}} \mathcal{M}\right)
$$

where ∇ denotes Levi-Civita connection of the metrices $g_{\mathcal{M}}$ and g_{x} and ∇^{h} is the pullback connection.
The differentiable map $h: \mathcal{M} \rightarrow \mathbb{N}$ is totally geodesic in case

$$
\left(\nabla h_{*}\right)(\mathrm{U}, \mathrm{~V})=0 \text {, for all } \mathrm{U}, \mathrm{~V} \in \Gamma(\mathrm{TM})
$$

Now the following lemma can be proved as in [3].
Lemma 2.14. Suppose h is the Lorentzian submersion from the LP-Sasakian manifold ($\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{N}}$) on Riemannian manifold ($\mathcal{N}, \mathrm{g}_{\mathrm{N}}$), therefore we get
(i) $\left(\nabla h_{*}\right)(\mathrm{V}, \mathrm{W})=0$;
(ii) $\left(\nabla h_{*}\right)(X, Z)=-h_{*}\left(\mathcal{T}_{X} Z\right)=-h_{*}\left(\nabla_{X} Z\right)$;
(iii) $\left(\nabla h_{*}\right)(\mathrm{V}, \mathrm{X})=-\mathrm{h}_{*}\left(\nabla_{V} \mathrm{X}\right)=-\mathrm{h}_{*}\left(\mathcal{A}_{V} \mathrm{X}\right)$, where V, W are horizontal vector fields and X, Z are vertical vector fields.

3. Quasi Bi-Slant Lorentzian submersions

Throughout this section, we take $\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{N}}\right)$ be a LP-Sasakian manifold and ($\left.\mathcal{\aleph}, g_{\aleph}\right)$ be a Riemannian manifold.

Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ is the quasi bi-slant Lorentzian submersion. Therefore, we get

$$
\mathrm{TM}=\operatorname{ker} \mathrm{h}_{*} \oplus_{\text {orth }}\left(\operatorname{ker} \mathrm{h}_{*}\right)^{\perp}
$$

Here, for all vector field $Z \in \Gamma\left(\operatorname{ker} h_{*}\right)$, we choose

$$
\begin{equation*}
Z=P Z+Q Z+R Z-\eta(Z) \zeta \tag{3.1}
\end{equation*}
$$

where P, Q and R indicates to the projection morphisms of ker h_{*} on D, D_{1} and D_{2}, in the same order.
Choosing $Z \in \Gamma\left(\operatorname{ker}_{*}\right)$, we set

$$
\begin{equation*}
\varphi Z=\psi Z+\omega Z \tag{3.2}
\end{equation*}
$$

where $\psi Z \in \Gamma\left(\operatorname{ker} h_{*}\right)$ and $\omega Z \in \Gamma\left(\omega D_{1} \oplus \omega D_{2}\right)$. From (3.1) and (3.2), we get

$$
\varphi Z=\psi(P Z)+\omega(P Z)+\psi(Q Z)+\omega(Q Z)+\psi(R Z)+\omega(R Z)
$$

Since $\varphi D=D$, therefore $\omega P Z=0$. Hence we obtain

$$
\varphi Z=\psi(P Z)+\psi Q Z+\omega Q Z+\psi R Z+\omega R Z
$$

Thus we have

$$
\varphi\left(\operatorname{ker} h_{*}\right)=\mathrm{D} \oplus\left(\psi \mathrm{D}_{1} \oplus \psi \mathrm{D}_{2}\right) \oplus\left(\omega \mathrm{D}_{1} \oplus \omega \mathrm{D}_{2}\right)
$$

where \oplus defines orthogonal direct sum.
Moreover, Suppose $V \in \Gamma\left(D_{1}\right)$ and $W \in \Gamma\left(D_{2}\right)$, therefore $g_{M}(V, W)=0$. Now from the Definition 2.12 (iii), we have $g_{M}(\varphi \vee, W)=g_{\mathcal{M}}(V, \varphi W)=0$. Now, we consider

$$
g_{\mathcal{M}}(\psi V, W)=g_{\mathcal{M}}(\varphi V-\omega V, W)=g_{\mathcal{M}}(\varphi V, W),=0
$$

In Similar way, we have $g_{\mathcal{M}}(V, \psi W)=0$. Suppose $Z \in \Gamma(D)$ and $Y \in \Gamma\left(D_{1}\right)$. Therefore we get

$$
g_{\mathcal{M}}(\psi Y, Z)=g_{\mathcal{M}}(\varphi Y-\omega Y, Z)=g_{\mathcal{M}}(\varphi Y, Z)=-g_{\mathcal{M}}(Y, \varphi Z)=0
$$

as D is invariant, which means $\varphi Z \in \Gamma(D)$. Similarly, for $Z \in \Gamma(D)$ and $X \in \Gamma\left(D_{2}\right)$, we obtain $g_{\mathcal{M}}(\psi X, Z)=$ 0 . From above equations, we have

$$
g_{\mathcal{M}}(\psi Z, \psi W)=0, \quad \text { and } \quad g_{\mathcal{M}}(\omega Z, \omega W)=0
$$

for any $Z \in \Gamma\left(D_{1}\right)$ and $W \in \Gamma\left(D_{2}\right)$. So, we can write $\psi D_{1} \cap \psi D_{2}=\{0\}, \omega D_{1} \cap \omega D_{2}=\{0\}$. If $\theta_{2}=\frac{\pi}{2}$, then $\psi R=0$ and D_{2} is anti-invariant, which means $\varphi\left(D_{2}\right) \subseteq\left(\operatorname{ker} h_{*}\right)^{\perp}$. Here we present D_{2} as D^{\perp}. In addition, we have

$$
\varphi\left(\operatorname{ker} h_{*}\right)=\mathrm{D} \oplus \psi \mathrm{D}_{1} \oplus \omega \mathrm{D}_{1} \oplus \varphi \mathrm{D}^{\perp}
$$

where \oplus defines orthogonal direct sum. Since $\omega D_{1} \subseteq\left(\operatorname{ker} h_{*}\right)^{\perp}, \omega D_{2} \subseteq\left(\operatorname{ker} h_{*}\right)^{\perp}$, so it is obtained that

$$
\left(\operatorname{ker} h_{*}\right)^{\perp}=\omega D_{1} \oplus \omega D_{2} \oplus \mu
$$

where μ is orthogonal complement of $\left(\omega D_{1} \oplus \omega D_{2}\right)$ at $\left(\operatorname{ker} h_{*}\right)^{\perp}$. Also for all $V \in \Gamma\left(\operatorname{ker} h_{*}\right)^{\perp}$, we set

$$
\begin{equation*}
\varphi V=C V+B V \tag{3.3}
\end{equation*}
$$

where $C V \in \Gamma(\mu)$ and $B V \in \Gamma\left(\operatorname{ker} h_{*}\right)$.
$\operatorname{Span}\{\zeta\}=\langle\zeta\rangle$ determines timelike vector field distribution. In case the spacelike vector field X is orthogonal to ζ, therefore $g(\varphi X, \varphi X)=g(X, X)>0$, thus φX is spacelike and hence ψX is also spacelike.

Wirtinger angle θ is written as

$$
\cos \theta=\frac{g(\varphi X, \psi X)}{|\varphi X||\psi X|}
$$

Since $\left.g\right|_{\operatorname{kerh}_{*}}$ is non-degenerate metric of index 1 at all points of \mathcal{M}, therefore $\left(\operatorname{ker} h_{*}\right)_{\chi}$ is timelike subspace of $T_{x} \mathcal{M}$ at any point of \mathcal{M}, and so $\left(\operatorname{ker} h_{*}\right)_{x}^{\perp}$ is spacelike subspace of $T_{x} \mathcal{M}$ at all points $x \in \mathcal{M}$.

Lemma 3.1. Let $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{N}}\right) \rightarrow\left(\aleph, g^{\prime}\right)$ be the quasi bi-slant Lorentzian submersion. Therefore we got

$$
\psi^{2} V+B \omega V=V+\eta(V) \zeta, \quad \omega \psi V+C \omega V=0, \quad \omega B W+C^{2} W=W, \quad \psi B W+B C W=0
$$

for all $\mathrm{V} \in \Gamma\left(\operatorname{ker}_{*}\right)$ and $\mathrm{W} \in \Gamma\left(\operatorname{ker}_{*}\right)^{\perp}$.
Proof. By making use of the equations (2.1), (3.2), and (3.3), Lemma 3.1 follows.
Lemma 3.2. Let $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\underset{\mathcal{N}}{ }, \mathrm{g}_{\mathrm{N}}\right)$ be the quasi bi-slant Lorentzian submersion. Therefore, we got
(i) $\psi^{2} V=\left(\cos ^{2} \theta_{1}\right) V$,
(ii) $g_{\mathcal{M}}(\psi V, \psi W)=\cos ^{2} \theta_{1} g_{\mathcal{M}}(V, W)$,
(iii) $g_{\mathcal{M}}(\omega V, \omega W)=\sin ^{2} \theta_{1} g_{\mathcal{M}}(V, W)$,
for all $\mathrm{V}, \mathrm{W} \in \Gamma\left(\mathrm{D}_{1}\right)$.
Proof.
(i) Let $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ be the quasi bi-slant Lorentzian submersion with the quasi bi-slant angle θ_{1}. Therefore, for $V(\neq 0) \in \Gamma\left(D_{1}\right)$, we have

$$
\begin{equation*}
\cos \theta_{1}=\frac{|\psi V|}{|\varphi V|^{\prime}} \tag{3.4}
\end{equation*}
$$

and

$$
\cos \theta_{1}=\frac{g_{\mathcal{M}}(\mathrm{V}, \psi \mathrm{~V})}{|\mathrm{V} \| \psi V|}
$$

By making use of (2.1), (2.3), and (3.2), we have

$$
\begin{align*}
\cos \theta_{1} & =\frac{g_{\mathcal{M}}(\psi \mathrm{V}, \psi \mathrm{~V})}{|\varphi \mathrm{V} \| \psi \mathrm{V}|} \tag{3.5}\\
\cos \theta_{1} & =\frac{\mathrm{g}_{\mathcal{M}}\left(\mathrm{V}, \psi^{2} \mathrm{~V}\right)}{|\varphi \mathrm{V} \| \psi \mathrm{V}|}
\end{align*}
$$

From the equations (3.4) and (3.5), we get $\psi^{2} V=\left(\cos ^{2} \theta_{1}\right) V$, for $V \in \Gamma\left(D_{1}\right)$.
(ii) For all $V, W \in \Gamma\left(D_{1}\right)$, by the use of equations (2.1), (2.3), (3.2), and Lemma 3.2 (i), we have

$$
g_{\mathcal{M}}(\psi V, \psi W)=g_{\mathcal{M}}(\varphi V-\omega V, \psi W)=g_{\mathcal{M}}\left(V, \psi^{2} W\right)=\cos ^{2} \theta_{1} g_{\mathcal{M}}(V, W)
$$

(iii) By using the equations (2.3), (3.2), and Lemma 3.2 (i) and (ii), Lemma 3.2 (iii) follows.

Similarly, the coming Lemma is obtained.
Lemma 3.3. Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{N}}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ is the quasi bi-slant Lorentzian submersion. Therefore, we have
(i) $\psi^{2} Z=\left(\cos ^{2} \theta_{2}\right) Z ;$
(ii) $g_{\mathcal{M}}(\psi Z, \psi U)=\cos ^{2} \theta_{2} g_{\mathcal{M}}(Z, U)$;
(iii) $g_{\mathcal{M}}(\omega Z, \omega U)=\sin ^{2} \theta_{2} g_{\mathcal{M}}(Z, U)$;
for all $\mathrm{Z}, \mathrm{U} \in \Gamma\left(\mathrm{D}_{2}\right)$.
Lemma 3.4. Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ is the quasi bi-slant Lorentzian submersion. Therefore, we get

$$
\begin{align*}
& \mathcal{\nu} \nabla_{X} \psi Y+\mathcal{T}_{X} \omega Y-\psi \mathcal{\nu} \nabla_{X} Y-B \mathcal{T}_{X} Y=g_{\mathcal{M}}(X, Y) \zeta+\eta(Y) X+2 \eta(X) \eta(Y) \zeta, \tag{3.6}\\
& \mathcal{T}_{X} \psi Y+\mathcal{H} \nabla_{X} \omega Y=\omega \mathcal{V} \nabla_{X} Y+C \mathcal{T}_{X} Y, \tag{3.7}\\
& \mathcal{\nu} \nabla_{\mathrm{u}} \mathrm{BV}+\mathcal{A}_{\mathrm{u}} \mathrm{CV}-\mathrm{g}_{\mathcal{M}}(\mathrm{CU}, \mathrm{~V}) \zeta=\psi \mathcal{A}_{\mathrm{u}} \mathrm{~V}+\mathrm{BH} \nabla_{\mathrm{u}} \mathrm{~V} \text {, } \tag{3.8}\\
& \mathcal{A}_{\mathrm{u}} \mathrm{BV}+\mathcal{H} \nabla_{\mathrm{u}} \mathrm{CV}=\omega \mathcal{A}_{\mathrm{u}} \mathrm{~V}+\mathrm{C} \mathcal{H} \nabla_{\mathrm{u}} V, \tag{3.9}\\
& \mathcal{V} \nabla_{X} \mathrm{BU}+\mathcal{T}_{X} \mathrm{CU}=\psi \mathcal{T}_{X} \mathrm{U}+\mathrm{BH} \nabla_{X} \mathrm{U}, \tag{3.10}\\
& \mathcal{T}_{X} \mathrm{BU}+\mathcal{H} \nabla_{\mathrm{X}} \mathrm{CU}=\omega \mathcal{T}_{\mathrm{X}} \mathrm{U}+\mathrm{CH} \nabla_{\mathrm{X}} \mathrm{U}, \tag{3.11}\\
& \mathcal{\nu} \nabla_{V} \psi X+\mathcal{A}_{V} \omega X=B \mathcal{A}_{V} \mathrm{X}+\psi \mathcal{V} \nabla_{V} \mathrm{X}, \tag{3.12}\\
& \mathcal{A}_{V} \psi \mathrm{X}+\mathcal{H} \nabla_{V} \omega \mathrm{X}-\eta(\mathrm{X}) V=\mathrm{C} \mathcal{A}_{\mathrm{V}} \mathrm{X}+\omega \mathcal{\nu} \nabla_{\mathrm{V}} \mathrm{X}, \tag{3.13}
\end{align*}
$$

for all $\mathrm{X}, \mathrm{Y} \in \Gamma\left(\operatorname{ker} \mathrm{h}_{*}\right)$ and $\mathrm{U}, \mathrm{V} \in \Gamma\left(\operatorname{ker} \mathrm{h}_{*}\right)^{\perp}$.
Proof. Using equations (2.1), (2.2), (2.5), (2.8)-(2.11), we can easily get the equations (3.6)-(3.13).
Now, we define

$$
\begin{align*}
\left(\nabla_{\mathrm{V}} \psi\right) \mathrm{W} & =\mathcal{V} \nabla_{\mathrm{V}} \psi W-\psi \mathcal{V} \nabla_{\mathrm{V}} \mathrm{~W} \tag{3.14}\\
\left(\nabla_{\mathrm{V}} \omega\right) \mathrm{W} & =\mathcal{H} \nabla_{\mathrm{V}} \omega \mathrm{~W}-\omega \mathcal{V} \nabla_{\mathrm{V}} \mathrm{~W} \tag{3.15}\\
\left(\nabla_{\mathrm{X}} \mathrm{C}\right) \mathrm{Y} & =\mathcal{H} \nabla_{\mathrm{X}} \mathrm{CY}-\mathrm{C} \mathcal{H} \nabla_{\mathrm{X}} \mathrm{Y} \tag{3.16}\\
\left(\nabla_{\mathrm{X}} \mathrm{~B}\right) \mathrm{Y} & =\mathcal{V} \nabla_{\mathrm{X}} \mathrm{BY}-\mathrm{B} \mathcal{H} \nabla_{\mathrm{X}} \mathrm{Y} \tag{3.17}
\end{align*}
$$

for all $V, W \in \Gamma\left(\operatorname{ker}_{h_{*}}\right)$ and $X, Y \in \Gamma\left(\operatorname{ker} h_{*}\right)^{\perp}$.
Lemma 3.5. Let $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{N}}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ be the quasi bi-slant Lorentzian submersion. Therefore, we get

$$
\begin{aligned}
\left(\nabla_{V} \varphi\right) W & =B \mathcal{T}_{V} W-\mathcal{T}_{V} \omega W+g_{\mathcal{M}}(V, W) \zeta+2 \eta(V) \eta(W) \zeta+\eta(W) V \\
\left(\nabla_{V} \omega\right) W & =C \mathcal{T}_{V} W-\mathcal{T}_{V} \psi W \\
\left(\nabla_{X} C\right) Y & =\omega \mathcal{A}_{X} Y-\mathcal{A}_{X} B Y \\
\left(\nabla_{X} B\right) Y & =\psi \mathcal{A}_{X} Y-\mathcal{A}_{X} C Y+g_{\mathcal{M}}(X, Y) \zeta
\end{aligned}
$$

for all $\mathrm{V}, \mathrm{W} \in \Gamma\left(\operatorname{kerh}_{*}\right)$ and $\mathrm{X}, \mathrm{Y} \in \Gamma\left(\operatorname{ker} \mathrm{h}_{*}\right)^{\perp}$.
Proof. By the use of equations (3.6)-(3.9) and (3.14)-(3.17), Lemma 3.5 follows.
Now, in case tensors φ and ω are parallel respecting to ∇ at \mathcal{M}, therefore

$$
B \mathcal{T}_{V} W=\mathcal{T}_{V} \omega W-g_{\mathcal{M}}(V, W) \zeta-2 \eta(V) \eta(W) \zeta-\eta(W) V
$$

and

$$
C \mathcal{T}_{V} W=\mathcal{T}_{V} \psi W
$$

for all $V, W \in \Gamma(T \mathcal{M})$.
Theorem 3.6. Let $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\mathcal{X}, g_{\aleph}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore, the invariant distribution D is integrable if and only if

$$
g_{\mathcal{M}}\left(\mathcal{T}_{X} \varphi Y-\mathcal{T}_{Y} \varphi X, \omega Q Z+\omega R Z\right)=-g_{\mathcal{M}}\left(\mathcal{V} \nabla_{X} \varphi Y-\mathcal{V} \nabla_{Y} \varphi X, \psi Q Z+\psi R Z\right)
$$

for all $\mathrm{X}, \mathrm{Y} \in \Gamma(\mathrm{D})$ and $\mathrm{Z} \in \Gamma\left(\mathrm{D}_{1} \oplus \mathrm{D}_{2} \oplus<\zeta>\right)$.

Proof. For $X, Y \in \Gamma(D)$, and $Z \in \Gamma\left(D_{1} \oplus D_{2} \oplus<\zeta>\right)$, by the use of equations (2.1)-(2.5), (2.8), (3.1), and (3.2), we have

$$
\begin{aligned}
g_{\mathcal{M}}([X, Y], Z) & =g_{\mathcal{M}}\left(\nabla_{X} \varphi Y, \varphi Z\right)-g_{\mathcal{M}}\left(\nabla_{Y} \varphi X, \varphi Z\right)-\eta(Z) \eta\left(\nabla_{X} Y\right)+\eta(Z) \eta\left(\nabla_{Y} X\right), \\
& =g_{\mathcal{M}}\left(\nabla_{X} \varphi Y, \varphi Z\right)-g_{\mathcal{M}}\left(\nabla_{Y} \varphi X, \varphi Z\right) \\
& =g_{\mathcal{M}}\left(\mathcal{T}_{X} \varphi Y-\mathcal{T}_{Y} \varphi X, \omega R Z+\omega Q Z\right)+g_{\mathcal{M}}\left(-\mathcal{v} \nabla_{Y} \varphi X+\mathcal{v} \nabla_{X} \varphi Y, \psi Q Z+\psi R Z\right),
\end{aligned}
$$

this proof is completed.
Theorem 3.7. Let $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\mathcal{K}, g_{\aleph}\right)$ is the proper quasi bi-slant Lorentzian submersion. Then the slant distribution D_{1} is integrable if and only if

$$
g_{\mathcal{M}}\left(\mathcal{T}_{W} \omega \psi Z-\mathcal{T}_{Z} \omega \psi W, U\right)=g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega W-\mathcal{T}_{W} \omega Z, \varphi P U+\psi R U\right)+g_{\mathcal{M}}\left(\mathcal{H}_{Z} \omega W-\mathcal{H}_{W} \omega \nabla_{W} \omega R,\right.
$$

for all $\mathrm{Z}, \mathrm{W} \in \Gamma\left(\mathrm{D}_{1}\right)$ as well as $\mathrm{U} \in \Gamma\left(\mathrm{D} \oplus \mathrm{D}_{2} \oplus<\zeta>\right)$.
Proof. For any $Z, W \in \Gamma\left(D_{1}\right)$ and $U \in \Gamma\left(D \oplus D_{2} \oplus<\zeta>\right)$, we have

$$
\mathrm{g}_{\mathcal{M}}([\mathrm{Z}, \mathrm{~W}], \mathrm{U})=\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{Z}} \mathrm{~W}, \mathrm{U}\right)-\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{W}} \mathrm{Z}, \mathrm{U}\right)
$$

By the use of equations (2.1)-(2.5), (2.8), (2.9), (3.1), and (3.2) and Lemma 3.2, it is obtained that

$$
\begin{aligned}
& g_{\mathcal{M}}([Z, W], \mathcal{U})=g_{\mathcal{M}}\left(\varphi \nabla_{\mathrm{Z}} \mathcal{W}, \varphi \mathrm{U}\right)-\mathrm{g}_{\mathcal{M}}\left(\varphi \nabla_{\mathcal{W}} \mathbf{Z}, \varphi \mathrm{U}\right), \\
& =g_{\mathcal{M}}\left(\nabla_{\mathrm{Z}} \varphi \mathrm{~W}, \varphi \mathrm{U}\right)-\mathrm{g}_{\mathcal{M}}\left(\nabla_{W} \varphi \mathbf{Z}, \varphi \mathrm{U}\right) \text {, } \\
& =g_{\mathcal{M}}\left(\nabla_{\mathrm{Z}} \psi W, \varphi \mathrm{U}\right)+g_{\mathcal{M}}\left(\nabla_{\mathrm{Z}} \omega \mathrm{~W}, \varphi \mathrm{U}\right)-\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{W}} \psi Z, \varphi \mathrm{U}\right)-\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{Z}} \omega \mathrm{~W}, \varphi \mathrm{U}\right) \text {, } \\
& =\cos ^{2} \theta_{1} g_{\mathcal{M}}\left(\nabla_{Z} W, \mathrm{U}\right)-\cos ^{2} \theta_{1} g_{\mathcal{M}}\left(\nabla_{W} Z, \mathrm{U}\right)+g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega \psi W-\mathcal{T}_{W} \omega \psi Z, \mathrm{U}\right) \\
& +g_{\mathcal{M}}\left(\mathcal{H} \nabla_{Z} \omega W+\mathcal{T}_{Z} \omega W, \varphi \text { PU }+\psi R U+\omega R U\right) \\
& -g_{\mathcal{M}}\left(\mathcal{H} \nabla_{W} \omega Z+\mathcal{T}_{W} \omega Z, \varphi \text { PU }+\psi R U+\omega R U\right) .
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\sin ^{2} \theta_{1} g_{\mathcal{M}}([Z, W], \mathrm{U})= & g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega W-\mathcal{T}_{W} \omega Z, \varphi P U+\psi R U\right)+g_{\mathcal{M}}\left(\mathcal{H}_{Z} \omega W-\mathcal{H}_{W} \omega Z, \omega R U\right) \\
& +g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega \psi W-\mathcal{T}_{W} \omega \psi Z, \mathrm{U}\right)
\end{aligned}
$$

This proof is completed.
Similarly, the coming theorem is presented.
Theorem 3.8. Let $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{A}}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore the slant distribution D_{2} is integrable if and only if

$$
g_{\mathcal{M}}\left(\mathcal{T}_{Y} \omega \psi X-\mathcal{T}_{X} \omega \psi Y, Z\right)=g_{\mathcal{M}}\left(\mathcal{H} \nabla_{X} \omega Y-\mathcal{H}_{Y} \omega X, \omega Q Z\right)+g_{\mathcal{M}}\left(\mathcal{T}_{X} \omega Y-\mathcal{T}_{Y} \omega X, \varphi P Z+\psi Q Z\right)
$$

for any $X, Y \in \Gamma\left(\mathrm{D}_{2}\right)$ and $\mathrm{Z} \in \Gamma\left(\mathrm{D} \oplus \mathrm{D}_{1} \oplus<\zeta>\right)$.
Proposition 3.9. Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\aleph, g_{\aleph}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore the vertical distribution $\left(\operatorname{ker} \mathrm{h}_{*}\right)$ does not determines the totally geodesic foliation at \mathcal{M}.

Proof. Suppose we have $X \in \Gamma\left(\operatorname{ker} h_{*}\right)$ and $Z \in \Gamma\left(\operatorname{ker} h_{*}\right)^{\perp}$, by the use of (2.4) we get

$$
g_{\mathcal{M}}\left(\nabla_{\mathrm{X}} \zeta, \mathrm{Z}\right)=\mathrm{g}_{\mathcal{M}}(\varphi \mathrm{X}, \mathrm{Z})
$$

as $g_{\mathcal{M}}(\varphi X, Z) \neq 0$, so $g_{\mathcal{M}}\left(\nabla_{X} \zeta, Z\right) \neq 0$ for some X and Z. Hence, (ker $\left.h_{*}\right)$ is not defining a totally geodesic foliation at \mathcal{M}.

Theorem 3.10. Suppose $\left.h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow(\underset{\sim}{ }) \rightarrow g_{x}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore the distribution $\left(\operatorname{ker~}_{h_{*}}\right)-<\zeta>$ determines the totally geodesic foliation at \mathcal{M} if and only if

$$
\begin{aligned}
& g_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{u}} \mathrm{PV}+\cos ^{2} \theta_{1} \mathcal{T}_{\mathrm{u}} \mathrm{QV}+\cos ^{2} \theta_{2} \mathcal{T}_{\mathrm{u}} \mathrm{RV}, \mathrm{X}\right) \\
& \quad=-\mathrm{g}_{\mathcal{M}}\left(\mathcal{H} \nabla_{\mathrm{u}} \omega \psi \mathrm{QV}+\mathcal{H} \nabla_{\mathrm{u}} \omega \psi \mathrm{PV}+\mathcal{H} \nabla_{\mathrm{u}} \omega \psi \mathrm{RV}, \mathrm{X}\right) g_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{u}} \omega \mathrm{~V}, \mathrm{BX}\right)-\mathrm{g}_{\mathcal{M}}\left(\mathcal{H}_{\mathrm{u}} \omega \mathrm{~V}, \mathrm{CX}\right)
\end{aligned}
$$

for any $\mathrm{U}, \mathrm{V} \in \Gamma\left(\operatorname{ker} \mathrm{h}_{*}\right)-<\zeta>$ and $\mathrm{X} \in \Gamma\left(\operatorname{ker} \mathrm{h}_{*}\right)^{\perp}$.
Proof. For all $\mathrm{U}, \mathrm{V} \in \Gamma\left(\operatorname{ker} h_{*}\right)-<\zeta>$ and $X \in \Gamma\left(\operatorname{ker} h_{*}\right)^{\perp}$, by the use of equations (2.2), (2.3), and (3.1), we have

$$
g_{\mathcal{M}}\left(\nabla_{\mathrm{u}} \mathrm{~V}, \mathrm{X}\right)=\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{u}} \varphi \mathrm{PV}, \varphi \mathrm{X}\right)+\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{u}} \varphi \mathrm{QV}, \varphi \mathrm{X}\right)+\mathrm{g}_{\mathcal{M}}(\nabla \mathrm{u} \varphi \mathrm{RV}, \varphi \mathrm{X})
$$

Using equations (2.3), (2.10), (2.11), (3.1), (3.2), Lemma 3.2, and Lemma 3.3, we have

$$
\begin{aligned}
g_{\mathcal{M}}\left(\nabla_{\mathrm{u}} \mathrm{~V}, \mathrm{X}\right)= & g_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{U}} \mathrm{PV}, \mathrm{X}\right)+\cos ^{2} \theta_{1} \mathrm{~g}_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{u}} \mathrm{QV}, \mathrm{X}\right)+\cos ^{2} \theta_{2} g_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{u}} R V, \mathrm{X}\right) \\
& +g_{\mathcal{M}}\left(\mathcal{H} \nabla_{\mathrm{u}} \omega \psi \mathrm{PV}+\mathcal{H}_{\mathrm{u}} \omega \psi \mathrm{QV}+\mathcal{H} \nabla_{\mathrm{u}} \omega \psi \mathrm{RV}, \mathrm{X}\right)+\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{u}}(\omega \mathrm{PV}+\omega \mathrm{QV}+\omega \mathrm{RV}), \varphi \mathrm{X}\right)
\end{aligned}
$$

Since $\omega P V+\omega Q V+\omega R V=\omega V$ and $\omega P V=0$, thus we have

$$
\begin{aligned}
g_{\mathcal{M}}\left(\nabla_{\mathrm{u}} \mathrm{~V}, \mathrm{X}\right)= & g_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{u}} \mathrm{PV}+\cos ^{2} \theta_{1} \mathcal{T}_{\mathrm{u}} \mathrm{QV}+\cos ^{2} \theta_{2} \mathcal{T}_{\mathrm{u}} \mathrm{RV}, \mathrm{X}\right) \\
& +\mathrm{g}_{\mathcal{M}}\left(\mathcal{H} \nabla_{\mathrm{u}} \omega \psi \mathrm{PV}+\mathcal{H} \nabla_{\mathrm{u}} \omega \psi \mathrm{QV}+\mathcal{H} \nabla_{\mathrm{u}} \omega \psi \mathrm{RV}, \mathrm{X}\right) \\
& +\mathrm{g}_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{u}} \omega \mathrm{~V}, \mathrm{BX}\right)+\mathrm{g}_{\mathcal{M}}\left(\mathcal{H} \nabla_{\mathrm{u}} \omega V, \mathrm{CX}\right)
\end{aligned}
$$

this proof is completed.
Theorem 3.11. Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\mathbb{K}, g_{\aleph}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore, the horizontal distribution $\left(\operatorname{ker~}_{h_{*}}\right)^{\perp}$ does not demonstrates the totally geodesic foliation at \mathcal{M}.
Proof. Suppose $Z, V \in \Gamma\left(\operatorname{ker} h_{*}\right)^{\perp}$, and by the use of equation (2.4), we got

$$
g_{\mathcal{M}}\left(\nabla_{\mathrm{Z}} \mathrm{~V}, \zeta\right)=-\mathrm{g}_{\mathcal{M}}\left(\mathrm{V}, \nabla_{\mathrm{Z}} \zeta\right)=-\mathrm{g}_{\mathcal{M}}(\mathrm{V}, \varphi \mathrm{Z})
$$

as $g_{\mathcal{M}}(V, \varphi Z) \neq 0$, therefore $g_{\mathcal{M}}\left(\nabla_{Z} V, \zeta\right) \neq 0$ for some V and Z. Hence, $\left(\operatorname{ker} h_{*}\right)^{\perp}$ does not demonstrates a totally geodesic foliation at \mathcal{M}.

Proposition 3.12. Suppose $h:\left(\mathcal{N}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\kappa, g_{\aleph}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore, the distribution D does not demonstrates the totally geodesic foliation on \mathcal{M}.

Proof. For all $\mathrm{U}, \mathrm{V} \in \Gamma(\mathrm{D})$, using equation (2.4), we got

$$
g_{\mathcal{M}}\left(\nabla_{\mathrm{u}} \mathrm{~V}, \zeta\right)=-\mathrm{g}_{\mathcal{M}}(\mathrm{V}, \varphi \mathrm{U})
$$

since $g_{\mathcal{M}}(V, \varphi U) \neq 0$, so $g_{\mathcal{M}}(\nabla \mathrm{U} V, \zeta) \neq 0$ for some U and V. Hence D is not defining the totally geodesic foliation on \mathcal{M}.

Theorem 3.13. Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\mathbb{K}, g_{x}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore, the distribution $\mathrm{D} \oplus<\zeta>$ demonstrates the totally geodesic foliation if and only if

$$
g_{\mathcal{M}}\left(\mathcal{T}_{X} \varphi P Y, \omega R Z+\omega Q Z\right)=-g_{\mathcal{M}}\left(\mathcal{V} \nabla_{X} \varphi P Y, \psi Q Z+\psi R Z\right)
$$

and

$$
g_{\mathcal{M}}\left(\mathcal{T}_{X} \varphi P Y, \mathrm{CV}\right)=-\mathrm{g}_{\mathcal{M}}\left(\mathcal{V} \nabla_{X} \varphi P Y, \mathrm{BV}\right)
$$

for all $\mathrm{X}, \mathrm{Y} \in \Gamma(\mathrm{D} \oplus<\zeta>), \mathrm{Z}=\mathrm{QZ}+\mathrm{RZ} \in \Gamma\left(\mathrm{D}_{1} \oplus \mathrm{D}_{2}\right)$ and $\mathrm{V} \in \Gamma\left(\operatorname{ker} \mathrm{h}_{*}\right)^{\perp}$.

Proof. For all $X, Y \in \Gamma(D \oplus<\zeta>), Z=Q Z+R Z \in \Gamma\left(D_{1} \oplus D_{2}\right)$ and $V \in \Gamma\left(\operatorname{ker} h_{*}\right)^{\perp}$, the use of equations (2.1)-(2.5), (2.8), (3.1), and (3.2), gives

$$
\begin{aligned}
g_{\mathcal{M}}\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)=\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{X}} \varphi \mathrm{Y}, \varphi \mathrm{Z}\right) & =g_{\mathcal{M}}\left(\nabla_{\mathrm{X}} \varphi \mathrm{PY}, \varphi \mathrm{QZ}+\varphi \mathrm{RZ}\right) \\
& =g_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{X}} \varphi \mathrm{PY}, \omega \mathrm{RZ}+\omega \mathrm{QZ}\right)+\mathrm{g}_{\mathcal{M}}\left(\mathcal{V} \nabla_{\mathrm{X}} \varphi \mathrm{PY}, \psi \mathrm{QZ}+\psi R Z\right)
\end{aligned}
$$

Now, again the use of equations (2.1)-(2.5), (2.8), (3.1), and (3.3), leads to

$$
g_{\mathcal{M}}\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{~V}\right)=\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{X}} \varphi \mathrm{Y}, \varphi \mathrm{~V}\right), \mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{X}} \varphi \mathrm{PY}, \mathrm{BV}+\mathrm{CV}\right)=\mathrm{g}_{\mathcal{M}}\left(\mathcal{V} \nabla_{\mathrm{X}} \varphi \mathrm{PY}, \mathrm{BV}\right)+\mathrm{g}_{\mathcal{M}}\left(\mathcal{T}_{\mathrm{X}} \varphi \mathrm{PY}, \mathrm{CV}\right)
$$

this proof is completed.
Proposition 3.14. Suppose $h:\left(\mathcal{N}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\kappa, g_{\aleph}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore the distribution D_{i} does not defines a totally geodesic foliation at \mathcal{M}, where $\mathfrak{i}=1,2$.

Proof. For any $Z, V \in \Gamma\left(D_{i}\right)$, by the use of equation (2.4) we have

$$
\mathrm{g}_{\mathcal{M}}\left(\nabla_{\mathrm{Z}} \mathrm{~V}, \zeta\right)=-\mathrm{g}_{\mathcal{M}}(\mathrm{Z}, \varphi \mathrm{~V})
$$

since $g_{\mathcal{M}}(Z, \varphi V) \neq 0$, so $g_{\mathcal{M}}\left(\nabla_{Z} V, \zeta\right) \neq 0$ for some V and Z. Hence D_{i} is not defining the totally geodesic foliation at \mathcal{M}, where $i=1,2$.

Theorem 3.15. Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{N}}\right) \rightarrow\left(\mathcal{N}, g_{\Sigma}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore, the distribution $\mathrm{D}_{1} \oplus<\zeta>$ demonstrates the totally geodesic foliation if and only if

$$
g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega \psi W, X\right)=-g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega W, \varphi P X+\psi R X\right)-g_{\mathcal{M}}\left(\mathcal{H} \nabla_{Z} \omega W, \omega R X\right)+\eta(W) g_{\mathcal{M}}(Z, \varphi P X+\psi R X)
$$

and

$$
g_{\mathcal{M}}\left(\mathcal{H} \nabla_{\mathrm{Z}} \omega \psi W, V\right)=-\mathrm{g}_{\mathcal{M}}\left(\mathcal{H} \nabla_{\mathrm{Z}} \omega W, \mathrm{CV}\right)-\mathrm{g}_{\mathcal{M}}\left(\mathcal{T}_{\mathcal{Z}} \omega W, \mathrm{BV}\right)+\eta(W) \mathrm{g}_{\mathcal{M}}(\mathrm{Z}, \mathrm{BV}),
$$

for all $\mathrm{Z}, \mathrm{W} \in \Gamma\left(\mathrm{D}_{1} \oplus<\zeta>\right), \mathrm{X} \in \Gamma\left(\mathrm{D} \oplus \mathrm{D}_{2}\right)$ and $\mathrm{V} \in \Gamma\left(\operatorname{ker~}_{\mathrm{h}_{*}}\right)^{\perp}$.
Proof. For every $Z, W \in \Gamma\left(D_{1} \oplus<\zeta>\right), X \in \Gamma\left(D \oplus D_{2}\right)$ and $V \in \Gamma\left(\operatorname{ker} h_{*}\right)^{\perp}$, the use of equations (2.1)-(2.5), (2.9), (3.1), (3.2), and Lemma 3.2 gives

$$
\begin{aligned}
g_{\mathcal{M}}\left(\nabla_{Z} W, X\right)= & g_{\mathcal{M}}\left(\nabla_{Z} \varphi W, \varphi X\right)-\eta(W) g_{\mathcal{M}}(Z, \varphi X) \\
= & g_{\mathcal{M}}\left(\nabla_{Z} \psi W, \varphi X\right)+g_{\mathcal{M}}\left(\nabla_{Z} \omega W, \varphi X\right)-\eta(W) g_{\mathcal{M}}(Z, \varphi P X+\psi R X) \\
= & \cos ^{2} \theta_{1} g_{\mathcal{M}}\left(\nabla_{Z} W, X\right)+g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega \psi W, X\right) \\
& +g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega W, \varphi P X+\psi R X\right)+g_{\mathcal{M}}\left(\mathcal{H}_{Z} \nabla_{Z} \omega W, \omega R X\right)-\eta(W) g_{\mathcal{M}}(Z, \varphi P X+\psi R X)
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
\sin ^{2} \theta_{1} g_{\mathcal{M}}\left(\nabla_{Z} W, X\right)= & g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega \psi W, X\right)+g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega W, \varphi P X+\psi R X\right) \\
& +g_{\mathcal{M}}\left(\mathcal{H} \nabla_{Z} \omega W, \omega R X\right)-\eta(W) g_{\mathcal{M}}(Z, \varphi P X+\psi R X)
\end{aligned}
$$

Next, from equations (2.1)-(2.5), (2.9), (3.2), (3.3), and Lemma 3.2, we have

$$
\begin{aligned}
& g_{\mathcal{M}}\left(\nabla_{Z} W, V\right)=g_{\mathcal{M}}\left(\nabla_{Z} \varphi W, \varphi V\right)-\eta(W) g_{\mathcal{M}}(Z, \varphi V) \\
& =g_{\mathcal{M}}\left(\nabla_{Z} \psi W, \varphi V\right)+g_{\mathcal{M}}\left(\nabla_{Z} \omega W, \varphi V\right)-\eta(W) g_{\mathcal{M}}(Z, \varphi V) \\
& =\cos ^{2} \theta_{1} g_{\mathcal{M}}\left(\nabla_{\mathrm{Z}} \mathrm{~W}, \mathrm{~V}\right)+\mathrm{g}_{\mathcal{M}}\left(\mathcal{H} \nabla_{\mathrm{Z}} \omega \psi W, \mathrm{~V}\right) \\
& +g_{\mathcal{M}}\left(\mathcal{H} \nabla_{Z} \omega W, C V\right)+g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega W, B V\right)-\eta(W) g_{\mathcal{M}}(Z, B V) .
\end{aligned}
$$

Now, we have

$$
\sin ^{2} \theta_{1} g_{\mathcal{M}}\left(\nabla_{Z} W, V\right)=g_{\mathcal{M}}\left(\mathcal{H} \nabla_{Z} \omega \psi W, V\right)+g_{\mathcal{M}}\left(\mathcal{H} \nabla_{Z} \omega W, C V\right)+g_{\mathcal{M}}\left(\mathcal{T}_{Z} \omega W, B V\right)-\eta(W) g_{\mathcal{M}}(Z, B V)
$$

this proof is completed.

Similarly, we can easily prove the coming theorem.
Theorem 3.16. Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow\left(\mathbb{K}, g_{x}\right)$ is the proper quasi bi-slant Lorentzian submersion. Therefore, the distribution $\mathrm{D}_{2} \oplus<\zeta>$ demonstrates the totally geodesic foliation if and only if

$$
g_{\mathcal{M}}\left(\mathcal{T}_{X} \omega \psi Y, Z\right)=g_{\mathcal{M}}\left(\mathcal{T}_{X} \omega Q Y, \varphi P Z+\varphi R Z\right)+g_{\mathcal{M}}\left(\mathcal{H} \nabla_{X} \omega Q Y, \omega R Z\right)+\eta(Y) g_{\mathcal{M}}(X, \varphi P Z+\psi R Z)
$$

and

$$
g_{\mathcal{M}}\left(\mathcal{H} \nabla_{X} \omega \psi Y, V\right)=-g_{\mathcal{M}}\left(\mathcal{H} \nabla_{X} \omega Y, C V\right)-g_{\mathcal{M}}\left(\mathcal{T}_{X} \omega Y, B V\right)+\eta(Y) g_{\mathcal{M}}(X, B V)
$$

for all $\mathrm{X}, \mathrm{Y} \in \Gamma\left(\mathrm{D}_{2} \oplus<\zeta>\right), \mathrm{Z} \in \Gamma\left(\mathrm{D} \oplus \mathrm{D}_{1}\right)$ and $\mathrm{V} \in \Gamma\left(\operatorname{ker~}_{*}\right)^{\perp}$.
By the use of Proposition 3.9 and Theorem 3.11 one can give the coming theorem.
Theorem 3.17. Suppose $h:\left(\mathcal{M}, \varphi, \zeta, \eta, g_{\mathcal{M}}\right) \rightarrow(\underset{\mathcal{M}}{ }) \rightarrow$ (x) is the proper quasi bi-slant Lorentzian submersion. Therefore, the map h is not a totally geodesic map.
Example 3.18. Consider the differentiable manifold R^{11} with coordinates $\left(x^{1}, \ldots, x^{5}, y^{1} \ldots \ldots, y^{5}, z\right)$ and base field $\left\{E_{i}, E_{5+i}, \zeta\right\}$ where $E_{i}=2 \frac{\partial}{\partial y^{i}}, E_{5+i}=2\left(\frac{\partial}{\partial x^{i}}+y^{i} \frac{\partial}{\partial z}\right), i=1, \ldots, 5$ and contravariant vector field $\zeta=$ $2 \frac{\partial}{\partial z}$. Define Lorentzian almost paracontact structure on R^{11} as follows:

$$
\begin{aligned}
\varphi\left(\sum_{i=1}^{5}\left(X_{i} \frac{\partial}{\partial x^{i}}+Y_{i} \frac{\partial}{\partial y^{i}}\right)+Z \frac{\partial}{\partial z}\right) & =-\sum_{i=1}^{5} Y_{i} \frac{\partial}{\partial x^{i}}-\sum_{i=1}^{5} X_{i} \frac{\partial}{\partial y^{i}}+\sum_{i=1}^{5} Y_{i} y^{i} \frac{\partial}{\partial z^{\prime}} \\
\eta & =-\frac{1}{2}\left(d z-\sum_{i=1}^{5} y^{i} d x^{i}\right) \\
g & =-\eta \otimes \eta+\frac{1}{4}\left(\sum_{i=1}^{5} d x^{i} \otimes d x^{i}+\sum_{i=1}^{5} d y^{i} \otimes d y^{i}\right)
\end{aligned}
$$

where X_{i}, Y_{i} and Z are C^{∞} functions on R^{11}. Then $\left(R^{11}, \varphi, \zeta, \eta, g\right)$ is the LP-Sasakian manifold. Suppose R^{4} is the Riemannian manifold with the Riemannian metric tensor field $g_{R^{4}}$ defined as

$$
g_{R^{4}}=\frac{1}{4} \sum_{i=1}^{4}\left(\mathrm{~d} v^{i} \otimes \mathrm{~d} v^{i}\right)
$$

on R^{4}, where $\left(v^{1}, v^{2}, v^{3}, v^{4}\right)$ is local coordinate system on R^{4}.
Let $h: R^{11} \rightarrow R^{4}$ is the map written as

$$
h\left(x^{1}, \ldots, x^{5}, y^{1} \ldots, y^{5}, z\right)=\left(x^{2}, \sin \theta_{1} x^{3}+\cos \theta_{1} x^{4}, \sin \theta_{2} y^{1}-\cos \theta_{2} y^{2}, y^{4}\right)
$$

that is quasi bi-slant Lorentzian submersion map which satisfies

$$
\begin{aligned}
\bar{X}_{1} & =\frac{\partial}{\partial x^{1}}+y^{1} \frac{\partial}{\partial z^{\prime}}, & \bar{X}_{2} & =\cos \theta_{1}\left(\frac{\partial}{\partial x^{3}}+y^{3} \frac{\partial}{\partial z}\right)-\sin \theta_{1}\left(\frac{\partial}{\partial x^{4}}+y^{4} \frac{\partial}{\partial z}\right) \\
\bar{X}_{3} & =\frac{\partial}{\partial x^{5}}+y^{5} \frac{\partial}{\partial z^{\prime}}, & \bar{X}_{4} & =\cos \theta_{2} \frac{\partial}{\partial y^{1}}+\sin \theta_{2} \frac{\partial}{\partial y^{2}} \\
\bar{X}_{5} & =\frac{\partial}{\partial y^{3}}, & \bar{X}_{6} & =\frac{\partial}{\partial y^{5}}, \\
\bar{X}_{7} & =\zeta=2 \frac{\partial}{\partial z^{\prime}}, & \left(\text { ker } h_{*}\right) & =\left(D \oplus D_{1} \oplus D_{2} \oplus<\zeta>\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{D}=<\overline{\mathrm{X}}_{3}=\frac{\partial}{\partial x^{5}}+\mathrm{y}^{5} \frac{\partial}{\partial z^{\prime}}, \\
& \bar{X}_{6}=\frac{\partial}{\partial y^{5}},>, \\
& D_{1}=<\bar{X}_{2}=\cos \theta_{1}\left(\frac{\partial}{\partial x^{3}}+y^{3} \frac{\partial}{\partial z}\right)-\sin \theta_{1}\left(\frac{\partial}{\partial x^{4}}+y^{4} \frac{\partial}{\partial z}\right), \quad \bar{X}_{5}=\frac{\partial}{\partial y^{3}}>, \\
& \mathrm{D}_{2}=<\overline{\mathrm{X}}_{1}=\frac{\partial}{\partial x^{1}}+\mathrm{y}^{1} \frac{\partial}{\partial z^{\prime}}, \\
& <\zeta>=<\bar{X}_{7}=2 \frac{\partial}{\partial z}>,
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\operatorname{ker} h_{*}\right)^{\perp} & =<V_{1}=\frac{\partial}{\partial x^{2}}+y^{2} \frac{\partial}{\partial z^{\prime}}, & V_{2} & =\sin \theta_{1}\left(\frac{\partial}{\partial x^{3}}+y^{3} \frac{\partial}{\partial z}\right)+\cos \theta_{1}\left(\frac{\partial}{\partial x^{4}}+y^{4} \frac{\partial}{\partial z}\right) \\
V_{3} & =\sin \theta_{2} \frac{\partial}{\partial y^{1}}-\cos \theta_{2} \frac{\partial}{\partial y^{2}}, & V_{4} & =\frac{\partial}{\partial y^{4}}>
\end{aligned}
$$

with bi-slant angles θ_{1} and θ_{2}. Also by direct computations, we obtain

$$
h_{*} V_{1}=\frac{\partial}{\partial v^{1}}, h_{*} V_{2}=\frac{\partial}{\partial v^{2}}, h_{*} V_{3}=\frac{\partial}{\partial v^{3}}, h_{*} V_{4}=\frac{\partial}{\partial v^{4}}
$$

Example 3.19. Consider R^{11} and R^{4} has same structure as in Example 3.18. Suppose R^{4} is the Riemannian manifold with the Riemannian metric tensor field $g_{R^{4}}$ defined as

$$
g_{R^{4}}=\frac{1}{4} \sum_{i=1}^{4}\left(\mathrm{~d} v^{\mathfrak{i}} \otimes \mathrm{d} v^{\mathfrak{i}}\right)
$$

on R^{4}, where $\left(v^{1}, v^{2}, v^{3}, v^{4}\right)$ is local coordinate system on R^{4}. Let $h: R^{11} \rightarrow R^{4}$ be the map determined as

$$
h\left(x^{1}, \ldots, x^{5}, y^{1}, \ldots y^{5}, z\right)=\left(\frac{\sqrt{3} x^{1}+x^{2}}{2}, x^{4}, y^{1}, \frac{y^{3}-y^{4}}{\sqrt{2}}\right)
$$

that is quasi bi-slant Lorentzian submersion map which satisfies

$$
\begin{array}{rlrl}
\bar{X}_{1} & =\left(\frac{\partial}{\partial x^{1}}+y^{1} \frac{\partial}{\partial z}\right)-\sqrt{3}\left(\frac{\partial}{\partial x^{2}}+y^{2} \frac{\partial}{\partial z}\right), & \bar{X}_{2} & =\frac{\partial}{\partial x^{3}}+y^{3} \frac{\partial}{\partial z^{\prime}} \\
\bar{X}_{4} & =\frac{\partial}{\partial y^{2}}, & \bar{X}_{3}=\frac{\partial}{\partial x^{5}}+y^{5} \frac{\partial}{\partial z^{\prime}} \\
\bar{X}_{5} & =\left(\frac{\partial}{\partial y^{3}}+\frac{\partial}{\partial y^{4}}\right), & \bar{X}_{6}=\frac{\partial}{\partial y^{5}} \\
\bar{X}_{7} & =\zeta=2 \frac{\partial}{\partial z^{\prime}}, & \left(k e r h_{*}\right) & =\left(D \oplus D_{1} \oplus D_{2} \oplus<\zeta>\right),
\end{array}
$$

where

$$
\begin{array}{rlrl}
\mathrm{D} & =<\overline{\mathrm{X}}_{3} & =\frac{\partial}{\partial x^{5}}+\mathrm{y}^{5} \frac{\partial}{\partial z^{\prime}} & \overline{\mathrm{X}}_{6}=\frac{\partial}{\partial y^{5}}> \\
\mathrm{D}_{1} & =<\overline{\mathrm{X}}_{1} & =\left(\frac{\partial}{\partial x^{1}}+\mathrm{y}^{1} \frac{\partial}{\partial z}\right)-\sqrt{3}\left(\frac{\partial}{\partial x^{2}}+\mathrm{y}^{2} \frac{\partial}{\partial z}\right), & \overline{\mathrm{X}}_{4}=\frac{\partial}{\partial y^{2}}> \\
\mathrm{D}_{2} & =<\overline{\mathrm{X}}_{5} & =\left(\frac{\partial}{\partial y^{3}}+\frac{\partial}{\partial y^{4}}\right), & \overline{\mathrm{X}}_{2}=\frac{\partial}{\partial x^{3}}+y^{3} \frac{\partial}{\partial z}> \\
<\zeta> & =<\overline{\mathrm{X}}_{7} & =2 \frac{\partial}{\partial z}>
\end{array}
$$

and
$\left(\operatorname{ker} h_{*}\right)^{\perp}=<V_{1}=\sqrt{3}\left(\frac{\partial}{\partial x^{1}}+y^{1} \frac{\partial}{\partial z}\right)+\left(\frac{\partial}{\partial x^{2}}+y^{2} \frac{\partial}{\partial z}\right), \quad V_{2}=\frac{\partial}{\partial x^{4}}+y^{4} \frac{\partial}{\partial z^{\prime}}, \quad V_{3}=\frac{\partial}{\partial y^{1}}, \quad V_{4}=\left(\frac{\partial}{\partial y^{3}}-\frac{\partial}{\partial y^{4}}\right)>$, with bi-slant angles $\theta_{1}=\frac{\pi}{6}$ and $\theta_{2}=\frac{\pi}{4}$. Also by direct computations, we obtain

$$
h_{*} V_{1}=2 \frac{\partial}{\partial v^{1}}, \quad h_{*} V_{2}=\frac{\partial}{\partial v^{2}}, \quad h_{*} V_{3}=\frac{\partial}{\partial v^{3}}, \quad h_{*} V_{4}=\sqrt{2} \frac{\partial}{\partial v^{4}}
$$

It can be easily seen that Theorem 3.11, and Propositions 3.12 and 3.14 are satisfied by the Examples 3.18 and 3.19.

Acknowledgment

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program. The authors would also like to thank the referees for their helpful comments and suggestions.

References

[1] M. A. Akyol, R. Sarı, E. Aksoy, Semi-invariant ξ^{\perp}-Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys., 14 (2017), 17 pages. 1, 2.7
[2] C. Altafini, Redundant robotic chains on Riemannian submersions, IEEE Trans. Robot. Autom., 20 (2004), 335-340. 1
[3] P. Baird, J. C. Wood, Harmonic Morphism between Riemannian Manifolds, Oxford University Press, (2003). 1, 2
[4] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser Boston, Boston, (2002). 1
[5] D. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palermo, 34 (1985), 89-104. 1
[6] M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian submersions and related topics, World Scientific, (2004). 1
[7] M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian Submersions and Related Topics, World Scientific Publishing Co., River Edge, NJ, (2004). 1
[8] A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech., 16 (1967), 715-738. 1
[9] Y. Gündüzalp, Slant submersions from Lorentzian almost paracontact manifolds, Gulf J. Math., 3 (2015), 18-28. 1, 2.8, 2.11
[10] Y. Gündüzalp, B. Şahin, Paracontact semi-Riemannian submersions, Turkish J. Math., 37 (2013), 114-128. 1
[11] A. Haseeb, R. Prasad, Certain curvature conditions in Lorentzian para-Sasakian manifolds with respect to the semisymmetric metric connection, Int. J. Maps Math., 3 (2020), 85-99. 2
[12] S. Ianuş, A. M. Ionescu, R. Mocanu, G. E. Vîlcu, Riemannian submersions from Almost contact metric manifolds, Abh. Math. Semin. Univ. Hambg., 81 (2011), 101-114. 1
[13] S. Ianuş, R. Mazzocco, G. E. Vîlcu, Riemannian submersion from quaternionic manifolds, Acta Appl. Math., 104 (2008), 83-89. 1
[14] S. Ianus, M. Visinescu, Space-time compactication and Riemannian submersions, In: The mathematical heritage of C. F. Gauss, World Sci. Publ., River Edge, NJ, (1991). 1
[15] S. Kumar, R. Prasad, P. K. Singh, Conformal semi-slant submersions from Lorentzian para Sasakian manifolds, Commun. Korean Math. Soc., 34 (2019), 637-655. 1
[16] M. A. Magid, Submersions from anti-de Sitter space with totally geodesic fibers, J. Differential Geom., 16 (1981), 323-331. 1
[17] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci., 12 (1989), 151-156. 1
[18] I. Mihai, R. Roşca, On Lorentzian P-Sasakian manifolds, Classical Analysis, World Sci. Publ., River Edge, NJ, (1992). 1
[19] C. Murathan, I. K. Erkena, Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian manifolds, Filomat, 29 (2015), 1429-1444. 1, 2.6
[20] M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys., 41 (2000), 6918-6929. 1
[21] K.-S. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc., 50 (2013), 951-962. 1
[22] R. Prasad, S. Kumar, SSemi-slant Riemannian maps from almost contact metric manifolds into Riemannian manifolds, Tbilisi Math. J., 11 (2018), 19-34. 2.5, 2.9
[23] R. Prasad, S. S. Shukla, S. Kumar, On quasi-bi-slant submersions, Mediterr. J. Math., 16, (2019), 18 pages. 1
[24] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J., 33 (1966), 459-469. 1
[25] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, San Diego, (1983). 2
[26] B. Şahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math., 8 (2010), 437447. 1
[27] B. Şahin, Slant submersions from Almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 54 (2011), 93-105. 1
[28] B. Şahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull., 56 (2013), 173-183. 1
[29] B. Şahin, Riemannian submersion from almost Hermitian manifolds, Taiwanese J. Math., 17 (2013), 629-659. 1
[30] B. Şahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applications, Elsevier/Academic Press, London, (2017). 1
[31] H. M. Taştan, B. Şahin, S. Yanan, Hemi-slant submersions, Mediterr. J. Math., 13 (2016), 2171-2184. 1, 2.10
[32] B. Watson, Almost Hermitian submersions, J. Differential Geometry, 11 (1976), 147-165. 1

[^0]: *Corresponding author
 Email addresses: rp.manpur@rediffmail.com (Rajendra Prasad), fyalmofarrah@pnu.edu.sa (Fatemah Mofarreh), malikhaseeb80@gmail.com, haseeb@jazanu.edu.sa (Abdul Haseeb), skverma1208@gmail.com (Sandeep Kumar Verma) doi: 10.22436/jmcs.024.03.01
 Received: 2020-12-23 Revised: 2021-01-23 Accepted: 2021-01-24

