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Abstract
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1. Introduction

Differential geometry is one of the most popular branch of mathematics and physics from ancient
days. There are several topics in differential geometry which have very important applications in both,
mathematics and physics [2, 14, 20]. Immersions and submersions are some of them. The properties
of Riemannian submersions become an interesting subject in complex geometry as well as in contact
geometry.

The theory of Riemannian submersions was first established by O′Neill [24] and Gray [8]. In 1976, Wat-
son [32] introduced almost Hermitian submersions within almost Hermitian manifolds. In 1985, Chinea
[5] generalized the idea of almost Hermitian submersion to different sub-classes of the almost contact
manifolds. There are so many important and interesting results about Riemannian and almost Hermitian
submersion which are studied at [4, 6, 30]. Recently, slant submersions, semi-invariant submersions as
well as semi-slant submersions from almost Hermitian manifolds on Riemannian manifolds have been
studied in [21, 27, 28], respectively. Several types of Riemannian submersions between Riemannian mani-
folds endowed with various constructures were investigated by several geometers ([1, 3, 12, 13, 19, 26, 29]).
In 2016, Sahin et al. [31] proved decomposition theorems for hemi-slant Riemannian submersions from
Hermitian manifolds on Riemannian manifolds.
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Magid [16] and Falcitelli et al. [7], introduced the theory of Lorentzian submersions. Matsumoto [17]
started the idea of LP-Sasakian manifolds, while in 1992, related subject is investigated by Mihai and
Rosca [18]. Recently, Gunduzalp [9] and Gunduzalp and Sahin [10] studied paracontact and Lorentzian
almost paracontact structures. Kumar et al. [15] defined and studied conformal semi-slant submersions
from LP-Sasakian manifolds onto Riemannian manifolds. Very recently, Prasad et al. [23] introduced the
concept of quasi bi-slant submersions from Kaehler manifold on the Riemannian manifold.

In this research we undertake our work as follows. In Section 2, we present several main informations
relating to quasi bi-slant Lorentzian submersion. At Section 3, certain interesting outcomes on quasi bi-
slant Lorentzian submersions from an LP-Sasakian manifold onto the Riemannian manifold are obtained
and studied the geometry of leaves of distributions that are included at this submersion. In the same
section, certain conditions are obtained of similar submersions to become totally geodesic. Finally, some
non-trivial examples for such submersions have constructed.

2. Preliminaries

The n-dimension smooth manifold M admitting ϕ the (1, 1)-tensor field, ζ : the structural vector field,
η : the 1-form and g : the Lorentzian metric named the Lorentzian para Sasakian (in brief, LP-Sasakian)
manifold [11, 25] satisfies:

ϕ2 = I+ η⊗ ζ, ϕ ◦ ζ = 0, η ◦ϕ = 0, (2.1)
η(ζ) = −1, g(·, ζ) = η(·), (2.2)

g(ϕ·,ϕ·) = g+ η⊗ η, g(ϕ·, ·) = g(·,ϕ·), (2.3)
∇ζ = ϕ, (2.4)

(∇Xϕ)Y = η(Y)X+ g(X, Y)ζ+ 2η(X)η(Y)ζ, (2.5)

choosing X, Y at M, where ∇ denotes Levi-Civita connection respecting to Lorentzian metric g.
In the LP-Sasakian manifold, clearly

rank(ϕ) = n− 1.

Now, in case
Φ(X, Y) = Φ(Y,X)

for all X, Y on M, then Φ is called symmetric (0, 2) tensor field, where Φ(X, Y) = g(X,φY).

Lemma 2.1. Suppose W is a subspace of dimension > 1 in the Lorentz vector space. Then the following are
equivalent:

1. W is timelike, hence is itself a Lorentz vector space;
2. W includes two linearly independent null vectors;
3. W contains a timelike vector.

Lemma 2.2. Suppose W is a subspace of Lorentz vector space V and Suppose g is the metric (scalar product) of V,
therefore the possible cases for W are:

1. g
∣∣
W

is positive definite, then W is the inner product space;
2. g

∣∣
W

is non-degenerate of index 1, therefore W is timelike;
3. g

∣∣
W

is degenerate, therefore W is lightlike.

Lemma 2.3. Let Z be the subspace spanned by the timelike vector in Lorentz vector space V, therefore the subspace
Z⊥ is spacelike and V is a direct sum of Z and Z⊥.



R. Prasad, F. Mofarreh, A. Haseeb, S. K. Verma, J. Math. Computer Sci., 24 (2022), 186–200 188

This argument shows, more generally, that the subspace W is timelike if and only if W⊥ is spacelike.
Since

(
W⊥

)⊥
= W.

W is lightlike if and only if W⊥ is lightlike.

Lemma 2.4. For the subspace W of the Lorentz vector space, the coming statements are equivalent:

1. W is lightlike, that is, degenerate;
2. W includes the null vector but not timelike vector;
3. W∩A = L−O, where L is the one dimensional subspace and A is the null cone of V, which means

L = W∩W⊥.

Note that we denote (M,ϕ, ζ,η,gM) : the almost contact metric manifold, (ℵ,gℵ) : the Riemannian
manifold and kerh∗ : the vertical distribution of h in M. To use later, we recall the following definitions.

Definition 2.5 ([22]). The Riemannian submersion h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is named an invariant
Riemannian submersion in case

ϕ(ker h∗) = ker h∗.

Definition 2.6 ([19]). Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is a Riemannian submersion such that
(in brief, s.t.) ϕ(ker h∗) ⊆ (ker h∗)⊥. Therefore, h is called the anti-invariant Riemannian submersion.

Definition 2.7 ([1]). The Riemannian submersion h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is called the semi-
invariant Riemannian submersion in case there is the distribution D1 ⊆ ker h∗, s.t.,

ker h∗ = D1 ⊕D2⊕ < ζ >, and ϕ (D1) = D1,ϕ (D2) ⊆ (ker h∗)⊥,

where D2 is orthogonal complementary distribution to D1 at ker h∗.

Suppose the complementary orthogonal subbundle to ϕ(ker h∗) in (ker h∗)⊥ is denoted by µ. There-
fore we get

(ker h∗)⊥ = ϕ (D2)⊕ µ.

Clearly, µ is the invariant subbundle of (ker h∗)⊥ respecting to the almost contact constructor ϕ.

Definition 2.8 ([9]). The Riemannian submersion h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is called a slant submer-
sion, in case for all X( 6= 0) ∈ (ker h∗)p, p ∈ M, the angle θ(X) within ϕX and the space (ker h∗)p is
constant. The angle θ is called the slant angle of the submersion and in case θ ∈ (0, π2 ), therefore h is
named the proper slant submersion.

Definition 2.9 ([22]). The Riemannian map h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) named the semi-slant Rieman-
nian map in case there are three orthogonal complementary distributions D1,D2 and < ζ > in kerh∗,
s.t.,

kerh∗ = D1 ⊕D2⊕ < ζ >, ϕ(D1) = D1,

and the angle θ = θ(X) (called a semi-slant angle) between ϕX as well as the space (D2)p is constant of
X( 6= 0) ∈ (D2)p for p ∈M, where D1 ⊕D2⊕ < ζ > is an orthogonal decomposition for kerh∗.

Definition 2.10 ([31]). Suppose (M,gM, J) is the almost Hermitian manifold and (ℵ,gℵ) is the Rieman-
nian manifold. The Riemannian submersion h : (M,gM, J) → (ℵ,gℵ) named the hemi-slant submersion
in case

kerh∗ = Dθ ⊕D⊥.

The distribution Dθ is slant with an angle θ (named a hemi-slant angle) and D⊥ is anti-invariant.
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Definition 2.11 ([9]). Suppose (M,gM) be a Lorentzian manifold and (B,gB) a Riemannian manifold. A
Lorentzian submersion is a map h : (M,gM) → (B,gB) which is onto and satisfies the following three
conditions.

(A1) h∗p is onto for all p ∈M.
(A2) The fibers h−1(b) are semi-Riemannian (Lorentzian) submanifolds of M for each b ∈ B.
(A3) h∗ preserves scalar products of horizontal vectors.

Now, the concept of a quasi bi-slant Lorentzian submersion from LP-Sasakian manifolds onto Rieman-
nian manifolds is introduced:

Definition 2.12. Suppose (M,ϕ, ζ,η,gM) is the LP-Sasakian manifold as well as (ℵ,gℵ) is the Riemannian
manifold. The Lorentzian submersion

h : (M,ϕ, ζ,η,gM)→ (ℵ,gℵ)

named the quasi bi-slant Lorentzian submersion in case there are four mutually orthogonal distributions
D,D1,D2 and < ζ >, s.t.,

(i) kerh∗ = D⊕orth D1 ⊕orth D2⊕orth < ζ >;
(ii) ϕ(D) = D, which means D is invariant;

(iii) ϕ(D1) ⊥ D2 and ϕ(D2) ⊥ D1;
(iv) for any X( 6= 0) ∈ (D1)p, p ∈ M, the angle θ1 within ϕX and (D1)p is constant and independent of

the choice of point p and X in (D1)p;
(v) for all Z( 6= 0) ∈ (D2)q, q ∈M, the angle θ2 within ϕZ and (D2)q is constant and independent of the

choice of point q and Z in (D2)q.

The angles θ1 and θ2 named slant angles of h, where D,D1 and D2 are spacelike subspaces and ker h∗
is Lorentzian subspace.

Thus it is noted that:

(a) In case dimD 6= 0 and dimD1 = dimD2 = 0, therefore h is invariant submersion.
(b) In case dimD 6= 0, dimD1 6= 0, 0 < θ1 <

π
2 and dimD2 = 0, therefore h is proper semi-slant

submersion.
(c) In case dimD = 0, dimD1 6= 0, 0 < θ1 <

π
2 and dimD2 = 0, therefore h is slant submersion with slant

angle θ1.
(d) In case dimD = dimD1 = 0 and dimD2 6= 0, 0 < θ2 <

π
2 , therefore h is slant submersion with slant

angle θ2.
(e) In case dimD1 6= 0, dimD = 0, θ1 = π

2 and dimD2 = 0, therefore h is the anti-invariant submersion.
(f) In case dimD1 6= 0, dimD 6= 0, θ1 = π

2 and dimD2 = 0, therefore h is semi-invariant submersion.
(g) In case dimD1 6= 0, dimD = 0, 0 < θ1 <

π
2 and dimD2 6= 0, θ2 = π

2 , therefore h is the hemi-slant
submersion.

(h) In case dimD1 6= 0, dimD = 0, 0 < θ1 <
π
2 and dimD2 6= 0, 0 < θ2 <

π
2 , therefore h is the bi-slant

submersion.
(i) In case dimD 6= 0, dimD1 6= 0, 0 < θ1 <

π
2 and dimD2 6= 0, θ2 = π

2 , therefore h can be called a
quasi-hemi-slant submersion.

(j) In case dimD 6= 0, dimD1 6= 0, 0 < θ1 <
π
2 and dimD2 6= 0, 0 < θ2 <

π
2 , therefore h is proper quasi

bi-slant submersion.

Define O’Neill’s tensors T and A as

AEL = H∇HEVL+V∇HEHL, (2.6)
TEL = H∇VEVL+V∇VEHL (2.7)
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for all vector fields E,L at M, where ∇ defines Levi-Civita connection of gM. Clearly, TE and AE are skew-
symmetric operators at the tangent bundle of M reversing vertical and horizontal distributions. Using
equations (2.6) and (2.7), results in

∇XY = TXY +V∇XY, (2.8)
∇XV = TXV +H∇XV , (2.9)
∇VX = AVX+V∇VX, (2.10)
∇VW = H∇VW +AVW, (2.11)

for all X, Y ∈ Γ(kerh∗) and V ,W ∈ Γ(kerh∗)⊥, where H∇XV = AVX, in case V is basic. It can be
easily observed that T works at the fibers as the second fundamental form, where A works on horizontal
distribution and measures obstruction to the integrability of the same distribution.

Clearly, for q ∈M, U ∈ Vq and Z ∈ Hq

AU, TZ : TqM→ TqM

are skew-symmetric, such that

gM(AUE,L) = −gM(E,AUL) and gM(TZE,L) = −gM(E,TZL)

for each E,L ∈ TqM. Since TZ is skew-symmetric, therefore it is observed that h has totally geodesic fibres
if and only if T ≡ 0.

Definition 2.13. Let M and M′ be two smooth manifolds. Let ∇ and ∇′ be connections on M and M′,
respectively. A smooth map h :M→M′ is called connection preserving map if

h∗(∇XY) = ∇′h∗X(h∗Y)

for all vector fields X, Y on M.
A smooth map h : M → M′ is called geodesic preserving map if for each geodesic σ in M, h ◦ σ is

geodesic in M′.
It is known that if a map is connection preserving then it is also the geodesic preserving. Geodesic

preserving map is also called totally geodesic map.
We also know if M and M′ be two smooth manifolds and h be a diffeomorphism from M onto M′,

then for a connection∇′ onM′ there exist unique connection∇ onM such that h is connection preserving
map.

Suppose (M,ϕ, ζ,η,gM) is an LP-Sasakian manifold, (ℵ,gℵ) is the Riemannian manifold and h : M→
ℵ is a smooth map. Therefore the second fundamental form of h is

(∇h∗)(U,V) = ∇hUh∗V − h∗(∇UV), for U,V ∈ Γ(TpM),

where ∇ denotes Levi-Civita connection of the metrices gM and gℵ and ∇h is the pullback connection.
The differentiable map h : M→ ℵ is totally geodesic in case

(∇h∗)(U,V) = 0, for all U,V ∈ Γ(TM).

Now the following lemma can be proved as in [3].

Lemma 2.14. Suppose h is the Lorentzian submersion from the LP-Sasakian manifold (M,ϕ, ζ,η,gM) on Rieman-
nian manifold (ℵ,gℵ), therefore we get

(i) (∇h∗)(V ,W) = 0;
(ii) (∇h∗)(X,Z) = −h∗(TXZ) = −h∗(∇XZ);

(iii) (∇h∗)(V ,X) = −h∗(∇VX) = −h∗(AVX), where V , W are horizontal vector fields and X, Z are vertical
vector fields.
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3. Quasi Bi-Slant Lorentzian submersions

Throughout this section, we take (M,ϕ, ζ,η,gM) be a LP-Sasakian manifold and (ℵ,gℵ) be a Rieman-
nian manifold.

Suppose h : (M,ϕ, ζ,η,gM)→ (ℵ,gℵ) is the quasi bi-slant Lorentzian submersion. Therefore, we get

TM = kerh∗ ⊕orth (kerh∗)⊥.

Here, for all vector field Z ∈ Γ(kerh∗), we choose

Z = PZ+QZ+ RZ− η(Z)ζ, (3.1)

where P,Q and R indicates to the projection morphisms of kerh∗ on D,D1 and D2, in the same order.
Choosing Z ∈ Γ(kerh∗), we set

ϕZ = ψZ+ωZ, (3.2)

where ψZ ∈ Γ(kerh∗) and ωZ ∈ Γ(ωD1 ⊕ωD2). From (3.1) and (3.2), we get

ϕZ = ψ(PZ) +ω(PZ) +ψ(QZ) +ω(QZ) +ψ(RZ) +ω(RZ).

Since ϕD = D, therefore ωPZ = 0. Hence we obtain

ϕZ = ψ(PZ) +ψQZ+ωQZ+ψRZ+ωRZ.

Thus we have
ϕ(kerh∗) = D⊕ (ψD1 ⊕ψD2)⊕ (ωD1 ⊕ωD2),

where ⊕ defines orthogonal direct sum.
Moreover, Suppose V ∈ Γ(D1) and W ∈ Γ(D2), therefore gM(V ,W) = 0. Now from the Definition 2.12

(iii), we have gM(ϕV ,W) = gM(V ,ϕW) = 0. Now, we consider

gM(ψV ,W) = gM(ϕV −ωV ,W) = gM(ϕV ,W),= 0.

In Similar way, we have gM(V ,ψW) = 0. Suppose Z ∈ Γ(D) and Y ∈ Γ(D1). Therefore we get

gM(ψY,Z) = gM(ϕY −ωY,Z) = gM(ϕY,Z) = −gM(Y,ϕZ) = 0,

as D is invariant, which means ϕZ ∈ Γ(D). Similarly, for Z ∈ Γ(D) and X ∈ Γ(D2), we obtain gM(ψX,Z) =
0. From above equations, we have

gM(ψZ,ψW) = 0, and gM(ωZ,ωW) = 0

for any Z ∈ Γ(D1) and W ∈ Γ(D2). So, we can write ψD1 ∩ψD2 = {0},ωD1 ∩ωD2 = {0}. If θ2 = π
2 , then

ψR = 0 and D2 is anti-invariant, which means ϕ(D2) ⊆ (kerh∗)⊥. Here we present D2 as D⊥. In addition,
we have

ϕ(kerh∗) = D⊕ψD1 ⊕ωD1 ⊕ϕD⊥,

where ⊕ defines orthogonal direct sum. Since ωD1 ⊆ (kerh∗)⊥, ωD2 ⊆ (kerh∗)⊥, so it is obtained that

(kerh∗)⊥ = ωD1 ⊕ωD2 ⊕ µ,

where µ is orthogonal complement of (ωD1 ⊕ωD2) at (kerh∗)⊥. Also for all V ∈ Γ(kerh∗)⊥, we set

ϕV = CV +BV , (3.3)

where CV ∈ Γ(µ) and BV ∈ Γ(kerh∗).
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Span{ζ} = 〈ζ〉 determines timelike vector field distribution. In case the spacelike vector field X is
orthogonal to ζ, therefore g (ϕX,ϕX) = g (X,X) > 0, thus ϕX is spacelike and hence ψX is also spacelike.

Wirtinger angle θ is written as

cos θ =
g (ϕX,ψX)
| ϕX || ψX |

.

Since g
∣∣
ker h∗

is non-degenerate metric of index 1 at all points of M, therefore (kerh∗)x is timelike

subspace of TxM at any point of M, and so (kerh∗)
⊥
x is spacelike subspace of TxM at all points x ∈M.

Lemma 3.1. Let h : (M,ϕ, ζ,η,gM)→ (ℵ,gℵ) be the quasi bi-slant Lorentzian submersion. Therefore we got

ψ2V +BωV = V + η(V)ζ, ωψV +CωV = 0, ωBW +C2W =W, ψBW +BCW = 0,

for all V ∈ Γ(kerh∗) and W ∈ Γ(kerh∗)⊥.

Proof. By making use of the equations (2.1), (3.2), and (3.3), Lemma 3.1 follows.

Lemma 3.2. Let h : (M,ϕ, ζ,η,gM)→ (ℵ,gℵ) be the quasi bi-slant Lorentzian submersion. Therefore, we got

(i) ψ2V = (cos2 θ1)V ,
(ii) gM(ψV ,ψW) = cos2 θ1gM(V ,W),

(iii) gM(ωV ,ωW) = sin2 θ1gM(V ,W),

for all V ,W ∈ Γ(D1).

Proof.

(i) Let h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) be the quasi bi-slant Lorentzian submersion with the quasi bi-slant
angle θ1. Therefore, for V( 6= 0) ∈ Γ(D1), we have

cos θ1 =
| ψV |

| ϕV |
, (3.4)

and

cos θ1 =
gM(V ,ψV)
| V || ψV |

.

By making use of (2.1), (2.3), and (3.2), we have

cos θ1 =
gM(ψV ,ψV)
| ϕV || ψV |

, (3.5)

cos θ1 =
gM(V ,ψ2V)

|ϕV ||ψV |
.

From the equations (3.4) and (3.5), we get ψ2V = (cos2 θ1)V , for V ∈ Γ(D1).

(ii) For all V ,W ∈ Γ(D1), by the use of equations (2.1), (2.3), (3.2), and Lemma 3.2 (i), we have

gM(ψV ,ψW) = gM(ϕV −ωV ,ψW) = gM(V ,ψ2W) = cos2 θ1gM(V ,W).

(iii) By using the equations (2.3), (3.2), and Lemma 3.2 (i) and (ii), Lemma 3.2 (iii) follows.

Similarly, the coming Lemma is obtained.

Lemma 3.3. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the quasi bi-slant Lorentzian submersion. Therefore, we
have

(i) ψ2Z = (cos2 θ2)Z;
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(ii) gM(ψZ,ψU) = cos2 θ2gM(Z,U);
(iii) gM(ωZ,ωU) = sin2 θ2gM(Z,U);

for all Z,U ∈ Γ(D2).

Lemma 3.4. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the quasi bi-slant Lorentzian submersion. Therefore, we
get

V∇XψY + TXωY −ψV∇XY −BTXY = gM(X, Y)ζ+ η(Y)X+ 2η(X)η(Y)ζ, (3.6)
TXψY +H∇XωY = ωV∇XY +CTXY, (3.7)

V∇UBV +AUCV − gM(CU,V)ζ = ψAUV +BH∇UV , (3.8)
AUBV +H∇UCV = ωAUV +CH∇UV , (3.9)
V∇XBU+ TXCU = ψTXU+BH∇XU, (3.10)
TXBU+H∇XCU = ωTXU+CH∇XU, (3.11)
V∇VψX+AVωX = BAVX+ψV∇VX, (3.12)

AVψX+H∇VωX− η(X)V = CAVX+ωV∇VX, (3.13)

for all X, Y ∈ Γ(kerh∗) and U,V ∈ Γ(kerh∗)⊥.

Proof. Using equations (2.1), (2.2), (2.5), (2.8)-(2.11), we can easily get the equations (3.6)-(3.13).

Now, we define

(∇Vψ)W = V∇VψW −ψV∇VW, (3.14)
(∇Vω)W = H∇VωW −ωV∇VW, (3.15)
(∇XC)Y = H∇XCY −CH∇XY, (3.16)
(∇XB)Y = V∇XBY −BH∇XY, (3.17)

for all V ,W ∈ Γ(kerh∗) and X, Y ∈ Γ(kerh∗)⊥.

Lemma 3.5. Let h : (M,ϕ, ζ,η,gM)→ (ℵ,gℵ) be the quasi bi-slant Lorentzian submersion. Therefore, we get

(∇Vϕ)W = BTVW − TVωW + gM(V ,W)ζ+ 2η(V)η(W)ζ+ η(W)V ,
(∇Vω)W = CTVW − TVψW,
(∇XC)Y = ωAXY −AXBY,
(∇XB)Y = ψAXY −AXCY + gM(X, Y)ζ,

for all V ,W ∈ Γ(kerh∗) and X, Y ∈ Γ(kerh∗)⊥.

Proof. By the use of equations (3.6)-(3.9) and (3.14)-(3.17), Lemma 3.5 follows.

Now, in case tensors ϕ and ω are parallel respecting to ∇ at M, therefore

BTVW = TVωW − gM(V ,W)ζ− 2η(V)η(W)ζ− η(W)V ,

and
CTVW = TVψW

for all V ,W ∈ Γ(TM).

Theorem 3.6. Let h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion. Therefore,
the invariant distribution D is integrable if and only if

gM(TXϕY − TYϕX,ωQZ+ωRZ) = −gM(V∇XϕY −V∇YϕX,ψQZ+ψRZ)

for all X, Y ∈ Γ(D) and Z ∈ Γ(D1 ⊕D2⊕ < ζ >).
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Proof. For X, Y ∈ Γ(D), and Z ∈ Γ(D1 ⊕D2⊕ < ζ >), by the use of equations (2.1)-(2.5), (2.8), (3.1), and
(3.2), we have

gM([X, Y],Z) = gM(∇XϕY,ϕZ) − gM(∇YϕX,ϕZ) − η(Z)η(∇XY) + η(Z)η(∇YX),
= gM(∇XϕY,ϕZ) − gM(∇YϕX,ϕZ),
= gM(TXϕY − TYϕX,ωRZ+ωQZ) + gM(−V∇YϕX+V∇XϕY,ψQZ+ψRZ),

this proof is completed.

Theorem 3.7. Let h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion. Then the
slant distribution D1 is integrable if and only if

gM(TWωψZ− TZωψW,U) = gM(TZωW − TWωZ,ϕPU+ψRU) + gM(H∇ZωW −H∇WωZ,ωRU)

for all Z,W ∈ Γ(D1) as well as U ∈ Γ(D⊕D2⊕ < ζ >).

Proof. For any Z,W ∈ Γ(D1) and U ∈ Γ(D⊕D2⊕ < ζ >), we have

gM([Z,W],U) = gM(∇ZW,U) − gM(∇WZ,U).

By the use of equations (2.1)-(2.5), (2.8), (2.9), (3.1), and (3.2) and Lemma 3.2, it is obtained that

gM([Z,W],U) = gM(ϕ∇ZW,ϕU) − gM(ϕ∇WZ,ϕU),
= gM(∇ZϕW,ϕU) − gM(∇WϕZ,ϕU),
= gM(∇ZψW,ϕU) + gM(∇ZωW,ϕU) − gM(∇WψZ,ϕU) − gM(∇ZωW,ϕU),

= cos2 θ1gM(∇ZW,U) − cos2 θ1gM(∇WZ,U) + gM(TZωψW − TWωψZ,U)
+ gM(H∇ZωW + TZωW,ϕPU+ψRU+ωRU)

− gM(H∇WωZ+ TWωZ,ϕPU+ψRU+ωRU).

Now, we have

sin2 θ1gM([Z,W],U) = gM(TZωW − TWωZ,ϕPU+ψRU) + gM(H∇ZωW −H∇WωZ,ωRU)
+ gM(TZωψW − TWωψZ,U),

This proof is completed.

Similarly, the coming theorem is presented.

Theorem 3.8. Let h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion. Therefore
the slant distribution D2 is integrable if and only if

gM(TYωψX− TXωψY,Z) = gM(H∇XωY −H∇YωX,ωQZ) + gM(TXωY − TYωX,ϕPZ+ψQZ)

for any X, Y ∈ Γ(D2) and Z ∈ Γ(D⊕D1⊕ < ζ >).

Proposition 3.9. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore the vertical distribution (kerh∗) does not determines the totally geodesic foliation at M.

Proof. Suppose we have X ∈ Γ(kerh∗) and Z ∈ Γ(kerh∗)⊥, by the use of (2.4) we get

gM(∇Xζ,Z) = gM(ϕX,Z),

as gM(ϕX,Z) 6= 0, so gM(∇Xζ,Z) 6= 0 for some X and Z. Hence, (kerh∗) is not defining a totally geodesic
foliation at M.
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Theorem 3.10. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore the distribution (kerh∗)− < ζ > determines the totally geodesic foliation at M if and only if

gM(TUPV + cos2 θ1TUQV + cos2 θ2TURV ,X)
= −gM(H∇UωψQV +H∇UωψPV +H∇UωψRV ,X)gM(TUωV ,BX) − gM(H∇UωV ,CX)

for any U,V ∈ Γ(kerh∗)− < ζ > and X ∈ Γ(kerh∗)⊥.

Proof. For all U,V ∈ Γ(kerh∗)− < ζ > and X ∈ Γ(kerh∗)⊥, by the use of equations (2.2), (2.3), and (3.1),
we have

gM(∇UV ,X) = gM(∇UϕPV ,ϕX) + gM(∇UϕQV ,ϕX) + gM(∇UϕRV ,ϕX).

Using equations (2.3), (2.10), (2.11), (3.1), (3.2), Lemma 3.2, and Lemma 3.3, we have

gM(∇UV ,X) = gM(TUPV ,X) + cos2 θ1gM(TUQV ,X) + cos2 θ2gM(TURV ,X)
+ gM(H∇UωψPV +H∇UωψQV +H∇UωψRV ,X) + gM(∇U(ωPV +ωQV +ωRV),ϕX).

Since ωPV +ωQV +ωRV = ωV and ωPV = 0, thus we have

gM(∇UV ,X) = gM(TUPV + cos2 θ1TUQV + cos2 θ2TURV ,X)
+ gM(H∇UωψPV +H∇UωψQV +H∇UωψRV ,X)
+ gM(TUωV ,BX) + gM(H∇UωV ,CX),

this proof is completed.

Theorem 3.11. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore, the horizontal distribution (kerh∗)⊥ does not demonstrates the totally geodesic foliation at M.

Proof. Suppose Z,V ∈ Γ(kerh∗)⊥, and by the use of equation (2.4), we got

gM(∇ZV , ζ) = −gM(V ,∇Zζ) = −gM(V ,ϕZ),

as gM(V ,ϕZ) 6= 0, therefore gM(∇ZV , ζ) 6= 0 for some V and Z. Hence, (kerh∗)⊥ does not demonstrates
a totally geodesic foliation at M.

Proposition 3.12. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore, the distribution D does not demonstrates the totally geodesic foliation on M.

Proof. For all U,V ∈ Γ(D), using equation (2.4), we got

gM(∇UV , ζ) = −gM(V ,ϕU),

since gM(V ,ϕU) 6= 0, so gM(∇UV , ζ) 6= 0 for some U and V . Hence D is not defining the totally geodesic
foliation on M.

Theorem 3.13. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore, the distribution D⊕ < ζ > demonstrates the totally geodesic foliation if and only if

gM(TXϕPY,ωRZ+ωQZ) = −gM(V∇XϕPY,ψQZ+ψRZ),

and
gM(TXϕPY,CV) = −gM(V∇XϕPY,BV),

for all X, Y ∈ Γ(D⊕ < ζ >),Z = QZ+ RZ ∈ Γ(D1 ⊕D2) and V ∈ Γ(kerh∗)⊥.
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Proof. For all X, Y ∈ Γ(D⊕ < ζ >),Z = QZ+ RZ ∈ Γ(D1 ⊕D2) and V ∈ Γ(kerh∗)⊥, the use of equations
(2.1)-(2.5), (2.8), (3.1), and (3.2), gives

gM(∇XY,Z) = gM(∇XϕY,ϕZ), = gM(∇XϕPY,ϕQZ+ϕRZ)

= gM(TXϕPY,ωRZ+ωQZ) + gM(V∇XϕPY,ψQZ+ψRZ).

Now, again the use of equations (2.1)-(2.5), (2.8), (3.1), and (3.3), leads to

gM(∇XY,V) = gM(∇XϕY,ϕV),= gM(∇XϕPY,BV +CV) = gM(V∇XϕPY,BV) + gM(TXϕPY,CV),

this proof is completed.

Proposition 3.14. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore the distribution Di does not defines a totally geodesic foliation at M, where i = 1, 2.

Proof. For any Z,V ∈ Γ(Di), by the use of equation (2.4) we have

gM(∇ZV , ζ) = −gM(Z,ϕV),

since gM(Z,ϕV) 6= 0, so gM(∇ZV , ζ) 6= 0 for some V and Z. Hence Di is not defining the totally geodesic
foliation at M, where i = 1, 2.

Theorem 3.15. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore, the distribution D1⊕ < ζ > demonstrates the totally geodesic foliation if and only if

gM(TZωψW,X) = −gM(TZωW,ϕPX+ψRX) − gM(H∇ZωW,ωRX) + η(W)gM(Z,ϕPX+ψRX),

and

gM(H∇ZωψW,V) = −gM(H∇ZωW,CV) − gM(TZωW,BV) + η(W)gM(Z,BV),

for all Z,W ∈ Γ(D1⊕ < ζ >),X ∈ Γ(D⊕D2) and V ∈ Γ(kerh∗)⊥.

Proof. For every Z,W ∈ Γ(D1⊕ < ζ >),X ∈ Γ(D⊕D2) and V ∈ Γ(kerh∗)⊥, the use of equations (2.1)-(2.5),
(2.9), (3.1), (3.2), and Lemma 3.2 gives

gM(∇ZW,X) = gM(∇ZϕW,ϕX) − η(W)gM(Z,ϕX)
= gM(∇ZψW,ϕX) + gM(∇ZωW,ϕX) − η(W)gM(Z,ϕPX+ψRX),

= cos2 θ1gM(∇ZW,X) + gM(TZωψW,X)
+ gM(TZωW,ϕPX+ψRX) + gM(H∇ZωW,ωRX) − η(W)gM(Z,ϕPX+ψRX).

Now, we have

sin2 θ1gM(∇ZW,X) = gM(TZωψW,X) + gM(TZωW,ϕPX+ψRX)

+ gM(H∇ZωW,ωRX) − η(W)gM(Z,ϕPX+ψRX).

Next, from equations (2.1)-(2.5), (2.9), (3.2), (3.3), and Lemma 3.2, we have

gM(∇ZW,V) = gM(∇ZϕW,ϕV) − η(W)gM(Z,ϕV)
= gM(∇ZψW,ϕV) + gM(∇ZωW,ϕV) − η(W)gM(Z,ϕV)

= cos2 θ1gM(∇ZW,V) + gM(H∇ZωψW,V)
+ gM(H∇ZωW,CV) + gM(TZωW,BV) − η(W)gM(Z,BV).

Now, we have

sin2 θ1gM(∇ZW,V) = gM(H∇ZωψW,V) + gM(H∇ZωW,CV) + gM(TZωW,BV) − η(W)gM(Z,BV),

this proof is completed.
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Similarly, we can easily prove the coming theorem.

Theorem 3.16. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore, the distribution D2⊕ < ζ > demonstrates the totally geodesic foliation if and only if

gM(TXωψY,Z) = gM(TXωQY,ϕPZ+ϕRZ) + gM(H∇XωQY,ωRZ) + η(Y)gM(X,ϕPZ+ψRZ),

and

gM(H∇XωψY,V) = −gM(H∇XωY,CV) − gM(TXωY,BV) + η(Y)gM(X,BV),

for all X, Y ∈ Γ(D2⊕ < ζ >),Z ∈ Γ(D⊕D1) and V ∈ Γ(kerh∗)⊥.

By the use of Proposition 3.9 and Theorem 3.11 one can give the coming theorem.

Theorem 3.17. Suppose h : (M,ϕ, ζ,η,gM) → (ℵ,gℵ) is the proper quasi bi-slant Lorentzian submersion.
Therefore, the map h is not a totally geodesic map.

Example 3.18. Consider the differentiable manifold R11 with coordinates (x1, . . . , x5,y1 . . . ..,y5, z) and base
field {Ei,E5+i, ζ} where Ei = 2 ∂

∂yi
,E5+i = 2( ∂

∂xi
+ yi ∂∂z), i = 1, . . . , 5 and contravariant vector field ζ =

2 ∂∂z . Define Lorentzian almost paracontact structure on R11 as follows:

ϕ(

5∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) +Z

∂

∂z
) = −

5∑
i=1

Yi
∂

∂xi
−

5∑
i=1

Xi
∂

∂yi
+

5∑
i=1

Yiy
i ∂

∂z
,

η = −
1
2
(dz−

5∑
i=1

yidxi),

g = −η⊗ η+ 1
4
(

5∑
i=1

dxi ⊗ dxi +
5∑
i=1

dyi ⊗ dyi),

where Xi, Yi and Z are C∞ functions on R11. Then (R11,ϕ, ζ,η,g) is the LP-Sasakian manifold. Suppose
R4 is the Riemannian manifold with the Riemannian metric tensor field gR4 defined as

gR4 =
1
4

4∑
i=1

(dvi ⊗ dvi)

on R4, where (v1, v2, v3, v4) is local coordinate system on R4.

Let h : R11 → R4 is the map written as

h(x1, . . . , x5,y1 . . . .,y5, z) = (x2, sin θ1x
3 + cos θ1x

4, sin θ2y
1 − cos θ2y

2,y4)

that is quasi bi-slant Lorentzian submersion map which satisfies

X̄1 =
∂

∂x1 + y1 ∂

∂z
, X̄2 = cos θ1(

∂

∂x3 + y3 ∂

∂z
) − sin θ1(

∂

∂x4 + y4 ∂

∂z
),

X̄3 =
∂

∂x5 + y5 ∂

∂z
, X̄4 = cos θ2

∂

∂y1 + sin θ2
∂

∂y2 ,

X̄5 =
∂

∂y3 , X̄6 =
∂

∂y5 ,

X̄7 = ζ = 2
∂

∂z
, (kerh∗) = (D⊕D1 ⊕D2⊕ < ζ >),
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where

D =< X̄3 =
∂

∂x5 + y5 ∂

∂z
, X̄6 =

∂

∂y5 ,>,

D1 =< X̄2 = cos θ1(
∂

∂x3 + y3 ∂

∂z
) − sin θ1(

∂

∂x4 + y4 ∂

∂z
), X̄5 =

∂

∂y3 >,

D2 =< X̄1 =
∂

∂x1 + y1 ∂

∂z
, X̄4 = cos θ2

∂

∂y1 + sin θ2
∂

∂y2 >,

< ζ > =< X̄7 = 2
∂

∂z
>,

and

(kerh∗)⊥ =< V1 =
∂

∂x2 + y2 ∂

∂z
, V2 = sin θ1(

∂

∂x3 + y3 ∂

∂z
) + cos θ1(

∂

∂x4 + y4 ∂

∂z
),

V3 = sin θ2
∂

∂y1 − cos θ2
∂

∂y2 , V4 =
∂

∂y4 >,

with bi-slant angles θ1 and θ2. Also by direct computations, we obtain

h∗V1 =
∂

∂v1 , h∗V2 =
∂

∂v2 , h∗V3 =
∂

∂v3 , h∗V4 =
∂

∂v4 .

Example 3.19. Consider R11 and R4 has same structure as in Example 3.18. Suppose R4 is the Riemannian
manifold with the Riemannian metric tensor field gR4 defined as

gR4 =
1
4

4∑
i=1

(dvi ⊗ dvi)

on R4, where (v1, v2, v3, v4) is local coordinate system on R4. Let h : R11 → R4 be the map determined as

h(x1, . . . ., x5,y1, . . . .y5, z) = (

√
3x1 + x2

2
, x4,y1,

y3 − y4
√

2
)

that is quasi bi-slant Lorentzian submersion map which satisfies

X̄1 = (
∂

∂x1 + y1 ∂

∂z
) −
√

3(
∂

∂x2 + y2 ∂

∂z
), X̄2 =

∂

∂x3 + y3 ∂

∂z
, X̄3 =

∂

∂x5 + y5 ∂

∂z
,

X̄4 =
∂

∂y2 , X̄5 = (
∂

∂y3 +
∂

∂y4 ), X̄6 =
∂

∂y5 ,

X̄7 = ζ = 2
∂

∂z
, (kerh∗) = (D⊕D1 ⊕D2⊕ < ζ >),

where

D =< X̄3 =
∂

∂x5 + y5 ∂

∂z
, X̄6 =

∂

∂y5 >,

D1 =< X̄1 = (
∂

∂x1 + y1 ∂

∂z
) −
√

3(
∂

∂x2 + y2 ∂

∂z
), X̄4 =

∂

∂y2 >,

D2 =< X̄5 = (
∂

∂y3 +
∂

∂y4 ), X̄2 =
∂

∂x3 + y3 ∂

∂z
>,

< ζ > =< X̄7 = 2
∂

∂z
>,
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and

(kerh∗)⊥ =< V1 =
√

3(
∂

∂x1 + y1 ∂

∂z
) + (

∂

∂x2 + y2 ∂

∂z
), V2 =

∂

∂x4 + y4 ∂

∂z
, V3 =

∂

∂y1 , V4 = (
∂

∂y3 −
∂

∂y4 ) >,

with bi-slant angles θ1 = π
6 and θ2 = π

4 . Also by direct computations, we obtain

h∗V1 = 2
∂

∂v1 , h∗V2 =
∂

∂v2 , h∗V3 =
∂

∂v3 , h∗V4 =
√

2
∂

∂v4 .

It can be easily seen that Theorem 3.11, and Propositions 3.12 and 3.14 are satisfied by the Examples 3.18
and 3.19.
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