

On Tribonacci I-convergent sequence spaces

Vakeel A. Khan ${ }^{\mathrm{a}, *}$, Izhar Ali Khan ${ }^{\text {a }}$, SK Ashadul Rahaman ${ }^{\text {a }}$, Ayaz Ahmad ${ }^{\text {b }}$
${ }^{\text {a D Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India. }}$
${ }^{b}$ Department of Mathematics, National Institute of Technology, Patna-800005, India.

Abstract

In this paper, we use the notion of ideal convergence (I-convergence) to introduce Tribonacci I-convergent sequence spaces, that is, $c_{0}^{\mathrm{I}}(\mathrm{T}), \mathrm{c}^{\mathrm{I}}(\mathrm{T})$ and $\mathrm{l}_{\infty}^{\mathrm{I}}(\mathrm{T})$ as a domain of regular Tribonacci matrix $\mathrm{T}=\left(\mathrm{t}_{\mathfrak{j} \mathfrak{n}}\right)$ (constructed by the Tribonacci sequence). We also present few inclusion relations and prove some topological and algebraic properties based results with respect to these spaces.

Keywords: Tribonacci sequence, regular Tribonacci matrix, Tribonacci I-convergence, Tribonacci I-Cauchy, Tribonacci I-bounded.

2020 MSC: 40A35, 40C05, 47B37, 46A45.
(C)2022 All rights reserved.

1. Introduction

We use the notatios $\mathbb{R}, \omega, \mathbb{N}, l_{\infty}, c$, and c_{0} to denote the set of real numbers, sequence space, set of natural numbers, space of all bounded sequences, space of all convergent sequences, and space of all null sequences, respectively.

Fast [7] and Steinhaus [24] introduced a generalization of usual convergence, known as statistical convergence. After that in 1999, Kostyrko et al. [22] defined a generalization of statistical convergence, known as I-convergence. Later, Ŝalát et al. [29, 30], Filipów and Tryba [9] and many others [17, 19] further studied the notion of I-convergence and linked with the summability theory. Furthermore, some authors also investigated it from the sequence space point of view. For more details on I-convergence, we refer to [$2,11,13,14,18,25,27,33]$.

Suppose an infinite real matrix $\mathcal{A}=\left(a_{j n}\right)$ and $X \& Y$ are two sequence spaces. Recalling, A be a matrix mapping from X to Y if $\forall z=\left(z_{n}\right)$, the A-transform of z, (i.e., $A z=\left\{\mathcal{A}_{j} z\right\}_{j=1}^{\infty} \in Y$), is

$$
A_{j} z=\sum_{n} a_{j n} z_{n}, \quad j \in \mathbb{N}
$$

In [15], a different approach was defined to construct new sequence spaces as follows

$$
\lambda(A):=\left\{z=\left(z_{n}\right) \in \omega: A z \in \lambda\right\}, \quad \text { where } \lambda \text { is any sequence space, }
$$

and known as the domain of matrix A in λ.

[^0]Lemma 1.1 ([34]). Matrix $\mathrm{A}=\left(\mathrm{a}_{\mathfrak{j} \mathfrak{n}}\right)_{\mathfrak{j}, \mathrm{n} \in \mathbb{N}}$ is said to be regular iff the following conditions hold:
(a) $\exists M>0$ s.t $\sum_{n}\left|a_{\mathfrak{j} n}\right| \leqslant M, \forall j \in \mathbb{N}$;
(b) $\lim _{j \rightarrow \infty} \mathfrak{a}_{j n}=0, \quad \forall \mathfrak{n} \in \mathbb{N}$;
(c) $\lim _{j \rightarrow \infty} \sum_{n} a_{j n}=1$.

In 1963, Mark feinberg [8] was the first who initiated Tribobacci numbers at the age of 14 years. Define the tribonacci sequence by third order recurrence relation

$$
\mathrm{t}_{\mathrm{j}}=\mathrm{t}_{\mathrm{j}-1}+\mathrm{t}_{\mathrm{j}-2}+\mathrm{t}_{\mathrm{j}-3}, \quad \mathrm{j} \geqslant 4 \text { with } \mathrm{t}_{1}=\mathrm{t}_{2}=1 \text { and } \mathrm{t}_{3}=2 .
$$

Some important properties of Tribonacci sequence are:

$$
\lim _{j \rightarrow \infty} \frac{t_{j}}{t_{j+1}}=0.54368901 \ldots, \quad \sum_{n=1}^{j} t_{n}=\frac{t_{j+2}+t_{j}-1}{2}, j \geqslant 1 .
$$

Binet's formula for Tribonacci sequence is given in [32]. For more details, some papers related to Tribonacci sequence are $[3-5,8,10,20,21,23,28,31,32,35]$.

In this research paper, we use the triangle Tribonacci matrix $T=\left(\mathrm{t}_{\mathfrak{j} \boldsymbol{n}}\right)$ which is defined in [36], as follows:

$$
\mathrm{t}_{\mathfrak{j} \mathfrak{n}}= \begin{cases}\frac{2 \mathfrak{t}_{n}}{\mathfrak{t}_{\mathfrak{j}+2}+\mathrm{t}_{\mathfrak{j}}-1}, & (1 \leqslant \mathrm{n} \leqslant \mathfrak{j}) \tag{1.1}\\ 0, & (n>\mathfrak{j})\end{cases}
$$

i.e.,

$$
\mathrm{T}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \ldots \tag{1.2}\\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & \ldots \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 & 0 & \ldots \\
\frac{1}{8} & \frac{1}{8} & \frac{1}{4} & \frac{1}{2} & 0 & \ldots \\
\frac{1}{15} & \frac{1}{15} & \frac{2}{15} & \frac{4}{15} & \frac{7}{15} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

It can be easily verifed that T is a regular matrix (from Lemma 1.1). By using the Tribonacci matrix (1.2) and the notion of I-convergence, we define $c_{0}^{\mathrm{I}}(\mathrm{T}), \mathrm{c}^{\mathrm{I}}(\mathrm{T})$, and $\mathrm{l}_{\infty}^{\mathrm{I}}(\mathrm{T})$ as the space of all sequences whose T-transform are in the spaces $\mathrm{c}_{0}^{\mathrm{I}}, \mathrm{c}^{\mathrm{I}}$, and $\mathrm{l}_{\infty}^{\mathrm{I}}$, respectively. Sequence $\mathrm{T}_{\mathrm{j}}(z)$, the T -transform of $z=\left(z_{n}\right)$, is defined as

$$
\begin{equation*}
T_{j}(z)=\sum_{n=1}^{j} \frac{2 t_{n}}{t_{j+2}+t_{j}-1}, \quad j \in \mathbb{N} . \tag{1.3}
\end{equation*}
$$

Now, recalling few important definitions and lemmas which are used in this paper.
Definition 1.2 ([24]). Natural density of $A=\{a \in A: a \leqslant n\} \subseteq \mathbb{N}$ is defined as

$$
d(A)=\lim _{n \rightarrow \infty} \frac{1}{n}|A| \text {, where }|A| \text { is the cardinality of set } A \text {, }
$$

whenever the limit exists.
Definition 1.3 ([7]). Statistically convergence of a sequence $\left(z_{n}\right) \in \omega$ to a number $k \in \mathbb{R}$ is defined as if $\forall \epsilon>0$, the natural density of $A(\epsilon)$ is equal to zero, where

$$
A(\epsilon)=\left\{n \in \mathbb{N}:\left|z_{n}-k\right| \geqslant \epsilon\right\} .
$$

Definition 1.4 ([12]). Let X be any set. I being a subset of $P(X)$ is said to be an ideal if the following conditions holds:
a. $\emptyset \in \mathrm{I}$;
b. $E \cup F \in I$ for all $E, F \in I$;
c. $\forall \mathrm{E} \in \mathrm{I}$ and $\mathrm{F} \subset \mathrm{E}$, then $\mathrm{F} \in \mathrm{I}$.

If $I \neq 2^{X}$, then I is called non trivial ideal. If $\{\{x\}: x \in X\} \subset I$, then I is called admissible ideal.
Definition 1.5 ([12]). Let \mathcal{F} is the subset of power set of a set X, then \mathcal{F} is called filter if
a. $\emptyset \notin \mathcal{F}$;
b. $\mathrm{E} \cap \mathrm{F} \in \mathcal{F}$ for all $\mathrm{E}, \mathrm{F} \in \mathcal{F}$;
c. $\forall \mathrm{E} \in \mathcal{F}$ and $\mathrm{E} \subset \mathrm{F}$, then $\mathrm{F} \in \mathcal{F}$.

Definition 1.6 ([22]). Let $\mathrm{I} \subset \mathrm{P}(\mathbb{N})$ is a non trivial ideal, I-convergence of a sequence $\left(z_{n}\right) \in \omega$ to number $k \in \mathbb{R}$ is defined as if $\forall \epsilon>0$, set $A(\epsilon) \in I$, where

$$
A(\epsilon)=\left\{n \in \mathbb{N}:\left|z_{n}-k\right| \geqslant \epsilon\right\},
$$

we say that $\mathrm{I}-\lim \left(z_{n}\right)=k$.
Definition 1.7 ([22]). Let $\mathrm{I} \subset \mathrm{P}(\mathbb{N})$ is a non trivial ideal, a sequence $\left(z_{n}\right) \in \omega$ is said to be I-Cauchy if \forall $\epsilon>0$, there exists a $K=K(\epsilon)$ such that set $A(\epsilon) \in I$, where

$$
A(\epsilon)=\left\{n \in \mathbb{N}:\left|z_{n}-z_{K}\right| \geqslant \epsilon\right\} .
$$

Definition 1.8 ([16]). Let $\mathrm{I} \subset \mathrm{P}(\mathbb{N})$ is a non trivial ideal, a sequence $\left(z_{n}\right) \in \omega$ is said to be I-bounded if there exists $M>0$ such that set $A \in I$, where

$$
A=\left\{n \in \mathbb{N}:\left|z_{n}\right|>M\right\} .
$$

Definition 1.9 ([29]). Let $\mathrm{I} \subset \mathrm{P}(\mathbb{N})$ is a non trivial ideal, for any two sequnces $\left(y_{n}\right)$ and $\left(z_{n}\right)$, we say $y_{n}=z_{n}$ for almost all n relative to I if $\left\{n \in \mathbb{N}: y_{n} \neq z_{n}\right\} \in I$.

Definition 1.10 ([29]). A sequence space X is said to be solid or normal, if $\left(\alpha_{n} z_{n}\right) \in X$ whenever $\left(z_{n}\right) \in X$ and for any sequence of scalars $\left(\alpha_{n}\right) \in \omega$ with $\left|\alpha_{n}\right|<1$, for every $n \in \mathbb{N}$.

Lemma 1.11 ([29]). Every solid space is monotone.
Lemma 1.12 ([29]). If $\mathrm{I} \subset \mathrm{P}(\mathbb{N})$ is a maximal ideal, then for every $\mathrm{K} \subset \mathbb{N}$ we have either $\mathrm{K} \in \mathrm{I}$ or $\mathbb{N} \backslash \mathrm{K}$.
Definition 1.13 ([29]). Let $K=\left\{n_{i} \in \mathbb{N}: n_{1}<n_{2}<\cdots\right\} \subseteq \mathbb{N}$ and X be a sequence space. A K-step space of X is a sequence space

$$
\lambda_{K}^{X}=\left\{\left(z_{n_{i}}\right) \in \omega:\left(z_{n}\right) \in X\right\}
$$

A canonical pre-image of a sequence $\left(z_{n_{i}}\right) \in \lambda_{K}^{X}$ is a sequence $\left(y_{n}\right) \in \omega$ defined as follows:

$$
y_{n}= \begin{cases}z_{n}, & \text { if } n \in K \\ 0, & \text { otherwise }\end{cases}
$$

A canonical pre-image of a step space λ_{K}^{X} is a set of canonical pre-images of all elements in λ_{K}^{X}, i.e., y is in canonical pre-image of λ_{K}^{X} iff y is canonical pre-image of some element $z \in \lambda_{\mathrm{K}}^{X}$.

Definition 1.14 ([29]). A sequence space X is said to be monotone, if it contains the canonical pre-images of its step space, (i.e., if for all infinite $K \subseteq \mathbb{N}$ and $\left(z_{n}\right) \in X$ the sequence ($\alpha_{n} z_{n}$), where $\alpha_{n}=1$ for $n \in K$ and $\alpha_{n}=0$ otherwise, belongs to X).

Definition 1.15 ([29]). A sequence space X is said to be convergence free, if $\left(z_{n}\right) \in X$ whenever $\left(y_{n}\right) \in X$ and $\left(y_{n}\right)=0$ implies that $\left(z_{n}\right)=0$ for all $n \in \mathbb{N}$.

Definition 1.16. A map h defined on a domain $D \subset X$, i.e., $h: D \subset X \longrightarrow \mathbb{R}$ is said to satisfy Lipschitz condition if $|h(y)-h(z)| \leqslant M|y-z|$, where M is known as the Lipschitz constant.

2. Main results

By the domain of regular tribonacci matrix (1.1), we define sequence spaces $c_{0}^{\mathrm{I}}(\mathrm{T}), c^{\mathrm{I}}(\mathrm{T})$, and $l_{\infty}^{\mathrm{I}}(\mathrm{T})$, i.e.,

$$
\begin{aligned}
& c_{0}^{\mathrm{I}}(\mathrm{~T}):=\left\{z=\left(z_{n}\right) \in \omega:\left\{j \in \mathbb{N}:\left|T_{j}(z)\right| \geqslant \epsilon\right\} \in \mathrm{I}\right\}, \\
& c^{\mathrm{I}}(T):=\left\{z=\left(z_{n}\right) \in \omega:\left\{j \in \mathbb{N}:\left|T_{j}(z)-k\right| \geqslant \epsilon, \text { for some } k \in \mathbb{R}\right\} \in I\right\}, \\
& l_{\infty}^{I}(T):=\left\{z=\left(z_{n}\right) \in \omega: \text { there exist } M>0 \text { such that }\left\{j \in \mathbb{N}:\left|T_{j}(z)\right| \geqslant M\right\} \in I\right\}, \\
& l_{\infty}(T):=\left\{z=\left(z_{n}\right) \in \omega: \sup _{j}\left|T_{j}(z)\right|<\infty\right\} .
\end{aligned}
$$

We denote $c_{0}^{\mathrm{I}}(\mathrm{T}) \cap l_{\infty}(\mathrm{T})$ and $c^{\mathrm{I}}(\mathrm{T}) \cap l_{\infty}(\mathrm{T})$ by $s_{0}^{\mathrm{I}}(\mathrm{T})$ and $s^{\mathrm{I}}(\mathrm{T})$, respectively. We also present topological properties of these spaces and derive some results such as inclusion relations etc. Throughout this research paper, we assume that I be an admissible ideal in \mathbb{N} and relation between the sequence $z=\left(z_{n}\right) \in \omega$ and $T_{j}(z)$ is same as given in equation (1.3).

Definition 2.1. A sequence $z=\left(z_{n}\right) \in \omega$ is said to be Tribonacci I-convergent to $k \in \mathbb{R}$ if for every $\epsilon>0$, the set A belongs to I, where

$$
A=\left\{j \in \mathbb{N}:\left|T_{j}(z)-k\right| \geqslant \epsilon\right\}
$$

Definition 2.2. A sequence $z=\left(z_{n}\right) \in \omega$ is said to be Tribonacci I-Cauchy if for every $\epsilon>0$, there exists $K=K(\epsilon) \in \mathbb{N}$ such that the set A belongs to I, where

$$
A=\left\{j \in \mathbb{N}:\left|T_{j}(z)-T_{K}(z)\right| \geqslant \epsilon\right\}
$$

Definition 2.3. A sequence $z=\left(z_{n}\right) \in \omega$ is said to be Tribonacci I-bounded if there exists $M>0$ such that the set A belongs to I, where

$$
A=\left\{j \in \mathbb{N}:\left|T_{j}(z)\right|>M\right\} .
$$

Example 2.1. $c^{I_{f}}(T)=c(T)$, where $I_{f}=\{Y \subseteq \mathbb{N}: Y$ is finite $\}$ is an admissible ideal in \mathbb{N}, where $c(T)$ denotes the space of all Tribonacci convergent sequences.

Example 2.2. $c^{I_{d}}(T)=S(T)$, where $I_{d}=\{Y \subseteq \mathbb{N}: d(Y)=0\}$ is an admissible ideal in \mathbb{N}, where $d(Y)$ denotes the natural density of set Y and $S(T)$ denotes the space of all Tribonacci statistically convergent sequences, i.e.,

$$
\left.S(T)=\left\{z=\left(z_{n}\right) \in \omega: d\left(j \in \mathbb{N}:\left|T_{j}(z)-k\right| \geqslant \epsilon\right\}\right)=0, \text { for some } k \in \mathbb{R}\right\}
$$

Remark 2.4. Tribonacci convergence \Longrightarrow Tribonacci statistically convergence since natural density of all finite subsets of \mathbb{N} is zero. But the converse may not be hold.

Example 2.3. Let $z=\left(z_{n}\right) \in \omega$ such that

$$
T_{j}(z)= \begin{cases}5, & \text { if } j \text { is a prime } \\ 0, & \text { otherwise }\end{cases}
$$

Let $k=0$ then clearly $T_{j}(z)$ is not convergent but it is $T_{j}(z)$ is statistically convergent to 0 as the natural density of set prime numbers is zero, i.e., $d\left(\left\{j \in \mathbb{N}:\left|T_{j}(z)-k\right| \geqslant \epsilon\right\}\right)=0$. Hence $\left(z_{n}\right) \in S(T)$ but $\left(z_{n}\right) \notin c(T)$.

Theorem 2.5. The sequence spaces $c_{0}^{\mathrm{I}}(\mathrm{T}), \mathrm{c}^{\mathrm{I}}(\mathrm{T}), l_{\infty}^{\mathrm{I}}(\mathrm{T}), \mathrm{s}_{0}^{\mathrm{I}}(\mathrm{T})$, and $\mathrm{s}^{\mathrm{I}}(\mathrm{T})$ are linear spaces over \mathbb{R}.

Proof. Suppose that a, b are scalars and $y=\left(y_{n}\right), z=\left(z_{n}\right) \in c^{I}(T)$, then for every $\epsilon>0$, there exists $k_{1}, k_{2} \in \mathbb{R}$ such that

$$
\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathrm{j}}(\mathrm{y})-\mathrm{k}_{1}\right| \geqslant \frac{\epsilon}{2}\right\} \in \mathrm{I} \text { and }\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathfrak{j}}(z)-\mathrm{k}_{2}\right| \geqslant \frac{\epsilon}{2}\right\} \in \mathrm{I} .
$$

And let

$$
L_{1}=\left\{j \in \mathbb{N}:\left|T_{j}(y)-k_{1}\right|<\frac{\epsilon}{2|a|}\right\} \in \mathcal{F}(I) \text { and } L_{2}=\left\{j \in \mathbb{N}:\left|T_{j}(z)-k_{2}\right|<\frac{\epsilon}{2|b|}\right\} \in \mathcal{F}(I),
$$

be such that $L_{1}^{c}, L_{2}^{c} \in I$. Then

$$
\begin{aligned}
L_{3} & =\left\{j \in \mathbb{N}:\left|T_{j}(a y+b z)-\left(a k_{1}+b k_{2}\right)\right|<\epsilon\right\} \\
& \supseteq\left\{j \in \mathbb{N}:\left|T_{j}(y)-k_{1}\right|<\frac{\epsilon}{2|a|}\right\} \cap\left\{j \in \mathbb{N}:\left|T_{j}(z)-k_{2}\right|<\frac{\epsilon}{2|b|}\right\} .
\end{aligned}
$$

As in the above equation, the set on the right hand-side belongs to $\mathcal{F}(I)$. So $L_{3}^{c} \in I$, which implies that $(a y+b z) \in c^{I}(T)$. Hence, $c^{I}(T)$ is linear space. Similarly, we can prove for remaining given spaces.

Theorem 2.6. A sequence $z=\left(z_{n}\right) \in \omega$ is Tribonacci I-convergent iff for each $\epsilon>0, \exists K=K(\epsilon) \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\{j \in \mathbb{N}:\left|T_{j}(z)-T_{k}(z)\right|<\epsilon\right\} \in \mathcal{F}(I) . \tag{2.1}
\end{equation*}
$$

Proof. Let $z=\left(z_{n}\right)$ is Tribonacci I-convergent to $k \in \mathbb{R}$, so for $\epsilon>0$, the set

$$
\mathrm{L}_{\epsilon}=\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathrm{j}}(z)-\mathrm{k}\right|<\frac{\epsilon}{2}\right\} \in \mathcal{F}(\mathrm{I}) .
$$

We fix a natural number $K=K(\epsilon) \in L_{\epsilon}$. Then, for all $j \in L_{\epsilon}$

$$
\left|T_{j}(z)-T_{k}(z)\right| \leqslant\left|T_{j}(z)-k\right|+\left|k-T_{k}(z)\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

Hence, (2.1) holds. Conversely, let for all $\epsilon>0$, (2.1) holds, then

$$
M_{\epsilon}=\left\{j \in \mathbb{N}: T_{j}(z) \in\left[T_{j}(z)-\epsilon, T_{j}(z)+\epsilon\right]\right\} \in \mathcal{F}(I), \forall \epsilon>0 .
$$

Let $P_{\epsilon}=\left[T_{j}(z)-\epsilon, T_{j}(z)+\epsilon\right]$. Fixing $\epsilon>0$, then $M_{\epsilon} \in \mathcal{F}(I)$ and $M_{\frac{\epsilon}{2}} \in \mathcal{F}(I)$. Thus $M_{\epsilon} \cap M_{\frac{\varepsilon}{2}} \in \mathcal{F}(I)$, which implies that

$$
P=P_{\epsilon} \cap P_{\frac{\varepsilon}{2}} \neq \emptyset,
$$

i.e.,

$$
\left\{j \in \mathbb{N}: \mathrm{T}_{\mathfrak{j}}(z) \in \mathrm{P}\right\} \in \mathcal{F}(\mathrm{I}) .
$$

Thus,

$$
\operatorname{diam}(P) \leqslant \frac{1}{2} \operatorname{diam}\left(P_{\epsilon}\right),
$$

where $\operatorname{diam}(\mathrm{P})$ is the length of interval P . Proceeding in this way, by induction we get a sequence of closed intervals $\mathrm{P}_{\epsilon}=\mathrm{I}_{0} \supseteq \mathrm{I}_{1} \supseteq \cdots \supseteq \mathrm{I}_{\mathrm{j}} \supseteq \cdots$ such that

$$
\operatorname{diam}\left(\mathrm{I}_{\mathrm{j}}\right) \leqslant \frac{1}{2} \operatorname{diam}\left(\mathrm{I}_{\mathrm{j}-1}\right), \text { for } \mathfrak{j}=(2,3,4, \ldots)
$$

and

$$
\left\{j \in \mathbb{N}: \mathrm{T}_{\mathbf{j}}(z) \in \mathrm{I}_{\mathbf{j}}\right\} \in \mathcal{F}(\mathrm{I}) .
$$

Hence, \exists a number $k \in \cap_{\mathfrak{j} \in \mathbb{N}} I_{j}$ and it is common work to check that $k=I$-lim $T_{j}(z)$. Hence, $z=\left(z_{n}\right)$ is Tribonacci I-convergent sequence.

Theorem 2.7. The inclusions $\mathrm{c}_{0}^{\mathrm{I}}(\mathrm{T}) \subset \mathrm{c}^{\mathrm{I}}(\mathrm{T}) \subset \mathrm{l}_{\infty}^{\mathrm{I}}(\mathrm{T})$ are strict.
Proof. It can be easily seen that $c_{0}^{I}(T) \subset c^{I}(T)$. For strictness, take any constant sequence say $z=\left(z_{n}\right)=\alpha$ for all n, where α is any non-zero constant. Then $T_{j}(z)=\alpha$ for all j. Hence, it is obvious that $T_{j}(z) \in c^{I}$ but $T_{j}(z) \notin c_{0}^{I}$, i.e., $z \in c^{I}(T)$ but $z \notin c_{0}^{I}(T)$. Let $z=\left(z_{n}\right) \in c^{I}(T)$. Then there exists $k \in \mathbb{R}$ such that

$$
\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathfrak{j}}(z)-\mathrm{k}\right| \geqslant \epsilon\right\} \in \mathrm{I}
$$

We have

$$
\left|T_{j}(z)\right|=\left|T_{j}(z)-k+k\right| \leqslant\left|T_{j}(z)-k\right|+|k| .
$$

Hence, it can be easily seen that the sequence $\left(z_{n}\right) \in l_{\infty}^{\mathrm{I}}(\mathrm{T})$. For strictness, take the sequence $z=\left(z_{n}\right) \in \omega$ such that

$$
T_{j}(z)= \begin{cases}\sqrt{j}, & \text { if } j=i^{2}, \text { for } i \in \mathbb{N} \\ 1, & \text { if } j \text { is odd non-square } \\ 0, & \text { if } j \text { is even non-square }\end{cases}
$$

Hence, it is clear that $T_{j}(z) \in l_{\infty}^{I}$ but $T_{j}(z) \notin c^{I}$, i.e., $z \in l_{\infty}^{I}(T)$ but $z \notin c^{I}(T)$. This completes the proof.
Remark 2.8. A Tribonacci bounded sequence is obviously Tribonacci I-bounded as $\emptyset \in I$. But converse part is not always true. For example, let $z=\left(z_{n}\right) \in \omega$ such that

$$
T_{j}(z)= \begin{cases}j^{2}, & \text { if } j \text { is prime } \\ 0, & \text { otherwise }\end{cases}
$$

As $\left\{j \in \mathbb{N}:\left|T_{j}(z)\right|>3\right\} \in I$. Hence, $\left(z_{n}\right)$ is Tribonacci I-bounded but clearly, $T_{j}(z)$ is not a bounded sequence. Thus $z \in l_{\infty}^{I}(T)$ but $z \notin l_{\infty}(T)$.
Remark 2.9. Tribonacci convergent sequence is obviously Tribonacci I-convergent as I_{f} is a non-trivial admissible ideal But the converse part may not be always true. Let $z=\left(z_{n}\right) \in \omega$ such that

$$
T_{j}(z)= \begin{cases}\sqrt{\mathfrak{j}}, & \text { if } \mathfrak{j}=\mathfrak{i}^{2}, \text { for } \mathfrak{i} \in \mathbb{N} \\ 0, & \text { otherwise }\end{cases}
$$

Hence, $\left(z_{n}\right)$ is Tribonacci I_{d}-convergent but not a Tribonacci convergent sequence as $T_{j}(z)$ is not convergent.

Theorem 2.10. The sequence spaces $\mathrm{s}^{\mathrm{I}}(\mathrm{T})$ and $\mathrm{s}_{0}^{\mathrm{I}}(\mathrm{T})$ are Banach spaces normed by

$$
\|z\|_{\mathcal{A}(\mathrm{T})}=\sup _{j}\left|\mathrm{~T}_{\mathfrak{j}}(z)\right| \text {, where } A \in\left\{\mathrm{~s}^{\mathrm{I}}, \mathrm{~s}_{0}^{\mathrm{I}}\right\} .
$$

Proof. Take a Cauchy sequence $\left(z_{n}^{(i)}\right)$ in $s^{I}(T) \subset l_{\infty}(T)$. Then $\left(z_{n}^{(i)}\right)$ is convergent in $l_{\infty}(T)$ and $\lim _{i \rightarrow \infty} T_{j}^{(i)}(z)=T_{j}(z)$. Assume I-lim $T_{j}^{(i)}(z)=k_{i}$ for all $i \in \mathbb{N}$. Now if we prove that $(1)\left(k_{i}\right) \rightarrow k$ for some $k \in \mathbb{R}$; (2) $I-\lim T_{j}(z)=k$, then the theorem will be proved.
(1) Since $\left(z_{n}^{(i)}\right)$ is a Cauchy sequence, then for every $\epsilon>0$ there exists $j_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|T_{j}^{(i)}(z)-T_{j}^{(m)}(z)\right|<\frac{\epsilon}{3}, \text { for all } i, m \geqslant j_{0} \tag{2.2}
\end{equation*}
$$

Now, suppose that L_{i} and L_{m} are the under-mentioned sets in I :

$$
\begin{equation*}
L_{i}=\left\{j \in \mathbb{N}:\left|T_{j}^{(i)}(z)-k_{i}\right| \geqslant \frac{\epsilon}{3}\right\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{L}_{\mathfrak{m}}=\left\{j \in \mathbb{N}:\left|\mathrm{T}_{j}^{(m)}(z)-\mathrm{k}_{\mathrm{m}}\right| \geqslant \frac{\epsilon}{3}\right\} \tag{2.4}
\end{equation*}
$$

Suppose that $\mathfrak{i}, m \geqslant j_{0}$ and $j \notin L_{i} \cap L_{m}$. By (2.2), (2.3), and (2.4) we have

$$
\left|k_{i}-k_{m}\right| \leqslant\left|T_{j}^{(i)}(z)-k_{i}\right|+\left|T_{j}^{(m)}(z)-k_{m}\right|+\left|T_{j}^{(i)}(z)-T_{j}^{(m)}(z)\right|<\epsilon
$$

Hence, $\left(k_{i}\right)$ is a Cauchy sequence in \mathbb{R} and thus convergent say to k, that is, $\lim _{i \rightarrow \infty} k_{i}=k$.
(2) Suppose $\zeta>0$, then we can get r_{0} such that

$$
\begin{equation*}
\left|k_{i}-k\right|<\frac{\zeta}{3}, \text { for all } i>r_{0} \tag{2.5}
\end{equation*}
$$

We have $\left(z_{n}^{(i)}\right) \rightarrow\left(z_{n}\right)$ as $i \rightarrow \infty$. Thus

$$
\begin{equation*}
\left|T_{j}^{(i)}(z)-T_{j}(z)\right|<\frac{\zeta}{3}, \text { for all } i>r_{0} \tag{2.6}
\end{equation*}
$$

Since $T_{j}^{(m)}(z)$ is I-convergent to k_{m}, there exists $U \in I$ such that for all $j \notin U$, we have

$$
\begin{equation*}
\left|T_{j}^{(m)}(z)-k_{m}\right|<\frac{\zeta}{3} \tag{2.7}
\end{equation*}
$$

Without loss of generality, suppose $m>r_{0}$, then for each $j \notin U$, we have

$$
\left|T_{j}(z)-k\right| \leqslant\left|T_{j}(z)-T_{j}^{(m)}(z)\right|+\left|T_{j}^{(m)}(z)-k_{m}\right|+\left|k_{m}-k\right|<\zeta
$$

by (2.5), (2.6), and (2.7). Thus $\left(z_{n}\right)$ is Trinonacci I-convergent to k. Hence the space $s^{I}(T)$ is a Banach space. Similarly, the other case can be proved.

By Theorem 2.10, we have the following Theorem.
Theorem 2.11. The spaces $s^{I}(T)$ and $s_{0}^{\mathrm{I}}(\mathrm{T})$ are closed subspaces of $l_{\infty}(\mathrm{T})$.
As $s^{I}(T) \subset l_{\infty}(T)$ and $s_{0}^{I}(T) \subset l_{\infty}(T)$ are strict and by Theorem 2.11, it is obvious to have following theorem.

Theorem 2.12. The spaces $s^{I}(T)$ and $s_{0}^{I}(T)$ are nowhere dense subsets of $l_{\infty}(T)$.
Theorem 2.13. Let $z=\left(z_{n}\right) \in \omega$. If there exists a sequence $y=\left(y_{n}\right) \in c^{I}(T)$ such that $T_{j}(z)=T_{j}(y)$ for almost all j relative to I , then $z \in \mathrm{c}^{\mathrm{I}}(\mathrm{T})$.

Proof. As we have given that $T_{j}(z)=T_{j}(y)$ for almost all j relative to I, that is,

$$
\left\{j \in \mathbb{N}: \mathrm{T}_{\mathrm{j}}(z) \neq \mathrm{T}_{\mathrm{j}}(\mathrm{y})\right\} \in \mathrm{I}
$$

And suppose $\left(y_{n}\right) \in c^{I}(T)$ and Tribonacci $I-\lim y_{n}=k$. Then, $\forall \epsilon>0$, the set

$$
\left\{j \in \mathbb{N}:\left|T_{j}(y)-k\right| \geqslant \epsilon\right\} \in I
$$

As I is an admissible ideal, we have

$$
\left\{j \in \mathbb{N}:\left|T_{j}(z)-k\right| \geqslant \epsilon\right\} \subseteq\left\{j \in \mathbb{N}: \mathrm{T}_{j}(z) \neq \mathrm{T}_{j}(\mathrm{y})\right\} \cup\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathrm{j}}(\mathrm{y})-\mathrm{k}\right| \geqslant \epsilon\right\} .
$$

Hence, the result is proved.
Theorem 2.14. If I is not maximal ideal, then the space $\mathrm{c}^{\mathrm{I}}(\mathrm{T})$ is neither solid nor monotone.

Proof. Consider a sequence $z=\left(z_{\mathfrak{n}}\right) \in \omega$ such that $T_{j}(z)=1$ for all $j \in \mathbb{N}$, then $\left(z_{\mathfrak{n}}\right) \in c^{I}(T)$. Since I is not maximal, by Lemma 1.12 there exists a subset $K \subset \mathbb{N}$ such that $K \notin I$ and $K^{c} \notin I$. Now, define $y=\left(y_{n}\right)$ by

$$
y_{n}= \begin{cases}z_{n}, & \text { if } n \in L \\ 0, & \text { otherwise }\end{cases}
$$

Then $\left(y_{n}\right)$ belongs to the canonical pre-image of the K-step space of $c^{I}(T)$. But $\left(y_{n}\right) \notin c^{I}(T)$. Thus $c^{I}(T)$ is not monotone. Hence, by Lemma $1.11 c^{\mathrm{I}}(\mathrm{T})$ is not solid.

Theorem 2.15. The spaces $\mathrm{c}_{0}^{\mathrm{I}}(\mathrm{T})$ and $\mathrm{s}_{0}^{\mathrm{I}}(\mathrm{T})$ are solid and monotone.
Proof. For $c_{0}^{\mathrm{I}}(\mathrm{T})$, let $z=\left(z_{n}\right) \in c_{0}^{\mathrm{I}}(\mathrm{T})$. Then, for $\epsilon>0$, we have

$$
\begin{equation*}
\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathfrak{j}}(z)\right| \geqslant \epsilon\right\} \in \mathrm{I} \tag{2.8}
\end{equation*}
$$

Let $\alpha=\left(\alpha_{n}\right)$ be a sequence of scalars with $|\alpha| \leqslant 1, \forall n \in \mathbb{N}$. Then

$$
\left|T_{j}(\alpha z)\right|=\left|\alpha T_{j}(z)\right| \leqslant|\alpha|\left|T_{j}(z)\right| \leqslant\left|T_{j}(z)\right|, \text { for all } j \in \mathbb{N} .
$$

Thus, from the above inequality and (2.8) we have

$$
\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathrm{j}}(\alpha z)\right| \geqslant \epsilon\right\} \subseteq\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathrm{j}}(z)\right| \geqslant \epsilon\right\} \in \mathrm{I}
$$

implies that

$$
\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathfrak{j}}(\alpha z)\right| \geqslant \epsilon\right\} \in \mathrm{I}
$$

Hence, $\left(\alpha z_{n}\right) \in c_{0}^{\mathrm{I}}(\mathrm{T})$. Therefore, the space $c_{0}^{\mathrm{I}}(\mathrm{T})$ is solid, and hence by Lemma 1.11 the space $c_{0}^{\mathrm{I}}(\mathrm{T})$ is monotone. Similarly, the remaining part can be proved.
Theorem 2.16. The sequence spaces $c^{I}(T)$ and $c_{0}^{I}(T)$ are not convergence free.
Proof. Following example will be the proof of this theorem.
Example 2.4. Let $I=I_{d}$. Consider $\left(z_{n}\right),\left(y_{n}\right) \in \omega$ such that $T_{j}(z)=\frac{1}{n}$ and $T_{j}(y)=n, \forall j \in \mathbb{N}$. Then $\left(z_{n}\right)$ belongs to $c^{I}(T)$ and $c_{0}^{I}(T)$, but $\left(y_{n}\right)$ does not belongs to $c^{I}(T)$ and $c_{0}^{I}(T)$. Hence the given spaces are not convergence free.

Theorem 2.17. The sequence spaces $\mathrm{c}_{0}^{\mathrm{I}}(\mathrm{T})$ and $\mathrm{c}^{\mathrm{I}}(\mathrm{T})$ are sequence algebras.
Proof. For $\mathrm{c}_{0}^{\mathrm{I}}(\mathrm{T})$, consider $\left(z_{n}\right),\left(\mathrm{y}_{n}\right) \in \mathrm{c}_{0}^{\mathrm{I}}(\mathrm{T})$. Then

$$
\mathrm{I}-\lim T_{j}(y)=0, \quad I-\lim T_{j}(z)=0
$$

Thus,

$$
I-\lim T_{j}(y \cdot z)=0
$$

which implies that $\left(y_{n} \cdot z_{n}\right) \in c_{0}^{I}(T)$. Hence $c_{0}^{I}(T)$ is sequence algebra. Similarly, the remaining part can be established.

Theorem 2.18. The function $g: s^{I}(T) \rightarrow \mathbb{R}$ defined by $g(z)=\left|I-\lim T_{j}(z)\right|$, where $s^{I}(T)=l_{\infty}(T) \cap c^{I}(T)$, is a Lipschitz function and hence uniformly continuous.
Proof. Firstly, we prove that the function is well defined. Let $y, z \in s^{I}(T)$, such that

$$
y=z \Rightarrow I-\lim T_{j}(y)=I-\lim T_{j}(z) \Rightarrow\left|I-\lim T_{j}(y)\right|=\left|I-\lim T_{j}(z)\right| \Rightarrow g(y)=g(z)
$$

Thus, g is well defined. Next, let $y=\left(y_{n}\right), z=\left(z_{n}\right) \in s^{I}\left(T_{j}\right), y \neq z$. Then

$$
\begin{aligned}
& B_{1}=\left\{j \in \mathbb{N}:\left|T_{j}(y)-g(y)\right| \geqslant|y-z|_{*}\right\} \in I \\
& B_{2}=\left\{j \in \mathbb{N}:\left|T_{j}(z)-g(z)\right| \geqslant|y-z|_{*}\right\} \in I
\end{aligned}
$$

where $|y-z|_{*}=\sup _{j}\left|T_{j}(y)-T_{j}(z)\right|$. Thus

$$
C_{1}=\left\{j \in \mathbb{N}:\left|T_{j}(y)-g(y)\right|<|y-z|_{*}\right\} \in \mathcal{F}(I)
$$

and

$$
\mathrm{C}_{2}=\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathrm{j}}(z)-\mathrm{g}(z)\right|<|y-z|_{*}\right\} \in \mathcal{F}(\mathrm{I})
$$

Hence $C=C_{1} \cap C_{2} \in \mathcal{F}(I)$, so that C is non-empty set. Therefore choosing $j \in B$, we have

$$
|g(y)-g(z)| \leqslant\left|g(y)-T_{j}(y)\right|+\left|T_{j}(y)-T_{j}(z)\right|+\left|T_{j}(z)-g(z)\right| \leqslant 3|y-z|_{*} .
$$

Thus, g is Lipschitz function and hence it is uniformly continuous.
Theorem 2.19. If $y=\left(y_{n}\right), z=\left(z_{n}\right) \in s^{I}(T)$ with $T_{j}(y \cdot z)=T_{j}(y) \cdot T_{j}(z)$, then $(y \cdot z) \in s^{I}(T)$ and $g(y \cdot z)=$ $\mathrm{g}(\mathrm{y}) \cdot \mathrm{g}(z)$, where $\mathrm{g}: \mathrm{s}^{\mathrm{I}}(\mathrm{T}) \rightarrow \mathbb{R}$ is defined by $\mathrm{g}(\mathrm{x})=\left|\mathrm{I}-\lim \mathrm{T}_{\mathrm{j}}(\mathrm{x})\right|$.
Proof. For $\in>0$,

$$
\begin{equation*}
A=\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathrm{j}}(\mathrm{y})-\mathrm{g}(\mathrm{y})\right|<\epsilon\right\} \in \mathcal{F}(\mathrm{I}) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}=\left\{j \in \mathbb{N}:\left|\mathrm{T}_{\mathrm{j}}(z)-\mathrm{g}(z)\right|<\epsilon\right\} \in \mathcal{F}(\mathrm{I}) \tag{2.10}
\end{equation*}
$$

where $\epsilon=|y-z|_{*}=\sup _{j}\left|T_{j}(y)-T_{j}(z)\right|$. Now, we have

$$
\begin{align*}
\left|T_{j}(y \cdot z)-g(y) g(z)\right| & =\left|T_{j}(y) T_{j}(z)-T_{j}(y) g(z)+T_{j}(y) g(z)-g(y) g(z)\right| \\
& \leqslant\left|T_{j}(y)\right|\left|T_{j}(z)-g(z)\right|+|g(z)|\left|T_{j}(y)-g(y)\right| \tag{2.11}
\end{align*}
$$

As $s^{I}(T) \subseteq l_{\infty}(T)$, there exists an $M \in \mathbb{R}$ such that $\left|T_{j}(y)\right|<M$. Therefore, from the equations (2.9), (2.10), and (2.11), we have

$$
\left|T_{j}(y \cdot z)-g(y) g(z)\right|=\left|T_{j}(y) \cdot T_{j}(z)-g(y) g(z)\right| \leqslant M \epsilon+|g(z)| \epsilon=\epsilon_{1}, \text { (say) }
$$

for all $j \in A \cap B \in \mathcal{F}(I)$. Hence $(y \cdot z) \in s^{I}(T)$ and $g(y \cdot z)=g(y) \cdot g(z)$.

Acknowledgment

The Authors would like to thank the referees and the editor for their careful reading and their valuable comments.

References

[1] M. Aiyub, A. Esi, N. Subramanian, Poisson Fibonacci binomial matrix on rough statistical convergence on triple sequences and its rate, J. Intel. Fuzzy Syst., 36 (2019), 3439-3445.
[2] M. J. Bharathi, S. Velmurugan, N. Subramanian, R. Srikanth, On Triple sequence space of Bernstein operator of rough I_{λ}-statistical convergence of weighted $g(A)$, J. Intel. Fuzzy Syst., 36 (2019), 13-27. 1
[3] I. Bruce, A modified Tribonacci sequence, Fibonacci Quart., 22 (1984), 244-246. 1
[4] M. Catalani, Identities for Tribonacci-related sequences, (2002).
[5] E. Choi, Modular Tribonacci numbers by matrix method, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math., 20 (2013), 207-221. 1
[6] R. G. Cooke, Infinite matrices and sequence spaces, Dover, New York, (2014).
[7] H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241-244. 1, 1.3
[8] M. Feinberg, Fibonacci-Tribonacci, Fibonacci Quart., 1 (1963), 71-74. 1, 1
[9] R. Filipów, J. Tryba, Ideal convergence versus matrix summability, Studia Math., 245 (2019), 101-127. 1
[10] F. T. Howard, A Tribonacci Identity, Fibonacci Quart., 39 (2001), 352-357. 1
[11] M. Kemal Ozdemir, A. Esi, N. Subramanian, Rough convergence of Bernstein fuzzy I-convergent of $\chi_{\mathrm{f}}^{3 \mathrm{FI}}$ and $\chi_{\mathrm{f}}^{3 \mathrm{FI}}$ spaces defined by Orlicz function, J. Intel. Fuzzy Syst., 37 (2019), 1-7. 1
[12] V. A. Khan, Yasmeen, H. Fatima, H. Altaf, Q.M.D. Lohani, Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator, Cogent Math., 3 (2016), 8 pages. 1.4, 1.5
[13] V. A. Khan, K. M. A. S. Alshlool, S. A. A. Abdullah, Spaces of ideal convergent sequences of bounded linear operators, Numer. Funct. Anal. Optim., 39 (2018), 1278-1290. 1
[14] V. A. Khan, K. M. A. S. Alshlool, S. A. A. Abdullah, R. K. A. Rababah, A. Ahmad, Some new classes of paranorm ideal convergent double sequences of σ-bounded variation over n-normed spaces, Cogent Math. Stat., 5 (2018), 13 pages. 1
[15] V. A. Khan, K. M. A. S. Alshlool, M. Alam, On Hilbert I-convergent sequence spaces, J. Math. Comput. Sci., 20 (2020), 225-233. 1
[16] V. A. Khan, K. Ebadullah, I-convergent difference sequence spaces defined by a sequence of moduli, J. Math. Comput. Sci., 2 (2012), 265-273. 1.8
[17] V. A. Khan, N. Khan, On Zweier I-convergent double sequence spaces, Filomat, 30 (2016), 3361-3369. 1
[18] V. A. Khan, A. A. H. Makharesh, K. M. A. S. Alshlool, S. A. A. Abdullah, H. Fatima, On fuzzy valued lacunary ideal convergent sequence spaces defined by a compact operator, J. Intel. Fuzzy Syst., 35 (2018), 4849-4855. 1
[19] V. A. Khan, R. K. A. Rababah, K. M. A. S. Alshlool, S. A. A. Abdullah, A. Ahmad, On Ideal convergence Fibonacci difference sequence spaces, Adv. Difference Equ., 2018 (2018), 14 pages. 1
[20] E. Kiliç, Tribonacci sequences with certain indices and their sums, Ars. Combin., 86 (2008), 13-22. 1
[21] T. Koshy, Fibonacci and Lucus Numbers with Applications, Wiley, New York (2001). 1
[22] P. Kostyrko, M. Macaj, T. Salát, Statistical convergence and I-convergence, Real Anal. Exch., (1999). 1, 1.6, 1.7
[23] A. Scott, T. Delaney, V. Hoggatt JR, The Tribonacci sequence, Fibonacci Quart., 15 (1977), 193-200. 1
[24] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73-74. 1, 1.2
[25] N. Subramanian, A. Esi, On Triple sequence of Bernstein operator of weighted rough I_{λ}-convergence, J. Class. Anal., 13 (2018), 45-62. 1
[26] N. Subramanian, A. Esi, Triple Pascal Sequence Spaces, Asian J. Math. Phys., 3 (2019), 13-22.
[27] N. Subramanian, A. Esi, V. A. Khan, The Rough Intuitionistic Fuzzy Zweier Lacunary Ideal Convergence of Triple Sequence spaces, J. Math. Stat., 14 (2018), 72-78. 1
[28] S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quart., 26 (1988), 144-151. 1
[29] T. Šalát, B. C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ., 28 (2004), 279-286. 1, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15
[30] T. Šalát, B. C. Tripathy, M. Ziman, On I-convergence field, Ital. J. Pure Appl. Math., 17 (2005), 45-54. 1
[31] D. V. Shah, Some Tribonacci identities, Math. Today, 27 (2011), 1-9. 1
[32] W. R. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Quart., 20 (1982), 118-120. 1
[33] B. C. Tripathy, B. Hazarika, I-convergent sequence spaces associated with multiplier sequences, Math. Inequal. Appl., 11 (2008), 543-548. 1
[34] A. Wilansky, Summability through functional analysis, North-Holland Publishing Co., Amsterdam, (1984). 1.1
[35] C. C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quart., 10 (1972), 231-246. 1
[36] T. Yaying, B. Hazarika, On sequence spaces defined by the domain of a regular tribonacci matrix, Math. Slovaca, 70 (2020), 697-706. 1

[^0]: *Corresponding author
 Email address: vakhanmaths@gmail.com (Vakeel A. Khan)
 doi: 10.22436/jmcs.024.03.04
 Received: 2021-01-06 Revised: 2021-01-25 Accepted: 2021-01-31

