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Abstract 
Transportation models play an important role in logistics and supply chain management for 
reducing cost and improving services. In this paper, the author presented a fuzzy transportation 
problem, in which the cost coefficients and supply and demand quantities are fuzzy numbers. 
The problem is solved in two stages. First, calculating the maximum satisfactory level and 
achieving balances between fuzzy supplies and demands. Second, the problem is solved by 
considering the unit of transportation costs and optimal solutions which are connected with 
fuzzy quantities’ satisfactory level are founded. The author used two different satisfactory levels 
for the problem: The transportation costs breaking points (γp) and the values that have violated 
positive condition of optimal solutions in the intervals of [γp-1, γp]. A new method is proposed in 
this paper to find optimal solutions. The proposed method is then illustrated through a 
numerical example. 
 
Keywords: Fuzzy Transportation Problem, Supply Chain Management, Fuzzy Cost Analysis, 
Linear Programming. 
 

1. Introduction 
 The transportation problem is a linear programming problem stemmed from a network 
structure consisting of a finite number of nodes and arcs attached to them that transports a 
homogenous product from M sources to N different destinations to minimize total transportation 
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cost. There are numerous solution methods for transportation problem when prices and quantities 
are given as crisp numbers [8], [10]. Several variations of transportation methods have been using 
with the table methods such as the northwest corner method, the shortcut method and Russell’s 
approximation method [8], [10]. Some others [2], [3], [17] have been using special techniques for 
linear programming (LP) problem because the classic single objective transportation problem is a 
special case of the linear programming problem. However, recently fuzzy programming approach 
started to use the optimal solutions of multi objective or single objective transportation problem 
[4], [9], [11], [16], [17]. For instance, Wahed [16] presented a fuzzy programming approach to 
determine the compromise solution of multi objective transportation problem (MOTP). Kikuchi [9] 
proposed a simple adjustment method that finds the most appropriate set of crisp numbers. Wahed 
et al. [17] presented an interactive fuzzy goal programming approach to determine the preferred 
compromise solution for MOTP. In reality, it is not possible to determine both quantities and 
transportation unit prices, but the fuzzy numbers gives best approximation of them. A model 
solving the transportation problem is given in [11] when quantities are fuzzy and prices are crisp. 
The model uses the table method for solution. Again, in [9] is given a method determining 
quantities that is satisfied the higher satisfactory level while quantities is only fuzzy. This method 
uses LP model in solution. OhEigeartaigh [10], [14] considered the case where the membership 
functions of the fuzzy demands are triangular forms for transportation problems and solved it 
using table method. Chanas and Kulej [3], [10] provided an approach to solve a fuzzy linear 
programming problem with triangular membership functions of fuzzy resources. Geetha and Nair 
[6] formulated a stochastic version of the time minimizing transportation problem and developed 
an algorithm based on parametric programming to solve it when transportation time is considered 
to be independent, positive normal random variables. Chanas et al. [4] are analyzed the 
transportation problem with fuzzy supply values of deliverers and with fuzzy demand values of the 
receivers. Liu and Kao [13] developed a procedure to derive the fuzzy objective value of the fuzzy 
transportation problem, in that the cost coefficients and the supply and demand quantities are 
fuzzy numbers basing on extension principle. Ahlatcioglu, Sivri and Güzel [1] proposed a solution 
algorithm finding all fuzzy optimal solution of the transportation problem that the cost coefficients 
and the supply and demand quantities are fuzzy numbers. Chanas and Kuchta [5] proposed an 
algorithm that solves the transportation problem with fuzzy supply and demand values and 
integrality condition imposed on the solution. Ammar and Youness [2] investigated the efficient 
solutions and stability of fuzzy multi-objective transportation problem and proposed an algorithm 
for the determination of the stability set. Gen etal. [7] describes an implementation of genetic 
algorithm to solve Bicriteria Solid Transportation Problem (BSTP). Li et al. [12] proposed neural 
network approach for multi-criteria solid transportation problem. 
In this paper, the author presented a fuzzy transportation problem in which the cost coefficients 
and supply and demand quantities are triangular fuzzy numbers. The problem is solved in two 
stages. First, calculating the maximum satisfactory level which achieves balances between fuzzy 
supplies and demands. In this stage the traditional transportation problem is developed according 
to the maximum satisfactory level. Second, the problem is solved by considering the unit of 
transportation costs and optimal solutions which connected with fuzzy quantities’ satisfactory level 
are founded with the help of breaking points of the unit of transportation costs that varies from 
zero to the maximum satisfactory level. Two different satisfactory levels were used for the problem: 
the braking points (𝛾𝑝) of transportation costs (𝐶 𝑖𝑗 =  𝐶 𝑖𝑗  𝛾 ) and the (𝛼𝑠), the value that violate 

positive condition of optimal solutions in the intervals of [ 𝛼𝑠−1, 𝛼𝑠] on [ 𝛾𝑝−1, 𝛾𝑝].The organization 

of this paper is as follows. Section two reviews some basic definitions and assumptions of the area 
of fuzzy theory. Section three studies the problem formulation. Section four considers the definition 
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of cost prices’ braking points, crisp cost prices are founded in this section and it explains the 
solution method. One modified real numerical example of proposed method is presented in section 
five and finally section six gives some concluding remarks on the proposed method. 
 

2. Definitions and Assumptions 
In this section, some basic notions of the area of fuzzy theory that have been defined by Kaufmaan 
and Gupta (1985) and Zimmermann (1996) are introduced. 
 
Definition1: Let R be the space of real numbers. A Fuzzy set Ãi is a set of ordered 
pairs  𝑥, 𝜇𝐴  𝑖

 𝑥  𝑥 ∈ 𝑅  , where 𝜇𝐴 𝑖
 x ∶ →   0, 1  and is upper semi continuous. Function 𝜇𝐴 𝑖

 𝑥  is 

called membership function of the fuzzy set. 
Definition 2: A convex fuzzy set, Ãi , is a fuzzy set in which: 
∀ 𝑥, 𝑦 ∈ 𝑅 , ∀ 𝜆 ∈   0, 1 , 
𝜇𝐴 𝑖

   𝜆𝑥 +  1 − 𝜆 𝑦 ≥ 𝑚𝑖𝑛 𝜇𝐴 𝑖
 𝑥 , 𝜇𝐴 𝑖

 𝑦   

Definition3: A fuzzy set Ã is called positive if its membership function is such that 𝜇𝐴 𝑖
 𝑥 = 0, ∀𝑥 ≤

0. 
Definition4: Triangular Fuzzy Number (TFN) is a convex fuzzy set which is defined as 
 𝐴 = ( 𝑥 , 𝜇𝐴 𝑖

 𝑥 ) Where: 

𝜇A i
 𝑥 =

 
  
 

  
 

0 ,           𝑥 ≤ 𝑎𝑖
1

 𝑥 −  𝑎𝑖
1 

 𝑎𝑖
2 −  𝑎𝑖

1 
 , 𝑎𝑖

1 < 𝑥 ≤  𝑎𝑖
2

 𝑥 −  𝑎𝑖
3 

 𝑎𝑖
2 −  𝑎𝑖

3  
 , 𝑎𝑖

2 < 𝑥 ≤  𝑎𝑖
3

0 , 𝑥 >  𝑎𝑖
3

  (1) 

For convenience, TFN represented by three real parameters 𝑎1 , 𝑎2 , 𝑎3 which are 
(𝑎𝑖

1  ≤  𝑎𝑖
2  ≤ 𝑎𝑖

3) Will be denoted by tetraploid 𝑎𝑖
1 , 𝑎𝑖

2 , 𝑎𝑖
3 (Fig.1). 

 
Definition5: A triangular fuzzy number 𝐴 𝑖 = (𝑎𝑖

1 , 𝑎𝑖
2 , 𝑎𝑖

3) is called positive TFN if: 

 0 ≤ 𝑎𝑖
1  ≤  𝑎𝑖

2  ≤ 𝑎𝑖
3 

 
3. Problem Formulation 
Transportation problem that examined here can be described as follows. Consider the traditional 
transformation problem with homogenous product from M sources to N different destinations and 
a target of minimizing total transportation costs but with crisp numbers. 
3.1. Notations 
The following notations are applied to describe the transportation problem: 
 
Indices and parameters: 

a1 a2 a3

μ(X)

Fig.1 Triangular Fuzzy Number (TFN)

1

x
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M Number of sources 
N Number of destinations 
𝐴 𝑖   Fuzzy quantity of ith source 

𝐵 𝑗   Fuzzy quantity of jth destination 

𝐶 𝑖𝑗   Fuzzy unit transportation cost from ith source to jth destination 

𝛼  The possibility level of supply and demand  
𝛾  The possibility level of the unit of transportation cost  
Decision variables: 

𝑋 𝑖𝑗   Fuzzy quantities which is transported from ith source to jth 
destination 

 

3.2. Fuzzy Transportation Linear Programming (FTLP) Model 
3.2.1. The Objective Programming Function 
The objective programming function consists of total transportation costs. The related cost 
coefficients in the objective function are frequently imprecise in nature because some information 
is incomplete or unobtainable. Accordingly the objective function of the proposed model is as 
follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =    𝐶 𝑖𝑗

𝑛

𝑗 =1

𝑚

𝑖=1

𝑋 𝑖𝑗  (2) 

3.2.2. Constraints 
The constraints are as follows: 

 𝑋 𝑖𝑗

𝑛

𝑗 =1

≅ (𝑎𝑖
1 , 𝑎𝑖

2 , 𝑎𝑖
3) ,    ( 𝑖 = 1 , 2 , … . . , 𝑚) 

(3)  𝑥𝑖𝑗 ≅ ( 𝑏𝑗
1 ,

𝑚

𝑖=1

𝑏𝑗
2  , 𝑏𝑗

3) ,    ( 𝑗 = 1 , 2 , … . . , 𝑛) 

𝑥 𝑖𝑗  ≥ 0 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

 𝐴 𝑖𝑗
𝑖

=   𝐵 𝑖𝑗

𝑗

 

4. The Solution Procedure 
𝐴 𝑖  and 𝐵 𝑗  are fuzzy quantities and shown as 𝐴 𝑖 =  (𝑎𝑖

1 , 𝑎𝑖
2 , 𝑎𝑖

3) and 𝐵 𝑗 = ( 𝑏𝑗
1, 𝑏𝑗

2 , 𝑏𝑗
3) fuzzy triangle 

numbers. The unit transportation cost is given as fuzzy number 𝐶 𝑖𝑗 =   −∞ , 𝐶 𝑖𝑗
2  , 𝐶 𝑖𝑗

3  . Let 

𝜇𝐴 𝑖
 , 𝜇𝐵 𝑗

 𝑎𝑛𝑑 𝜇𝐶 𝑖𝑗
 denote the membership function as below  

𝐴 𝑖 =   (𝑎𝑖  , 𝜇𝐴 𝑖
) 𝑎𝑖  ∈ 𝐴(𝐴 𝑖)   

(4) 𝐵 𝑗 =   (𝑏𝑗  , 𝜇𝐵 𝑗
)  𝑏𝑗  ∈ 𝐵(𝐵 𝑗 )    

𝐶 𝑖𝑗 =   (𝑐𝑖𝑗  , 𝜇𝐶 𝑖𝑗
) 𝑐𝑖𝑗  ∈ 𝐶(𝐶 𝑖𝑗 )    

Where 𝐴 𝐴 𝑖 , 𝐵 𝐵 𝑗 , 𝐶(𝐶 𝑖𝑗 ) are the support of 𝐴 𝑖 , 𝐵 𝑗  , 𝐶 𝑖𝑗 . Denote the α - cut of 𝐴 𝑖 , 𝐵 𝑗  and the γ - cut of 

𝐶 𝑖𝑗  as: 
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(𝐴 𝑖)𝛼 =   (𝐴 𝑖)𝛼
𝐿  , (𝐴 𝑖)𝛼

𝑈 

=   
𝑚𝑖𝑛
𝐴 𝑖

  𝑎𝑖  ∈  𝐴(𝐴 𝑖) 𝜇𝐴 𝑖
 ≥  𝛼  ,

𝑚𝑎𝑥
𝐴 𝑖

  𝑎𝑖  ∈  𝐴(𝐴 𝑖) 𝜇𝐴 𝑖
 ≥  𝛼  

= [𝐴 𝑖
1 +  𝛼  𝐴 𝑖

2 −  𝐴 𝑖
1 , 𝐴 𝑖

3 −  𝛼  𝐴 𝑖
3 −  𝐴 𝑖

2 ] 

(5) 

(𝐵 𝑗 )𝛼 =   (𝐵 𝑗 )𝛼
𝐿  , (𝐵 𝑗 )𝛼

𝑈  

=   
𝑚𝑖𝑛
𝐵 𝑗

  𝑏𝑗  ∈  𝐵(𝐵 𝑗 ) 𝜇𝐵 𝑗
 ≥  𝛼  ,

𝑚𝑎𝑥
𝐵 𝑗

  𝑏𝑗  ∈  𝐵(𝐵 𝑗 ) 𝜇𝐵 𝑗
 ≥  𝛼   

= [𝐵 𝑗
1 +  𝛼  𝐵 𝑗

2 −  𝐵 𝑗
1 , 𝐵 𝑗

3 −  𝛼  𝐵 𝑗
3 −  𝐵 𝑗

2 ] 

(𝐶 𝑖𝑗 )𝛾 =   −∞ , (𝐶 𝑖𝑗 )𝛾
𝑈  

=   −∞ ,
𝑚𝑎𝑥
𝐶 𝑖𝑗

  𝑐𝑖𝑗  ∈  𝐶(𝐶 𝑖𝑗 ) 𝜇𝐶 𝑖𝑗
 ≥  𝛾   

= [−∞, 𝐶 𝑖𝑗
3 −  𝛾  𝐶 𝑖𝑗

3 −  𝐶 𝑖𝑗
2  ] 

These intervals indicate where supply and demand lie at possibility level of 𝛼 and the unit of 
transportation cost lie at possibility level of 𝛾. 
In the first step, based on the extension principle [5],the membership function of supply and 
demand can be defined as: 
𝑀𝑎𝑥𝑖𝑚𝑖𝑧 𝛼 
Subject to 

(6) 
𝐴 𝑖

1 +  𝛼  𝐴 𝑖
2 −  𝐴 𝑖

1  ≤   𝑋 𝑖𝑗

𝑛

𝑗 =1

 ≤  𝐴 𝑖
3 −  𝛼  𝐴 𝑖

3 −  𝐴 𝑖
2   

𝐵 𝑗
1 +  𝛼  𝐵 𝑗

2 −  𝐵 𝑗
1  ≤   𝑋 𝑖𝑗

𝑚

𝑖=1

 ≤  𝐵 𝑗
3 −  𝛼  𝐵 𝑗

3 −  𝐵 𝑗
2  

𝑋 𝑖𝑗  ≥ 0 𝑓𝑜𝑟 𝑖 =   1, 2, …  & 𝑗 = (1, 2, … . . ) 
From optimal solution of problem (2.5) we obtain ( α =  Maximize α). 
For supplies: 

 𝑋 𝑖𝑗

𝑛

𝑗 =1

 ≤  𝐴 𝑖
2 (7) 

then the related constraints are rearranged as: 

 𝑋 𝑖𝑗

𝑛

𝑗 =1

=  𝐴 𝑖
1 +  𝛼  𝐴 𝑖

2 −  𝐴 𝑖
1  &  ( 𝑖 = 1 , 2 , … . . , 𝑚) (8) 

Otherwise the related constraints are rearranged as: 

 𝑋 𝑖𝑗

𝑛

𝑗 =1

=  𝐴 𝑖
3 −  𝛼  𝐴 𝑖

3 −  𝐴 𝑖
2  & ( 𝑖 = 1 , 2 , … . . , 𝑚) (9) 

For demands : 

 𝑋 𝑖𝑗

𝑛

𝑗 =1

 ≤  𝐵 𝑗
2 (10) 

then the related constraints are rearranged as: 

 𝑋 𝑖𝑗

𝑛

𝑗 =1

=  𝐵 𝑗
1 +  𝛼  𝐵 𝑗

2 −  𝐵 𝑗
1  (11) 

Otherwise the related constraints are rearranged as: 
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 𝑋 𝑖𝑗

𝑛

𝑗 =1

=  𝐵 𝑗
3 −  𝛼  𝐵 𝑗

3 −  𝐵 𝑗
2  & ( 𝑗 = 1 , 2 , … . . , 𝑛) (12) 

In the first step, supplies and demands have rearranged according to the supply and demand 
possibility level (𝛼). In second step, from twice intersection of the unit of transportation costs in 
each cells relating to the unit of transportation cost possibility level (𝛾),  we obtain breaking 
points of costs. 
4.1. The Membership Function 
Membership functions of each fuzzy numbers 𝐴 𝑖 , 𝐵 𝑗  , 𝐶 𝑖𝑗  can be written as: 

𝜇𝐴 𝑖
=

 
 
 
 

 
 
 

0 ,            𝐴 𝑖  ≤   𝐴 𝑖
1

  𝐴 𝑖 −  𝐴 𝑖
1 

(𝐴 𝑖
2 −  𝐴 𝑖

1)
 ,   𝐴 𝑖

1  ≤  𝐴 𝑖 ≤  𝐴 𝑖
2

 

 
 𝐴 𝑖 −  𝐴 𝑖

3   

  𝐴 𝑖
2 −  𝐴 𝑖

3 
 ,   𝐴 𝑖

2  ≤  𝐴 𝑖  ≤  𝐴 𝑖
3

0 ,         𝐴 𝑖  ≥  𝐴 𝑖
3

  

(13) 
𝜇𝐵 𝑗

=

 
 
 
 

 
 
 

0 ,  𝐵 𝑗  ≤   𝐵 𝑗
1

  𝐵 𝑗 −  𝐵 𝑗
1 

(𝐵 𝑗
2 −  𝐵 𝑗

1)
 ,    𝐵 𝑗

1  ≤  𝐵 𝑗 ≤  𝐵 𝑗
2

 

 
 𝐵 𝑗 −  𝐵 𝑗

3   

  𝐵 𝑗
2 −  𝐵 𝑗

3 
 ,   𝐵 𝑗

2  ≤  𝐵 𝑗  ≤  𝐵 𝑗
3

0 ,         𝐵 𝑗  ≥  𝐵 𝑗
3

  

𝜇𝐶 𝑖𝑗
=

 
 
 

 
 

1 , 𝐶 𝑖𝑗  ≤  𝐶 𝑖𝑗
2  

𝐶 𝑖𝑗 −  𝐶 𝑖𝑗
3  

𝐶 𝑖𝑗
2 −  𝐶 𝑖𝑗

3  , 𝐶 𝑖𝑗
2  ≤  𝐶 𝑖𝑗  ≤ 𝐶 𝑖𝑗

3  

0 , 𝐶 𝑖𝑗  ≥ 𝐶 𝑖𝑗
3   

  

There is one 𝐴 𝑖 =  𝜇𝑖
−1(𝛼) and 𝐵 𝑗 =  𝜇𝑗

−1(𝛼)  each of them exists in 𝛼 ∈   0 , 𝛼  , because the 

membership functions are monotone for 0 <  𝛼 < 1, if these numbers are explained with 
𝛼 − 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 , then we obtain: 
𝐴 𝑖

−1 =  𝜇𝑖
−1 𝛼 =  𝐴 𝑖

1 +    𝐴 𝑖
2 −  𝐴 𝑖

1 𝛼 
And  
𝐴 𝑖

−1 =  𝜇𝑖
−1 𝛼 =  𝐴 𝑖

3 +    𝐴 𝑖
3 −  𝐴 𝑖

2 𝛼 
(14) 

 From 𝜇𝐴 𝑖
=  𝛼 and 

𝐵 𝑗 =  𝜇𝑗
−1 𝛼 =  𝐵 𝑗

1 + (𝐵 𝑗
2 −  𝐵 𝑗

1)𝛼  
And 
𝐵 𝑗 =  𝜇𝑗

−1 𝛼 =  𝐵 𝑗
3 + (𝐵 𝑗

3 −  𝐵 𝑗
3)𝛼  

(15) 

From 𝜇𝐵 𝑗
=  𝛼. The membership functions of these numbers are shown in Fig.2. 



      Hossein Abdollahnejad Barough / TJMCS Vol .2 No.1 (2011) 184-194 

190 
 

 
4.2. Equality Constraints 
The equation (16) must satisfied at  (𝛼 ) level 

𝛼 = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝜇   𝐴 𝑖𝑖  , 𝜇  𝐵𝑗𝑗      , 𝛼  ∈ [0,1]  (16) 

For solving this problem, the problem can be balanced by adding an artificial source. As shown in 
Fig 3. 𝛼 ∈   0 , 𝛼   could not show directly the satisfactory level in transportation problems and the 
problem is balanced at (𝛼 ) level. The satisfactory level (𝛼) can increase as much as ( 𝛼 = 1) but in 
solution involving quantities out of the intervals the (𝛼) value because ( 𝛼 < 1). 

 
4.3. Defining Braking Points of the Prices 
Because the membership function of 𝐶𝑖𝑗  is decreasing in 𝜇𝐶 𝑖𝑗

∈ (0,1) intervals we have: 

𝜇𝐶 𝑖𝑗
=  𝛾 So that we have 𝐶 𝑖𝑗 =  𝜇𝛾

−1 (17) 
 In this state, the transportation costs are defined in terms of satisfactory level (𝛾), shown in  Fig4. 

 
That is, 
𝐶 𝑖𝑗 =  𝐶 𝑖𝑗

3 −  𝛾 (𝐶 𝑖𝑗
3 −  𝐶 𝑖𝑗

2  ) (18) 
By means of the twice intersection of 
𝐶 𝑖𝑗 =  𝐶 𝑖𝑗

3 −  𝛾 (𝐶 𝑖𝑗
3 −  𝐶 𝑖𝑗

2 ) (19) 
lines, the N = m.n piece values of 𝛾 ∈ [0,1] for each k are obtained and then these values change the 
order of 𝐶𝑖𝑗  .These values of 𝛾𝑝  are called the breaking points [15]. The order of 𝐶 𝑖𝑗 ’s in each 

subintervals that are formed between the iterative breaking points would not change. Therefore, 
the representative point can be selected in this interval. This selected point can be any point of the 
interval, but the optimal solution of transportation problem would not change. However, when the 
interval changes the consecutive order among the costs changes as well. Therefore, the optimal 
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solution of transportation problem changes as a result of these changes. As a result, for each 
interval that is formed the iterative breaking points of 𝛾𝑝  are searched the optimal solutions one 

by one. Thus, all optimal solutions are investigated. 
Let this interval [ 𝛾𝑝−1 , 𝛾𝑝] be subinterval by forming iterative breaking points. By selecting 

𝛾 𝑝  ∈ [ 𝛾𝑝−1 , 𝛾𝑝] we solve the transportation problem for crisp costs, by using 

𝐶 𝑖𝑗 =  𝐶 𝑖𝑗
3 −  𝛾(𝐶 𝑖𝑗

3 −  𝐶 𝑖𝑗
2  ) (20) 

As you know, for the transported quantity 𝑋 𝑖𝑗  from ith source to jth demand center the fuzzy 

transportation problem is stated as follows, 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =    𝐶 𝑖𝑗

𝑛

𝑗 =1

𝑚

𝑖=1

𝑋 𝑖𝑗  

(21) 

 𝑋 𝑖𝑗

𝑛

𝑗 =1

=  𝐴 𝑖
3 −  𝛼  𝐴 𝑖

3 −  𝐴 𝑖
2  

 𝑋 𝑖𝑗

𝑛

𝑗 =1

=  𝐴 𝑖
1 +  𝛼  𝐴 𝑖

2 −  𝐴 𝑖
1  

 𝑋 𝑖𝑗

𝑛

𝑗 =1

=  𝐵 𝑗
1 +  𝛼  𝐵 𝑗

2 −  𝐵 𝑗
1  

 𝑋 𝑖𝑗

𝑛

𝑗 =1

=  𝐵 𝑗
3 −  𝛼  𝐵 𝑗

3 −  𝐵 𝑗
2  

𝑋 𝑖𝑗  ≥ 0 𝑓𝑜𝑟 𝑖 =   1, 2, …  & 𝑗 = (1, 2, … . . )  
4.4. Defining of (𝜶) Intervals 
Depending on  that changes in [0,1] interval the quantities of source and demand centers and 
optimal solutions will change. Thus, optimal solutions 𝑋 𝑖𝑗

∗ = 𝑋 𝑖𝑗
∗ (𝛼) are linear but while variations 

of  change the transported quantities continuously, non-negative constraint will violate. The 
(  which violates non-negative constraint of optimal solution is called breaking points of . After 
the value of (  in this breaking point, at least one component of optimal solution is negative. 
Therefore, the feasible condition will violate. By using the dual problem the feasible condition is 
gained again. If the variation in the positive direction of (  again violates the feasible condition, 
same operations are continued. Therefore, different optimal solutions can be obtained as the 
number of intervals. When the costs and quantities are given fuzzy numbers, the numbers of 
optimal solutions are 𝑝. 𝑟, where p is the number of interval that is formed by 𝛾  in [0,1] and 𝑟 is the 
number of interval that is formed by 𝛼  in [0, 𝛼 ]. But, some optimal solutions are same as the 
others. 
 

5. Numerical Example 
  We consider the following modified fuzzy transportation problem that is a real case of a Supply 
Chain Management model in the Logistics Department of Kayson Co. Table.1 shows the information 
on the fuzzy quantity supplied and demanded as well as the fuzzy transportation costs per unit .The 
fuzzy quantities to be transported from the sources to the different destinations are represented by 
the decision variables (𝑋 𝑖1, 𝑋 𝑖2, … , 𝑋 1𝑗 , 𝑋 2𝑗 , … ) in the cells. 

Table.1: Transportation Supply, Demand and Cost Coefficients Fuzzy Values 
Demand 

 
 Supply 

(2, 5, 6) (14, 15, 17) (2, 5, 6) 
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Now we consider transportation problem with fuzzy cost and fuzzy quantity. 
 
𝑀𝑎𝑥 𝛼 

(22) 

Subject to 
𝑋 𝑖1 + 𝑋 𝑖2 + 𝑋 𝑖3  ≥ 2 + 7𝛼  
𝑋 𝑖1 + 𝑋 𝑖2 + 𝑋 𝑖3  ≤ 11 − 2𝛼 
𝑋 𝑖4 + 𝑋 𝑖5 + 𝑋 𝑖6  ≥ 3 + 4𝛼 
𝑋 𝑖4 + 𝑋 𝑖5 + 𝑋 𝑖6  ≤ 12 − 4𝛼 
𝑋 𝑖7 + 𝑋 𝑖8 + 𝑋 𝑖9  ≥ 4 + 5𝛼 
𝑋 𝑖7 + 𝑋 𝑖8 + 𝑋 𝑖9  ≤ 14 − 5𝛼 
𝑋 1𝑗 + 𝑋 2𝑗 + 𝑋 3𝑗  ≥ 2 + 3𝛼 
𝑋 1𝑗 + 𝑋 2𝑗 + 𝑋 3𝑗  ≤ 6 − 𝛼 
𝑋 4𝑗 + 𝑋 5𝑗 + 𝑋 6𝑗  ≥ 14 + 𝛼 
𝑋 4𝑗 + 𝑋 5𝑗 + 𝑋 6𝑗  ≤ 17 − 2𝛼 
𝑋 7𝑗 + 𝑋 8𝑗 + 𝑋 9𝑗  ≥ 5 + 5𝛼 
𝑋 7𝑗 + 𝑋 8𝑗 + 𝑋 9𝑗  ≤ 13 − 3𝛼 
𝑋 𝑖𝑗 ≥ 0 𝑓𝑜𝑟 𝑖 =  1, … , 9  & 𝑗 = (1, … , 9) 
Solution of problem (22) is 𝛼 =  0.8 and 𝑋 11 = 3.4 , 𝑋 12 = 6 , 𝑋 13 = 0 , 𝑋 21 = 0 , 𝑋 22 = 8.8 , 𝑋 23 =
0, 𝑋 31 = 1, 𝑋 32 = 0, 𝑋 33 = 9. α1 = 9.4 , α2  = 8.8, α3  =  10 and 𝑏𝑗

1 =  4.4, 𝑏𝑗
2 =  14.8, 𝑏𝑗

3 =  9  

Where 9 ≤ α1 ≤ 11 , 8 ≤  α2 ≤ 12 , 9 ≤ α3 ≤ 14 and 2 ≤ 𝑏𝑗
1 ≤ 5 , 14 ≤  𝑏𝑗

2 ≤ 15 , 5 ≤ 𝑏𝑗
3 ≤ 10 .  

From this solution we obtain the given fuzzy transportation problem can be rearranged as the fuzzy 
transportation problem in Table 2. where quantities in artificial demand center are 

 𝑎 𝑖 = 37 − 11𝛼3
𝑖=1   

   
 𝑏 𝑗 = 21 + 9𝛼3

𝑗=1   
 =0.8 is found from 37 − 11𝛼  =  21 + 9𝛼. The satisfactory level (𝛼) will be in [0, 𝛼]  =  [0,0.8] 
interval. Therefore, quantity in the artificial demand center is 
𝑏𝑗

4 =   𝑎 𝑖𝑖 −   𝑏 𝑗𝑗 = 16 − 20𝛼  (24) 
so in this problem, the total available quantity in the sources is exactly equal to the total quantity 
required by the destinations, that is, the problem is balanced. 

 
Table.2: Fuzzy Transportation Problem Values 

Supply Demand 𝑏𝑗
1 = 2 + 3𝛼  𝑏𝑗

2 = 14 +  𝛼  𝑏𝑗
3 = 5 + 5𝛼   𝑏𝑗

4 = 16 − 20𝛼  

𝑎𝑖
1 = 11 − 2𝛼 C 11 = 5 − 2γ  C 12 = 7 − γ  C 13 = 11 − 5γ  C 14 = 0 

𝑎𝑖
2 = 12 − 4𝛼  C 21 = 9 − 2γ  C 22 = 15 − 6γ  C 23 = 18 − 8γ  C 24 = 0 

𝑎𝑖
3 = 14 − 5𝛼  C 31 = 13 − 4γ  C 32 = 16 − 7γ  C 33 = 10 − γ  C 34 = 0 

The breaking points of ’s are intersection points of lines 𝐶 𝑖𝑗 =  𝐶 𝑖𝑗 (𝑋 𝑖𝑗 ) .Breaking values of  in 

[0,1] interval are 0, 1/4, 2/3 and 1. Intervals among these iterative values are [0, 1/4], [1/4, 2/3], 
[2/3, 1] .Now for interval [0, 1/4], let us solve the transportation problem with fuzzy quantity. 

(2, 9, 11)  C 11( −∞ , 3, 5)  C 12( −∞ , 6, 7)  C 13( −∞ , 6, 11)  

(3, 8, 12) C 21( −∞ , 7, 9)  C 22( −∞ , 9, 15)  C 23( −∞ , 10, 18)  

(4, 9, 14) C 31( −∞ , 9, 13)  C 32( −∞ , 9, 16)  C 33( −∞ , 9, 10)  
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Let  = 0 as representative of the first interval for . Then, the obtained optimal solution is given 
in Table 3. 

 
Table.3: Optimal Solutions for (α) Level 

Supply Demand 𝑏𝑗
1 = 2 + 3𝛼  𝑏𝑗

2 = 14 +  𝛼  𝑏𝑗
3 = 5 + 5𝛼   𝑏𝑗

4 = 16 − 20𝛼  

𝑎𝑖
1 = 11 − 2𝛼   11 − 2𝛼   

 C 11 = 5 − 2γ  C 12 = 7 − γ  C 13 = 11 − 5γ  C 14 = 0 

𝑎𝑖
2 = 12 − 4𝛼   2 + 3α 3 + 3α − t   7 − 10α + t  

 C 21 = 9 − 2γ  C 22 = 15 − 6γ  C 23 = 18 − 8γ  C 24 = 0 

𝑎𝑖
3 = 14 − 5𝛼    +t  5 + 5α 9 − 10α − 𝑡  

 C 31 = 13 − 4γ  C 32 = 16 − 7γ  C 33 = 10 − γ  C 34 = 0 

 For the values in intervals, the values of  in the supply and demand centers are distributed 
homogenous to cell that are occurred optimal transportation problem. The first value  that 
violates non-negative condition of optimal solution is 𝑋 24 =  7 − 10  ,  = 0. Thus, the present 
optimal solution is valid for interval  [0, 7/10]. 

0 ≤  𝛾 ≤
1

4
 𝑎𝑛𝑑 

7

10
 ≤  𝛼 ≤  

8

10
  (25) 

In Table 4, the obtained solutions for interval  [7/10, 8/10] are optimal and feasible. The 
obtained  optimal solutions for intervals of [1/4, 2/3] and  [2/3,1] are given in Table 5. 

 
Table.4: The Optimal and Feasible Solutions for Interval α [7/10, 8/10] 

Supply Demand 𝑏𝑗
1 = 2 + 3𝛼  𝑏𝑗

2 = 14 +  𝛼  𝑏𝑗
3 = 5 + 5𝛼   𝑏𝑗

4 = 16 − 20𝛼  

𝑎𝑖
1 = 11 − 2𝛼   11 − 2𝛼   

 C 11 = 5 − 2γ  C 12 = 7 − γ  C 13 = 11 − 5γ  C 14 = 0 
𝑎𝑖

2 = 12 − 4𝛼   2 + 3α 10 − 7α   
 C 21 = 9 − 2γ  C 22 = 15 − 6γ  C 23 = 18 − 8γ  C 24 = 0 

𝑎𝑖
3 = 14 − 5𝛼    −7 + 10α  5 + 5α 16 − 20α 

 C 31 = 13 − 4γ  C 32 = 16 − 7γ  C 33 = 10 − γ  C 34 = 0 

 
Table.5: The Optimal and Feasible Solutions for Interval γ [1/4, 2/3] &  [2/3,1] 

𝜶 𝜸 [ 0 ,
1

4
  ] [  

1

4
 ,

2

3
  ] [ 

2

3
  , 1 ] 

[ 0 ,
7

10
  ] 

𝑋 12 = 11 − 2𝛼  𝑋 12 = 11 − 2𝛼 𝑋 11 = 2 + 3𝛼 

𝑋 12 = 2 + 3𝛼 𝑋 12 = 2 + 3𝛼 𝑋 12 = 9 − 5𝛼 

𝑋 22 = 3 + 3𝛼  𝑋 22 = 3 + 3𝛼 𝑋 12 = 5 + 6𝛼 

𝑋 24 = 7 − 10𝛼  𝑋 24 = 7 − 10𝛼  𝑋 24 = 7 − 10𝛼 

𝑋 33 = 5 + 5𝛼  𝑋 33 = 5 + 5𝛼 𝑋 33 = 5 + 5𝛼  

𝑋 34 = 9 − 10𝛼  𝑋 34 = 9 − 10𝛼  𝑋 34 = 9 − 10𝛼 

( 
7

10
 ,

8

10
 ] 

𝑋 12 = 11 − 2𝛼  𝑋 12 = 11 − 2𝛼 𝑋 11 = 2 + 3𝛼 

𝑋 12 = 2 + 3𝛼 𝑋 12 = 2 + 3𝛼 𝑋 12 = 9 − 5𝛼 

𝑋 22 = 10 − 7𝛼 𝑋 22 = 10 − 7𝛼 𝑋 22 = 12 − 4𝛼 

𝑋 32 = −7 + 10𝛼 𝑋 32 = −7 + 10𝛼  𝑋 32 = −7 + 10𝛼  

𝑋 33 = 5 + 5𝛼  𝑋 33 = 5 + 5𝛼 𝑋 33 = 5 + 5𝛼 

𝑋 34 = 16 − 20𝛼 𝑋 34 = 16 − 20𝛼  𝑋 34 = 16 − 20𝛼  

 

6. Conclusion 
 In this paper the author has shown that there is an optimal solution that each interval 
constituting by the iterative breaking points. Like stochastic order, after the breaking points of the 
satisfactory level that are changed, the values of transportation costs are respectively determined. 
However, It is transferred a new optimal solution by using duality while the optimal solutions lose 
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their feasibility because of the satisfactory level that depends on quantities’ increases. The breaking 
points of satisfactory levels depend on quantities and the changed optimal solutions are obtained 
successively. Because of the special structure of the problem, all of these operations are realized 
and the optimal solutions are obtained for all fuzzy cases that may be encountered in future to the 
transportation problem. 
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