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Abstract

In this note, we introduce and discuss the notion of group seminearrings along with few of its characteristics. Firstly, we
provide the method of construction of group seminearrings. Then, we introduce different types of ideals of group seminearrings.
Finally, we introduce and discuss the group seminearrings homomorphism and amalgamation maps.
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1. Introduction

Group ring is the amalgamation of two very important and basic algebraic structures, i.e., a finite
multiplicative group and a ring. Group rings are first introduced by Aurthur Caylay in 1854. Actually,
elements of group ring are in the form of linear combinations of elements of ring and that of group which
are involved in the construction of group ring. Elements of group ring has close resemblance with the
elements of polynomial rings with single indeterminate. The difference is that if in a polynomial ring
we replace the variable along with its powers by the elements of group and replace coefficients with the
elements of the ring then they become elements of group ring. Group ring is a unique algebraic structure
which is defined and explained in the literature along with its numerous characteristics. Group ring
behaves like a ring as its elements satisfying all the axioms of ring but has a unique structure due to
its unique construction. Similarly, zero divisors and units of group rings are also very unique. Cohen
discussed and explained in detail the zero divisors of group ring [2]. Different types of unit elements of
group ring are introduced by Cox et al. in [3]. Structure of group rings and the group of units of integral
group rings have been introduced and discussed comprehensively in [8]. Primary group rings have been
explored in [1]. Few applications of grouprings towards cryptosystem were explored in [7]. For more
details about group rings, we refer to [2–4]. Group nearring is the further generalization of group ring
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which is introduced and discussed extensively in [10]. Le Riche et al. [10] defined a group nearring in
a very special way which is similar to that of matrix nearrings. Group nearring is a subnearring of a
nearring M(RG) which is the set of endomorphisms of a group RG. At this point, RG is the direct sum
of elements of additive group (R,+) of nearring R. Furthermore, number of copies in RG is equal to the
order of finite multiplicative group. The elements of group nearring are generated by the function [r,g],
where r ∈ S, g ∈ G, defined by ([r,g](µ))(h) = rµ(hg) for all µ ∈ SG, h ∈ G. Eventually, we define a
group seminearring by using the similar approach used for defining group nearring by Le Riche et al.
[10]. Different types of ideals of grouprings are discussed in [5, 6]. For group nearrings one can consult
[5, 6, 10, 11].

Group rings have been generalized in terms of group nearrings [10] and group semirings [9]. In this
manuscript, we introduce and discuss the notion of group seminearrings along with few of its charac-
terizations. Firstly, we introduce the method of construction of group seminearrings. During this, we
follow the method similar to that of group rings and group nearrings. However, we observe that a group
seminearring is different structure as compared to that of group rings and group nearrings. Then, we
introduce different types of ideals of group seminearring. Finally, we discuss group seminearrings by
applying some structure preserving mappings.

2. Construction of group seminearrings

In this section, first we provide the method of construction of group seminearring and then we discuss
its various basic properties. We begin with the following definition.

Definition 2.1. Let S be a seminearring with identity 1, and G be a finite multiplicatively written group
and SG represents the cartesian direct sum of semigroup (S,+) and number of copies in SG is equal to the
order of G. Elements of SG are indexed by the elements of group G. Let M(SG) denotes the seminearring
of all mappings of a semigroup SG to itself. For some functions in M(SG), we define the following
notations.

(i) The function < r,g >, where r ∈ S, g ∈ G, defined by (< r,g > (µ))(h) = rµ(g−1h) for all µ ∈ SG,
h ∈ G.

(ii) The function [r,g], where r ∈ S, g ∈ G, defined by ([r,g](µ))(h) = rµ(hg) for all µ ∈ SG, h ∈ G.

It is notable that the set {< r,g >: r ∈ S,g ∈ G} generates a sub-seminearring of M(SG) and we denote
it by S < G >. Similarly the collection {[r,g] : r ∈ S,g ∈ G} generates a sub-seminearring of M(SG) and
will be denoted as S[G]. Actually these sub-seminearrings are our group seminearrings. However, if we
replace (i) of Definition 2.1 with (i

′
) the function < r,g >, where r ∈ S, g ∈ G, defined by (< r,g >

(µ))(h) = rµ(gh) for all µ ∈ SG, h ∈ G, then, we can easily conclude that: if G is an abelian group then
we have S < G >= S[G]. On the other hand, we show that if G is not an abelian group then there does
exist a natural isomorphism between two sub-nearsemirings S < G > and S[G] of M(SG).

Theorem 2.2. Group seminearrings S < G > and S[G] of M(SG) are same if group G is abelian otherwise they are
isomorphic to each other, i.e., S < G >∼= S[G].

Proof. Let G be an abelian group w.r.t multiplication, then for all µ ∈ SG, h ∈ G, we have (< r,g >
(µ))(h) = rµ(gh) = rµ(hg) = ([r,g](µ))(h). This implies that both S < G > and S[G] are equal. On
the other hand, if we consider G a nonabelian multiplicative group then we show that there is a natural
isomorphism between S < G > and S[G]. For this, let φ : RG → RG be a function defined by (φ(µ))(h1) =
(φ(µ))(g1g2) = µ(g2g1) = µ(h2), for all µ ∈ SG and h1,h2,g1,g2 ∈ G. Then, it can be easily shown that
φ ∈ Aut(RG). It is notable that φ2 = e which implies φ−1 = φ. We have to show that the automorphism
say φ∗ of M(SG) maps S < G > onto S[G]. Consider φ∗(< r,g >) = φ(r,g)φ−1 = φ < r,g > φ. For all
µ ∈ SG,h1 ∈ G, we have ((φ < r,g > φ)µ)(h1) = ((φ < r,g > φ)µ)(g1g2) = (φ < r,g >)µ(g2g1) = (φ <
r,g >)µ(h2) = φ(rµ(h2g)) = rφ(µ(h2g)) = (rµ(gh2) = ([r,g](µ))(h2). Hence φ∗(< r,g >) = [r,g] for all
r ∈ S,g ∈ G. Hence, this implies that φ∗(S < G >) = S[G].
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On the other hand, if we keep carry on with Definition 2.1, then we can deduce the below result which
is similar to that for group nearrings.

Theorem 2.3. Group seminearrings S < G > and S[G] of M(SG) are isomorphic to each other.

Proof. Similar to that of group nearring [10, Theorem 2.2].

Let S[G] be a group seminearring constructed from a seminearring S and a finite multiplicatively
written group G. As S is always a subring of a group seminearring it means if S is a left seminearring
then S[G] will be the left group seminearring. Similarly, if S is right seminearring then S[G] is right group
seminearring.

Corollary 2.4. Let m be the order of a group seminearring S and n be the order of a group G. Then, the group
seminearring S[G] is of order |R||G| = mn.

Example 2.5. Let S = {0,a,b, c,d} be a right nearsemiring with the operations tables given below.

+ 0 a b c d

0 0 a b c d

a a a b d d

b b b b d d

c c d d c d

d d d d d d

. 0 a b c d

0 0 0 0 0 0
a 0 a b b d

b 0 a b b d

c 0 a b b d

d 0 a b b d

Let R = {0,a,b} be a sub-seminearring of S and we will construct here a group seminearring using
seminearring R and group G = C2 = {x : x2 = e}. As RG represents the cartesian direct sum of order of
G copies of (R,+) so here we have RG = {(0, 0)(0,a)(0,b)(a, 0)(a,a)(a,b)(b, 0)(b,a)(b,b)}. We construct
our group seminearring by function ([r,g](µ))(h) = rµ(hg) for all µ ∈ RG,h ∈ G. For understanding,
we check it, i.e., for any µ = (0, a) and h = 0, we have ([b, x](0,a))(e) = b(0,a)(ex) = (b.0, b.a)(x) =
(0, a)x = {0e+ax}x = 0(e.x) +a(x.x) = 0x+ae = ae+ 0x ∈ R[G]. Clearly, we have 9 choices for µ. Hence,
by the above corollary, the order of group seminearring is |R||G| = 32 = 9.

Lemma 2.6. Let S[G] be the group seminearring. Let r, s ∈ S,g1,g2 ∈ G, then following holds for every value of
the parameters.

(1) [r,g1][s,g2] = [rs,g1g2];
(2) [r,g] + [s,g] = [r+ s,g].

Proof. Let µ ∈ SG and h ∈ G. Then by the definition of a group seminearring, we have

(1) (([r,g1][s,g2])(µ))(h) = ([r,gl]([s,g2](µ)))(h) = r([s,g2](µ))(hgl) = rs(µ(hg1g2)) = ([rs,glg2](µ))(h).

(2) Similarly, (([r,g] + [s,g])(µ))(h) = [r,g](µ)(h) + [s,g](µ)(h) = rµ(hg) + sµ(hg) = (r+ s)µ(hg) = [r+
s,g](µ)(h).

The above lemma is also valid for < r,g >, where r ∈ S and g ∈ G.

Lemma 2.7. Let S[G] be group seminearring, R[G] a group nearring, and RG a group ring, then:

(i) S[G] ∼= R[G], if seminearring S is replaced with nearring R;
(ii) S[G] ∼= RG, if seminerring S is replaced with standard ring R.

Now we introduce few more terminologies regarding the elements of group seminearring, i.e., gener-
ating sequence, complexity and support of the elements.

Definition 2.8. Let S[G] be a group seminearring and α ∈ S[G] and there exist a finite sequence of elements
of S[G], i.e., α1,α2, . . . ,αn, such that αi = α, for all 1 6 i 6 n. This finite sequence is called generating
sequence for the element α.
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Remark 2.9. One of the below conditions must be satisfied for a generating sequence of an element α ∈
S[G].

(i) αi = [s,g] for some s ∈ S,g ∈ G.
(ii) αi = αk +αl for some k and l, where 1 6 k, l < i.

(iii) αi = αkαl for some k and l, where 1 6 k, l < i.

Definition 2.10. Complexity of an element of a group seminearring is the length of generating sequence
of minimum length for that element. The complexity for any α ∈ S[G] is denoted by c(α).

Remark 2.11. Complexity of an element can be either equal to 1 or greater then 1, i.e., for all α ∈ S[G] we
have always c(α) > 1. We have c(α) = 1 iff α = [r,g] for some r ∈ S, g ∈ G. Moreover, for c(α) > 1, we
have either αi = αk +αl or αi = αk.αl with c(αk), c(αl) < c(αi).

Definition 2.12. The support of any element of SG say µ ∈ SG, is denoted by supp(µ), and is defined as:
supp(µ) := {x ∈ G|µ(x) 6= 0}. S(G) is the collection of elements of SG which has finite support and S(G) is
the subgroup of SG.

Theorem 2.13. S(G) is a faithful S[G]-module.

Proof. It is immediate from [10, Theorem 2.5 ].

3. Ideals of group seminearrings

In this section we provide the theory of ideals of group seminearrings.

Definition 3.1. Let S be a seminearring. A subset L ⊆ S is said to be an ideal of S, if either LS ⊆ L or
SL ⊆ L.

Here we will introduce and discuss different types of ideals of group seminearring S[G]. Let S[G] be a
group seminearring constructed from a seminearring S and a finite multiplicatively written group G. As
we have discussed earlier that seminearring S is always a subring of a group seminearring S[G], so we
may explore the ideals of group seminearrings. We denote the ideal of any group seminearring S[G] by
I[G] or simply IG.

Theorem 3.2. Let I ⊆ S be an ideal of seminearring S. Then IG ⊆ S[G] is an ideal of a group seminearring, where
IG = {Σg∈Grgh | rg ∈ I,h ∈ G}.

Proof. It is clear that the subset IG of a group seminearring is closed with respect to the addition op-
eration. Further to this, let α = Σg∈Grgg ∈ S[G] and β = Σg∈Gigh ∈ IG. Then we have αβ =
(Σg∈Grgg)(Σg∈Gigh) =

∑
g∈G(rgig)(gh). Since I is an ideal of a seminearring S, we have rgig = jg ∈ I,

and since G is a multiplicative group so gh = k ∈ G. Hence, we have αβ = Σg∈Gjgk ∈ IG. Which implies
that IG is an ideal of a group seminearring SG.

Corollary 3.3. Let IG ⊆ SG be an ideal of a group seminearring, then ((SG)/(IG)) ∼= ((S/I))G.

Definition 3.4. Let IG be an ideal of a group seminearring S[G]. Then IG is said to be a prime ideal if one
of the following holds:

(i) if [r1,g][r2,h] ∈ IG, then either [r1,g] ∈ IG or [r2,h] ∈ IG, where r1, r2 ∈ R and g,h ∈ G;
(ii) for any two ideals JG and KG of a S[G] if (JG)(KG) ⊆ IG, then either JG ⊆ IG or KG ⊆ IG.

Definition 3.5. Let IG be an ideal of a group seminearring S[G]. Then IG is said to be a weakly prime
ideal if for any two ideals JG and KG of a S[G], if 0 6= (JG)(KG) ⊆ IG then either JG ⊆ IG or KG ⊆ IG.

Theorem 3.6. Let IG be a weakly prime ideal of a group seminearring S[G] which is not prime. Then (IG)2 = 0.
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Proof. Let (IG)2 6= 0, we will prove that IG is a prime ideal. Let for any α,β ∈ S[G], we have αβ ∈ IG. If
0 6= αβ then by the definition of weakly prime ideal we have either α ∈ IG or β ∈ IG. We assume that
αβ = 0. Let α(IG) 6= 0. For any ν = Σg∈Gigh ∈ IG say αν = (Σg∈Grgg)(Σg∈Gigh) = Σg∈G(rgig)gh =
Σg∈Gsgk 6= 0. Then, we have 0 6= αν = α(β+ ν) ∈ IG which implies that either α ∈ IG or (β+ ν) ∈ IG.
Hence, α ∈ IG or β ∈ IG. So, we assume that α(IG) = 0 and similarly we can assume that β(IG) = 0.
As (IG)2 = 0 so there exist ν,η ∈ IG with νη 6= 0. Then, we have 0 6= νη = (α+ ν)(β+ η) ∈ IG, so this
implies that α+ ν ∈ IG or β+ η ∈ IG, which implies α ∈ IG or β ∈ IG. Hence IG is a prime ideal.

For any ideal I of seminearring S there exist some ideals of the group seminearring S[G] denoted by
I+and I∗ and can be constructed from the ideal I of a seminearring S which is directly involved in the
construction of SG.

Definition 3.7. Let S[G] be a group seminearring constructed from a seminearring S and a finite multi-
plicatively written group G. Let I ⊆ S be an ideal of S, then:

(i) I+ is an ideal in S[G], where I+ = Id < [i, e] : i ∈ I >;
(ii) I∗ is an ideal in S[G], where I∗ = (IG : SG) = ν ∈ S[G] | ν(SG) ⊆ IG.

For the two ideals defined above the ideal I+ ⊆ I∗.

Theorem 3.8. Let I be any ideal of a seminearring S. If I+ is nilpotent in S[G], then I is nilpotent in S.

Proof. Let I+ be a nilpotent in S[G], then for any k ∈ N, we have (I+)k = 0. For any i1, i2, i3, . . . , ik ∈ I,
we have [i1, e].[i2, e].[i3, e] . . . , [ik, e] = [i1i2i3 . . . , ik, e] = 0. This implies that ([i1i2i3 . . . , ik, e]µ)h = 0 ⇒
(i1i2i3 . . . , ik)µ(he) = 0 ⇒ (i1i2i3 . . . , ik)µ(h) = 0, for all µ ∈ RG and h ∈ G. Particularly, for the function
µ(h) = 1, we have i1i2i3 . . . , ik = 0. Hence, we have proved that I is a nilpotent ideal in S.

Lemma 3.9. For any ideals I, J and K of a seminearring S, if JK ⊆ I, then J+K∗ ⊆ I∗.

Theorem 3.10. Let S be a seminearring and I be any ideal of S and if I+ is prime in S[G], then so is I in S.

Proof. Let I be an ideal of seminearring S and I+ be an ideal of S[G]. Let I+ be a prime ideal and also let
J and K be any two ideals of S such that J,K * I. Since J * I⇒ J+ * I and K * I⇒ K∗ * I. This implies
that J+K∗ * I. Since an ideal I+ is prime in S[G] and J+K∗ * I, it means JK * I (by the above lemma).
Hence I is a prime ideal of S.

Corollary 3.11. Let S[G] be a group seminearring constructed from seminerring S and a finite multiplicatively
written group G. For any ideal I of S, the maps I→ I+ and I→ I∗ are injective.

Theorem 3.12. Let λ : R[G] → S[G] be a group seminearring homomorphism. If IG is a prime ideal of S[G], then
λ−1(IG) is a prime ideal of R[G].

Proof. Let αβ ∈ λ−1(IG) it means λ(αβ) ∈ IG ⇒ λ(α) ∈ IG or λ(β) ∈ IG. As IG is a prime ideal of S[G]
which implies α ∈ λ−1(IG) or β ∈ λ−1(IG). Thus λ−1(IG) is a prime ideal of R[G].

4. Group seminearring homomorphism

Let R and S be two seminearrings and η be an epimorphism between them say η : R → S. Let
G be finite multiplicatively written group then clearly RG and SG denote the cartesian direct sum of
(R,+) and (S,+) of order of G copies, respectively. Let ω : RG → SG be an epimorphism defined by
ω(µ)(g) = ω((µ(g)) for all g ∈ G. For seminearrings R and S and finite multiplicative group G, R[G] and
S[G] are two corresponding group seminearrings, respectively.

Lemma 4.1. Let ω : RG → SG be an epimorphism and let for any u, v ∈ RG if ω(u) = ω(v), then for all
M ∈ R[G],ω(Mu) = ω(Mv).
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Proof. We use the concept of induction to prove this lemma. Let A = BC, then clearly we have c(B), c(C) <
c(A). Let ω−1 : SG → RG be the inverse mapping of ω, such that for any β ∈ SG, ω−1ω(β) = β. Then
clearly for all µ ∈ RG, we have ω(µ) = ω(ωω−1(µ)). So, by using induction hypothesis for all µ ∈ RG,
we have ω(βµ) = ω(βωω−1(µ)). As ω(u) = ω(v), so ω(Aµ) = ω(BCµ) = ω(Bωω−1(Cv)) = ω(BCv) =
ω(Av), hence proved.

We can easily define an epimorphism between two group seminearrings, let R[G] and S[G] be the two
group seminearrings, then λ : R[G]→ S[G] defined by λ(A)(β) = ω(Aω−1(β)), where β ∈ SG, is a group
seminearring epimorphism.

Theorem 4.2. For any two seminearrings R and S if η : R→ S is an epimorphism, then λ : R[G]→ S[G] is also a
ring homomorphism of group seminearrings.

Proof. Let λ : R[G] → S[G] is defined by λ(A)(β) = ω(Aω−1(β)), where β ∈ SG. So, for any L,M ∈ R[G]
we have,

(i) λ(M+N)(β) = ω((M+N)ω−1(β)) = ω((Mω−1(β) +Nω−1(β)) = ω((Mω−1(β)) +ω(Nω−1(β)) =
λ(M)(β) + λ(N)(β);

(ii) λ(MN)(β) = ω((MN)ω−1(β)) = ω((Mω−1ωN(ω−1β) = λ(M)(ωNω−1(β)) = λ(M)λ(N)(β).

The group seminearring homomorphism presented in the above theorem is an epimorphism.

Remark 4.3. If ker η = ψ, then for group seminearring epimorphism, i.e., λ : R[G] → S[G], we have
kerλ = ψ∗ = (ψG : RG) = {A ∈ RG | Aµ ⊆ ψG for all µ ∈ RG}.

Note that if kerη = ψ is any ideal of R, then kerλ = ψ∗ will be the ideal of group seminearring R[G].
Augmentation map has been defined and discussed in the context of group rings and group nearrings,

we initiate the notion of augmentation map for group seminearrings. It is actually a map from a group
seminearring to a seminearring which is involved in the construction of a group seminearring.

Definition 4.4. Let S[G] be a group seminearring, then γ : S[G] → S defined by γ([r,g]) = γ(Σg∈Gsgg) =
Σg∈Gsg = [r, 1] is called augmentation map for group seminearring.

The kernel of augmentation map consists of all those elements of S[G] say a, where a = Σg∈Grgg such
that γ(a) = γ(Σg∈Grgg) = 0. The kernel of augmentation map is an ideal and it is called augmentation
ideal and it is represented by M.

Lemma 4.5. Let S[G] be a group seminearring constructed from a seminearring S and a finite multiplicatively
written group G. For an augmentation map γ, if M is the augmentation ideal of S[G], then we have ((S[G])/ M) ∼= S.

Lemma 4.6. The augmentation ideal in group seminearring S[G] is generated by the element {[1,g] − [1, e]|g ∈ G}.

5. Conclusion

In this article, we have introduced and discussed the notion of group seminearrings and provided few
of its characteristics. We have provided the method of construction of group seminearrings and different
types of ideals of group rings are also explored. At the end we have introduced the concepts of group
seminearrings homomorphism and amalgamation maps. At the base of the results obtained in this note,
one can discuss the concepts related to group rings in the setting of group seminearrings.
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