Fixed points of generalized rational (α, β, Z)-contraction mappings under simulation functions

Thounaojam Stephen*, Yumnam Rohen
Department of Mathematics, National Institute of Technology, Manipur, Imphal, 795004, India.

Abstract

In this paper, we combine the (α, β)-admissible mappings and simulation function in order to obtain the generalized form of rational (α, β, Z)-contraction mapping. Further this concept is used in the setting of b-metric space in order to obtain some fixed point theorems. Suitable examples are also established to verify the validity of the results obtained.

Keywords: Fixed points, generalized rational (α, β, Z)-contraction mapping, (α, β)-admissible mappings, simulation function, b-metric space.

2020 MSC: 47H10, 54H25.
(c)2022 All rights reserved.

1. Introduction

Samet et al. [22] introduced $\alpha-\psi$-contractive type mapping and α-admissible mappings. The concept is further generalized by Karapinar and Samet[15] by introducing generalized $\alpha-\psi$-contractive type mapping. The concept of cyclic (α, β)-admissible mapping was introduced by Alizadeh et al. [2] by generalizing the concept of α-admissible mapping [22]. Khojastesh et al. [17] introduced simulation function and the notion of Z-contraction with respect to simulation function to generalize Banach contraction principle. The concept of Khojastesh et al. [17] is further modified by Argoubi et al. [5]. In this paper, we introduce cyclic (α, β)-admissible mapping in simulation function to result a generalized rational (α, β, Z)-contraction. Here, we use b-metric space $[7,10]$ in order to obtain fixed point theorems for generalized rational (α, β, Z)-contraction mappings. For more results in rational type contractions and Z-contractions we refer to the papers in $[1,3,4,6,8,9,11-14,16,18-21,23,24]$ and references therein.

2. Preliminaries

Bakhtin [7] introduced the concept of b-metric space as follows.
Definition $2.1([7,10])$. Let W be a non empty set and the mapping $b: W \times W \rightarrow[0,+\infty)$ satisfies:

[^0]1. $\mathfrak{b}(u, v)=0$ if and only if $u=v$ for all $u, v \in W$;
2. $\mathrm{b}(u, v)=\mathrm{b}(v, u)$ for all $u, v \in W$;
3. there exists a real number $s \geqslant 1$ such that $b(u, v) \leqslant s[b(u, w)+b(w, v)]$ for all $u, v, w \in W$.

Then b is called $a b$-metric on W and (W, b) is called $a b$-metric space (in short $b M S)$ with coefficient s.
Definition $2.2([7,10])$. Let (W, b) be a b-metric space, $\left\{u_{n}\right\}$ be a sequence in W and $x \in W$. Then

1. the sequence $\left\{u_{n}\right\}$ is said to be convergent in (W, b) and converges to u, if for every $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $b\left(u_{n}, u\right)<\epsilon$ for all $n>n_{0}$ and this fact is represented by $\lim _{n \rightarrow+\infty} u_{n}=u$ or $u_{n} \rightarrow u$ as $n \rightarrow+\infty$;
2. the sequence $\left\{u_{n}\right\}$ is said to be a Cauchy sequence in (W, b) if for every $\epsilon>0$ there exists $n_{0} \in \mathbb{N}$ such that $b\left(u_{n}, u_{m}\right)<\epsilon$ for all $n, m>n_{0}$ or equivalently, if $\lim _{n, m \rightarrow+\infty} b\left(u_{n}, u_{m}\right)=0$;
3. (W, b) is said to be a complete b-metric space if every Cauchy sequence in W converges to some $u \in W$.

It can be noted that a b-metric space need not be a continuous function.
Definition 2.3 ([2]). Let W be a nonempty set, f be a self-mapping on W and $\alpha, \beta: W \rightarrow[0,+\infty)$ be two mappings. We say that f is a cyclic (α, β)-admissible mapping if $u \in W$ with

$$
\alpha(u) \geqslant 1 \text { implies } \beta(f u) \geqslant 1
$$

and $u \in W$ with

$$
\beta(u) \geqslant 1 \text { implies } \alpha(f u) \geqslant 1
$$

In 2015, Khojasteh et al. [17] introduced the class of simulation functions. Further, Argoubi et al. [5] modified the definition of simulation functions and defined as follows.

Definition 2.4 ([5]). A simulation function is a function $\zeta:[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ that satisfies the following conditions:
(1) $\zeta(q, p)<p-q$ for all $p, q>0$;
(2) if $\left\{q_{n}\right\}$ and $\left\{p_{n}\right\}$ are sequences in $(0,+\infty)$ such that $\lim _{n \rightarrow+\infty} q_{n}=\lim _{n \rightarrow+\infty} p_{n}=l \in(0,+\infty)$, then

$$
\lim _{n \rightarrow+\infty} \sup \zeta\left(q_{n}, p_{n}\right)<0
$$

It is to be noted that any simulation function in the sense of Khojasteh et al. [17] is also a simulation function in the sense of Argoubi et al. [5]. The following function is a simulation function in the sense of Argoubi et al. [5]

Example 2.5 ([5]). Define a function $\zeta:[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ by

$$
\zeta(q, p)= \begin{cases}1, & \text { if }(p, q)=(0,0) \\ \lambda p-q, & \text { otherwise }\end{cases}
$$

where $\lambda \in(0,1)$. Then ζ is a simulation function in the sense of Argoubi et al. [5].
Theorem 2.6 ([17]). Let (W, b) be a metric space and $\mathrm{T}: \mathrm{W} \rightarrow \mathrm{W}$ be a Z-contraction with respect to a simulation function ζ; that is

$$
\zeta(\mathrm{b}(\mathrm{Tu}, \mathrm{~T} v), \mathrm{b}(\mathrm{u}, v)) \geqslant 0, \text { for all } u, v \in \mathrm{~W}
$$

Then T has a unique fixed point.

It is worth mentioning that the Banach contraction is an example of Z-contraction by defining ζ : $[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ via

$$
\zeta(q, p)=\gamma p-q, \text { for all } p, q \in[0, \infty)
$$

where $\gamma \in[0,1)$.
Following lemma was proved by Qawagnesh [20] which is valid for complete b-metric space also.
Lemma 2.7 ([20]). Let $A: W \rightarrow W$ be a cyclic (α, β)-admissible mapping. Assume that there exist $u_{0}, u_{1} \in W$ such that

$$
\alpha\left(u_{0}\right) \geqslant 1 \text { implies } \beta\left(u_{1}\right) \geqslant 1
$$

and

$$
\beta\left(u_{0}\right) \geqslant 1 \text { implies } \alpha\left(u_{1}\right) \geqslant 1
$$

Define a sequence $\left\{u_{n}\right\}$ by $u_{n+1}=A u_{n}$. Then

$$
\alpha\left(u_{n}\right) \geqslant 1 \text { implies } \beta\left(u_{m}\right) \geqslant 1
$$

and

$$
\beta\left(u_{n}\right) \geqslant 1 \text { implies } \alpha\left(u_{m}\right) \geqslant 1
$$

for all $\mathrm{m}, \mathrm{n} \in \mathbb{N}$ with $\mathrm{n}<\mathrm{m}$.

3. Main result

We start our result with the following definitions.
Definition 3.1. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be a mapping and $\alpha, \beta: \mathbb{R} \rightarrow[0,+\infty)$ be two functions. Then A is said to be a generalized (α, β, Z)-rational contraction mapping if A satisfies the following conditions:
(1) A is cyclic (α, β)-admissible;
(2) there exists simulation function $\zeta \in Z$ such that

$$
\alpha(u) \beta(v) \geqslant 1 \text { implies } \zeta(b(A u, A v), M(u, v)) \geqslant 0
$$

holds for all $u, v \in W$, where

$$
\begin{aligned}
M(u, v)=\max \{ & b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]} \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

Theorem 3.2. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be a mapping and $\alpha, \beta: W \rightarrow$ $[0,+\infty)$ be two functions. Suppose the following conditions hold:
(1) A is a generalized (α, β, Z)-rational contraction mapping;
(2) there exists an element $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) A is continuous.

Then, A has a fixed point $u^{*} \in W$ such that $A u^{*}=u^{*}$.
Proof. Assume that there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$. We divide our proof into the following steps.
Step 1: Define a sequence $\left\{u_{n}\right\}$ in W such that $u_{n+1}=A u_{n}$ for all $n \in \mathbb{N} \cup\{0\}$. If $u_{n}=u_{n+1}$ for all $n \in \mathbb{N} \cup\{0\}$, then A has a fixed point and proof is finished. Hence, we assume that $u_{n} \neq u_{n+1}$ for some $n \in \mathbb{N} \cup\{0\}$; that is, $b\left(u_{n}, u_{n+1}\right) \neq 0$ for all $n \in \mathbb{N} \cup\{0\}$. Since A is a cyclic (α, β)-admissible mapping, we
have

$$
\alpha\left(u_{0}\right) \geqslant 1 \text { implies } \beta\left(u_{1}\right)=\beta\left(A u_{0}\right) \geqslant 1 \text { implies } \alpha\left(u_{2}\right)=\alpha\left(A u_{1}\right) \geqslant 1
$$

and

$$
\beta\left(u_{0}\right) \geqslant 1 \text { implies } \alpha\left(u_{1}\right)=\alpha\left(A u_{0}\right) \geqslant 1 \text { implies } \beta\left(u_{2}\right)=\beta\left(A u_{1}\right) \geqslant 1
$$

then by continuing the above process, we have

$$
\alpha\left(u_{n}\right) \geqslant 1 \text { and } \beta\left(u_{n}\right) \geqslant 1 \text { for all } n \in \mathbb{N} \cup\{0\} .
$$

Thus, $\alpha\left(u_{n}\right) \beta\left(u_{n+1}\right) \geqslant 1$, for all $n \in \mathbb{N} \cup\{0\}$. Therefore, we get

$$
\zeta\left(b\left(A u_{n}, A u_{n+1}\right), M\left(u_{n}, u_{n+1}\right)\right) \geqslant 0
$$

for all $n \in \mathbb{N}$, where

$$
\begin{aligned}
M\left(u_{n}, u_{n+1}\right)= & \max \left\{b\left(u_{n}, u_{n+1}\right), b\left(u_{n}, A u_{n}\right), b\left(u_{n+1}, A u_{n+1}\right),\right. \\
& \frac{b\left(u_{n}, A u_{n}\right) b\left(u_{n}, A u_{n+1}\right)+b\left(u_{n+1}, A u_{n+1}\right) b\left(u_{n+1}, A u_{n}\right)}{1+s\left[b\left(u_{n}, A u_{n}\right)+b\left(u_{n+1}, A u_{n+1}\right)\right]} \\
& \left.\frac{b\left(u_{n}, A u_{n}\right) b\left(u_{n}, A u_{n+1}\right)+b\left(u_{n+1}, A u_{n+1}\right) b\left(u_{n+1}, A u_{n}\right)}{1+b\left(u_{n}, A u_{n+1}\right)+b\left(u_{n+1}, A u_{n}\right)}\right\} \\
= & \max \left\{b\left(u_{n}, u_{n+1}\right), b\left(u_{n}, u_{n+1}\right), b\left(u_{n+1}, u_{n+2}\right),\right. \\
& \frac{b\left(u_{n}, u_{n+1}\right) b\left(u_{n}, u_{n+2}\right)+b\left(u_{n+1}, u_{n+2}\right) b\left(u_{n+1}, u_{n+1}\right)}{1+s\left[b\left(u_{n}, u_{n+1}\right)+b\left(u_{n+1}, u_{n+2}\right)\right]} \\
& \left.\frac{b\left(u_{n}, u_{n+1}\right) b\left(u_{n}, u_{n+2}\right)+b\left(u_{n+1}, u_{n+2}\right) b\left(u_{n+1}, u_{n+1}\right)}{1+b\left(u_{n}, u_{n+2}\right)+b\left(u_{n+1}, u_{n+1}\right)}\right\} \\
= & \max \left\{b\left(u_{n}, u_{n+1}\right), b\left(u_{n}, u_{n+1}\right), b\left(u_{n+1}, u_{n+2}\right),\right. \\
& \frac{b\left(u_{n}, u_{n+1}\right) s\left[b\left(u_{n}, u_{n+1}\right)+b\left(u_{n+1}, u_{n+2}\right)\right]}{1+s\left[b\left(u_{n}, u_{n+1}\right)+b\left(u_{n+1}, u_{n+2}\right)\right]}, \\
& \left.\frac{b\left(u_{n}, u_{n+1}\right) s\left[b\left(u_{n}, u_{n+1}\right)+b\left(u_{n+1}, u_{n+2}\right)\right]}{1+s\left[b\left(u_{n}, u_{n+1}\right)+b\left(u_{n+1}, u_{n+2}\right)\right]}\right\} \\
= & \max \left\{b\left(u_{n}, u_{n+1}\right), b\left(u_{n+1}, u_{n+2}\right)\right\} .
\end{aligned}
$$

It follows that

$$
\zeta\left(b\left(u_{n+1}, u_{n+2}\right), \max \left\{b\left(u_{n}, u_{n+1}\right), b\left(u_{n+1}, u_{n+2}\right)\right\}\right) \geqslant 0
$$

Condition (1) of Definition 2.4 implies that

$$
\begin{aligned}
0 & \leqslant \zeta\left(b\left(u_{n+1}, u_{n+2}\right), \max \left\{b\left(u_{n}, u_{n+1}\right), b\left(u_{n+1}, u_{n+2}\right)\right\}\right) \\
& <\max \left\{b\left(u_{n}, u_{n+1}\right), b\left(u_{n+1}, u_{n+2}\right)\right\}-b\left(u_{n+1}, u_{n+2}\right) .
\end{aligned}
$$

Thus, we conclude that

$$
b\left(u_{n+1}, u_{n+2}\right)<\max \left\{b\left(u_{n}, u_{n+1}\right), b\left(u_{n+1}, u_{n+2}\right)\right\}
$$

for all $n \geqslant 1$. The last inequality implies that

$$
b\left(u_{n+1}, u_{n+2}\right)<b\left(u_{n}, u_{n+1}\right), \text { for all } n \geqslant 1
$$

It follows that the sequence $\left\{b\left(u_{n}, u_{n+1}\right)\right\}$ is non increasing. Therefore, there exists $r \geqslant 0$ such that

$$
\lim _{n \rightarrow+\infty} b\left(u_{n}, u_{n+1}\right)=r
$$

Note that if $r \neq 0$; that is $r>0$, then by condition (2) of Definition 2.4, we have

$$
0 \leqslant \lim _{n \rightarrow+\infty} \sup \zeta\left(b\left(u_{n}, u_{n+1}\right), b\left(u_{n+1}, u_{n+2}\right)\right)<0
$$

which is a contradiction. This implies that $r=0$, that is

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} b\left(u_{n}, u_{n+1}\right)=0 \tag{3.1}
\end{equation*}
$$

Step 2: Now, we prove that $\left\{u_{n}\right\}$ is a Cauchy sequence. Suppose to the contrary that $\left\{u_{n}\right\}$ is not a Cauchy sequence. Then there exists $\epsilon>0$ and two subsequences $\left\{u_{m(k)}\right\}$ and $\left\{u_{n(k)}\right\}$ of $\left\{u_{n}\right\}$ with $m(k)>n(k)>k$ and $m(k)$ is the smallest index in \mathbb{N} such that

$$
\mathrm{b}\left(\mathrm{u}_{\mathrm{n}(\mathrm{k})}, \mathrm{u}_{\mathrm{m}(\mathrm{k})}\right) \geqslant \epsilon
$$

so,

$$
\mathrm{b}\left(\mathrm{u}_{\mathrm{n}(\mathrm{k})}, \mathrm{u}_{\mathfrak{m}(\mathrm{k})-1}\right)<\epsilon
$$

Triangular inequality implies that

$$
\epsilon \leqslant b\left(u_{n(k)}, u_{m(k)}\right) \leqslant s\left[b\left(u_{n(k)}, u_{m(k)-1}\right)+b\left(u_{m(k)-1}, u_{m(k)}\right)\right]<s\left[\epsilon+b\left(u_{m(k)-1}, u_{m(k)}\right)\right]
$$

Taking $k \rightarrow+\infty$ in the above inequality and using (6), we get

$$
\begin{equation*}
\epsilon \leqslant \lim _{k \rightarrow+\infty} b\left(u_{n(k)}, u_{m(k)}\right)<s \epsilon \tag{3.2}
\end{equation*}
$$

From triangular inequality, we have

$$
\begin{equation*}
b\left(u_{n(k)}, u_{m(k)}\right) \leqslant s\left[b\left(u_{n(k)}, u_{n(k)+1}\right)+b\left(u_{n(k)+1}, u_{m(k)}\right)\right] \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
b\left(u_{n(k)+1}, u_{m(k)}\right) \leqslant s\left[b\left(u_{n(k)+1}, u_{n(k)}\right)+b\left(u_{n(k)}, u_{m(k)}\right)\right] . \tag{3.4}
\end{equation*}
$$

By taking the limit as $k \rightarrow+\infty$ in (3.3) and applying (3.1) and (3.2), we get

$$
\epsilon \leqslant \lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)}, u_{m(k)}\right) \leqslant s \lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)+1}, u_{m(k)}\right)
$$

Again, by taking the upper limit as $k \rightarrow+\infty$ in (3.4), we get

$$
\begin{align*}
\lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)+1}, u_{m(k)}\right) & \leqslant s\left(\lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)}, u_{m(k)}\right)\right) \leqslant s . s \epsilon=s^{2} \epsilon, \\
\frac{\epsilon}{s} & \leqslant \lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)+1}, u_{m(k)}\right) \leqslant s^{2} \epsilon \tag{3.5}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\frac{\epsilon}{s} \leqslant \lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)}, u_{m(k)+1}\right) \leqslant s^{2} \epsilon \tag{3.6}
\end{equation*}
$$

By triangular inequality, we have

$$
\begin{equation*}
b\left(u_{n(k)+1}, u_{m(k)}\right) \leqslant s\left[b\left(u_{n(k)+1}, u_{m(k)+1}\right)+b\left(u_{m(k)+1}, u_{m(k)}\right)\right] . \tag{3.7}
\end{equation*}
$$

On letting $k \rightarrow+\infty$ in (3.7) and using inequalities (3.1) and (3.5), we get

$$
\begin{equation*}
\frac{\epsilon}{s^{2}} \leqslant \lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)+1}, u_{m(k)+1}\right) \tag{3.8}
\end{equation*}
$$

Following the above process, we find

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)+1}, u_{m(k)+1}\right) \leqslant s^{3} \epsilon \tag{3.9}
\end{equation*}
$$

From (3.8) and (3.9), we get

$$
\frac{\epsilon}{s^{2}} \leqslant \lim _{k \rightarrow+\infty} \sup b\left(u_{n(k)+1}, u_{m(k)+1}\right) \leqslant s^{3} \epsilon
$$

Since $\alpha\left(u_{0}\right)>1$ and $\beta\left(u_{0}\right)>1$ by Lemma 2.7, we conclude that

$$
\alpha\left(u_{n(k)}\right) \beta\left(u_{m(k)}\right) \geqslant 1
$$

Since A is generalized (α, β, Z)-rational contraction, we have

$$
\zeta\left(b\left(A u_{n(k)}, A u_{m(k)}\right), M\left(u_{n(k)}, u_{m(k)}\right)\right) \geqslant 0
$$

for all $u, v \in W$, where

$$
\begin{aligned}
M\left(u_{n(k)}, u_{m(k)}\right)= & \max \left\{b\left(u_{m(k)}, u_{n(k)}\right), b\left(u_{n(k)}, A u_{n(k)}\right), b\left(u_{m(k)}, A u_{m(k)}\right),\right. \\
& \frac{b\left(u_{n(k)}, A u_{n(k)}\right) b\left(u_{n(k)}, A u_{m(k)}\right)+b\left(u_{m(k)}, A u_{m(k)}\right) b\left(u_{m(k)}, A u_{n(k)}\right)}{1+s\left[b\left(u_{n(k)}, A u_{n(k)}\right)+b\left(u_{m(k)}, A u_{m(k)}\right)\right]} \\
& \left.\frac{b\left(u_{n(k)}, A u_{n(k)}\right) b\left(u_{n(k)}, A u_{m(k)}\right)+b\left(u_{m(k)}, A u_{m(k)}\right) b\left(u_{m(k)}, A u_{n(k)}\right)}{1+b\left(u_{n(k)}, A u_{m(k)}\right)+b\left(u_{m(k)}, A u_{n(k)}\right)}\right\} \\
= & \max \left\{b\left(u_{m(k)}, u_{n(k)}\right), b\left(u_{n(k)}, u_{n(k)+1}\right),\left(u_{m(k),}, u_{m(k)+1}\right),\right. \\
& \frac{b\left(u_{n(k)}, u_{n(k)+1}\right) b\left(u_{n(k)}, u_{m(k)+1}\right)+b\left(u_{m(k)}, u_{m(k)+1}\right) b\left(u_{m(k)}, u_{n(k)+1}\right)}{1+s\left[b\left(u_{n(k)}, u_{n(k)+1}\right)+b\left(u_{m(k)}, u_{m(k)+1}\right)\right]} \\
& \left.\frac{b\left(u_{n(k)}, u_{n(k)+1}\right) b\left(u_{n(k)}, u_{m(k)+1}\right)+b\left(u_{m(k)}, u_{m(k)+1}\right) b\left(u_{m(k)}, u_{n(k)+1}\right)}{1+b\left(u_{n(k)}, u_{m(k)+1}\right)+b\left(u_{m(k)}, u_{n(k)+1}\right)}\right\} .
\end{aligned}
$$

Taking the limit as $k \rightarrow+\infty$ and using (3.1), (3.2), (3.5), and (3.6), we get

$$
\epsilon=\max \{\epsilon, 0,0,0,0\} \leqslant \lim _{k \rightarrow+\infty} \sup M\left(u_{n(k)}, u_{m(k)}\right) \leqslant \max \{s \epsilon, 0,0,0,0\}=s \epsilon
$$

Note that condition (2) of Definition 2.4, implies that

$$
0 \leqslant \lim \sup \zeta\left(b\left(A u_{n(k)}, A u_{m(k)}\right), M\left(u_{n(k)}, u_{m(k)}\right)\right)<0
$$

which is a contradiction. Thus $\left\{u_{n}\right\}$ is a Cauchy sequence.
Step 3: Finally in this step we prove that A has a fixed point. Since $\left\{u_{n}\right\}$ is a Cauchy sequence in the complete b-metric space W, there exists $u^{*} \in W$ such that $u_{n} \rightarrow u^{*}$. The continuity of A implies that $A u_{2 n} \rightarrow A u^{*}$. Since $u_{2 n+1}=A u_{2 n}$ and $u_{2 n+1} \rightarrow u^{*}$, by uniqueness of limit, we have

$$
A u^{*}=u^{*}
$$

So, u^{*} is a fixed point of A. This concludes the proof.

Note that the continuity of the mapping A in Theorem 3.2 can be dropped if we replace condition (3) by a suitable one as in the following result.

Theorem 3.3. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be a mapping and $\alpha, \beta: W \rightarrow$ $[0,+\infty)$ be two functions. Suppose the following conditions hold:
(1) A is a generalized (α, β, Z)-rational contraction mapping;
(2) there exists an element $\mathfrak{u}_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) if $\left\{u_{n}\right\}$ is a sequence in W converges to $u \in W$ with $\alpha\left(u_{n}\right) \geqslant 1\left(\right.$ or $\left.\beta\left(u_{n}\right) \geqslant 1\right)$ for all $n \in \mathbb{N}$, then $\beta(u) \geqslant 1($ or $\alpha(u) \geqslant 1)$ for all $n \in \mathbb{N}$.
Then, A has a fixed point.
Proof. Following the same steps as in the proof of Theorem 3.2 we construct a sequence $\left\{u_{n}\right\}$ in W by $u_{n+1}=A u_{n}$ for all $n \in \mathbb{N}$ such that $u_{n} \rightarrow u^{*} \in W, \alpha\left(u_{n}\right) \geqslant 1, \beta\left(u_{n}\right) \geqslant 1$ for all $n \in \mathbb{N}$. By condition (3), we have $\alpha\left(u^{*}\right) \geqslant 1$ and $\beta\left(u^{*}\right) \geqslant 1$. So, $\alpha\left(u^{*}\right) \beta\left(u^{*}\right) \geqslant 1$.

Claim: $A u^{*}=u^{*}$. Suppose not; that is $A u^{*} \neq u^{*}$. Therefore $b\left(A u^{*}, u^{*}\right) \neq 0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b\left(u_{n+1}, A u^{*}\right) \neq 0 \tag{3.10}
\end{equation*}
$$

Since A is a generalized (α, β, Z)-rational contraction mapping, we have

$$
\begin{equation*}
\zeta\left(b\left(A u_{n}, A u^{*}\right), M\left(u_{n}, u^{*}\right)\right)=\zeta\left(b\left(u_{n+1}, A u^{*}\right), M\left(u_{n}, u^{*}\right)\right) \geqslant 0 \tag{3.11}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Now,

$$
\begin{align*}
M\left(u_{n}, u^{*}\right)= & \max \left\{b\left(u_{n}, u^{*}\right), b\left(u_{n}, A u_{n}\right), b\left(u^{*}, A u^{*}\right),\right. \\
& \frac{b\left(u_{n}, A u_{n}\right) b\left(u_{n}, A u^{*}\right)+b\left(u^{*}, A u^{*}\right) b\left(u^{*}, A u_{n}\right)}{1+s\left[b\left(u_{n}, A u_{n}\right)+b\left(u^{*}, A u^{*}\right)\right]}, \\
& \left.\frac{b\left(u_{n}, A u_{n}\right) b\left(u_{n}, A u^{*}\right)+b\left(u^{*}, A u^{*}\right) b\left(u^{*}, A u_{n}\right)}{1+b\left(u_{n}, A u^{*}\right)+b\left(u^{*}, A u_{n}\right)}\right\} \\
= & \max \left\{b\left(u_{n}, u^{*}\right), b\left(u_{n}, u_{n+1}\right), b\left(u^{*}, A u^{*}\right),\right. \tag{3.12}\\
& \frac{b\left(u_{n}, u_{n+1}\right) b\left(u_{n}, A u^{*}\right)+b\left(u^{*}, A u^{*}\right) b\left(u^{*}, u_{n+1}\right)}{1+s\left[b\left(u_{n}, u_{n+1}\right)+b\left(u^{*}, A u^{*}\right)\right]}, \\
& \left.\frac{b\left(u_{n}, u_{n+1}\right) b\left(u_{n}, A u^{*}\right)+b\left(u^{*}, A u^{*}\right) b\left(u^{*}, u_{n+1}\right)}{1+b\left(u_{n}, A u^{*}\right)+b\left(u^{*}, u_{n+1}\right)}\right\} .
\end{align*}
$$

Letting $n \rightarrow+\infty$ in (3.12), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} M\left(u_{n}, u^{*}\right)=b\left(u^{*}, A u^{*}\right) \neq 0 \tag{3.13}
\end{equation*}
$$

By using (3.10), (3.11), and (3.13), then condition (2) of Definition 2.4 implies that

$$
0 \leqslant \lim _{n \rightarrow+\infty} \sup \zeta\left(b\left(u_{n+1}, A u^{*}\right), M\left(u_{n}, u^{*}\right)\right)<0
$$

which is a contradiction. So $A u^{*}=u^{*}$. Thus, u^{*} is a fixed point of A. This concludes the proof.
Now, we introduce an example to show that if A satisfies all hypothesis of Theorems 3.2 or 3.3, then fixed point of A is not necessarily to be unique.

Example 3.4. Let $\mathrm{W}=[0,1]$ and $s=2$. Define $\mathrm{b}: \mathrm{W} \times \mathrm{W} \rightarrow \mathbb{R}$ by $\mathrm{b}(\mathrm{u}, v)=|\mathfrak{u}-v|$. Also define the mapping $A: W \rightarrow W$ by $A u=u^{2}$. Define the function $\alpha, \beta: W \rightarrow \mathbb{R}$ by

$$
\alpha(u)=\beta(u)= \begin{cases}1, & \text { if } \mathfrak{u}=0 \\ 0, & \text { otherwise }\end{cases}
$$

Define $\zeta:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ by

$$
\zeta:(q, p)=\frac{p}{p+1}-q .
$$

Then, we have the following:
(1) A is continuous;
(2) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) A is cyclic (α, β)-admissible mapping;
(4) for any $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, then

$$
\zeta(b(A u, A v), M(u, v)) \geqslant 0
$$

where

$$
\begin{aligned}
M(u, v)= & \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]},\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

(5) if $\left\{\mathfrak{u}_{n}\right\}$ is a sequence in W converges to $u \in W$ with $\alpha\left(u_{n}\right) \geqslant 1$ for all $n \in \mathbb{N}$, then $\beta(u) \geqslant 1$.

Proof. Proof of (1) and (2) are clear. To prove (3), let $u \in W$. If $\alpha(u) \geqslant 1$ then $u=0$. So, $A(u)=A(0)=0$ and $\beta(A u)=\beta(0)=1 \geqslant 1$. If $\beta(u) \geqslant 1$, then $u=0$. So, $A(u)=A(0)=0$ and $\alpha(A u)=\alpha(0)=1 \geqslant 1$. So, A is cyclic (α, β)-admissible mapping. To prove (4), let $u, v \in W$ with $\alpha(u) \beta(u) \geqslant 1$. Then $u=v=0$. So, $A(u)=A(v)=0$. Therefore, we have

$$
\begin{aligned}
M(u, v)= & \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]},\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\} \\
= & \max \{b(0,0), b(0,0), b(0,0), b(0,0), b(0,0)\}=0 .
\end{aligned}
$$

So,

$$
\zeta(\mathrm{b}(\mathrm{Au}, \mathrm{~A} v), \mathrm{M}(\mathrm{u}, v))=\zeta(0,0)=\frac{0}{1+0}-0=0 \geqslant 0 .
$$

To prove (5), let $\left\{u_{n}\right\}$ is a sequence in W such that $u_{n} \rightarrow u$, with $\alpha\left(u_{n}\right) \geqslant 1$. Then $u_{n}=0$ for all $n \in \mathbb{N}$. So $u=0$. Hence $\beta(u)=\beta(0)=1 \geqslant 1$. Note that A satisfies all the conditions of Theorem 3.2 and 3.3. Hence, 0,1 are fixed points of A. So, the fixed points of A is not unique.

Next, we gave some corollaries.
Corollary 3.5. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be a mapping and $\alpha: W \times W \rightarrow$ $[0,+\infty)$ be a function. Suppose that the following conditions hold:
(1) there exists $\zeta \in Z$ such that if $u, v \in W$ with $\alpha(u, v) \geqslant 1$, then $\zeta(b(A u, A v), M(u, v)) \geqslant 0$, where

$$
\begin{aligned}
M(u, v)= & \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

(2) A is α-admissible;
(3) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}, A u_{0}\right) \geqslant 1$;
(4) A is continuous.

Then A has a fixed point.
Proof. It follows from Theorem 3.2 by taking the function $\beta: W \times W \rightarrow[0,+\infty)$ to be α.
Corollary 3.6. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be a mapping and $\alpha: W \times W \rightarrow$ $[0,+\infty)$ be a function. Suppose that the following conditions hold:
(1) there exists $\zeta \in \mathrm{Z}$ such that if $u, v \in W$ with $\alpha(u, v) \geqslant 1$, then $\zeta(b(A u, A v), M(u, v)) \geqslant 0$, where

$$
\begin{aligned}
M(u, v)= & \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

(2) A is α-admissible;
(3) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}, A u_{0}\right) \geqslant 1$;
(4) if $\left\{u_{n}\right\}$ is a sequence in W that converges to $u \in W$ with $\alpha\left(u_{n}, u_{n+1}\right) \geqslant 1$ for all $n \in \mathbb{N}$ and $u_{n} \rightarrow u \in W$ as $n \rightarrow+\infty$, then there exists a subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ such that $\alpha\left(u_{n_{k}}, u\right) \geqslant 1$ for all k.
Then A has a fixed point.
Proof. It follows from Theorem 3.3 by taking the function $\beta: W \times W \rightarrow[0,+\infty)$ to be α.
Corollary 3.7. Let (W, b) be a complete b -metric space with $\mathrm{s} \geqslant 1, \mathrm{~A}: \mathrm{W} \rightarrow \mathrm{W}$ be a mapping and $\alpha, \beta: W \rightarrow$ $[0,+\infty)$ be two functions. Assume the following conditions hold:
(1) A is (α, β)-cyclic;
(2) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) there exists $k \in[0,1)$ such that if $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, then

$$
\begin{aligned}
b(A u, A v) \leqslant & k \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

(4) A is continuous.

Then A has a fixed point $u^{*} \in W$.
Proof. Suppose there exists $k \in[0,1)$ such that condition (2) holds. Define the simulation function ζ : $[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ by $\zeta(q, p)=k p-q$. Note that if $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, then

$$
\begin{aligned}
& \zeta\left(b(A u, A v), \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right.\right. \\
& \left.\left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}\right) \geqslant 0
\end{aligned}
$$

The last inequality together with condition (1) ensure that A is generalized (α, β, Z)-rational contraction. Thus, A satisfies all conditions of Theorem 3.2 and hence A has a fixed point. The continuity of A in Corollary 3.7 can be replaced by a new suitable condition.

Corollary 3.8. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be mapping and $\alpha, \beta: W \rightarrow$ $[0,+\infty)$ be two functions. Assume the following conditions hold:
(1) A is (α, β)-cyclic;
(2) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) there exists $k \in[0,1)$ such that if $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, then

$$
\begin{aligned}
\mathrm{b}(A u, A v) \leqslant & k \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

(4) if $\left\{u_{n}\right\}$ is a sequence in W converges to $u \in W$ with $\alpha\left(u_{n}\right) \geqslant 1\left(\right.$ or $\left.\beta\left(u_{n}\right) \geqslant 1\right)$ for all $n \in \mathbb{N}$, then $\beta(u) \geqslant 1($ or $\alpha(u) \geqslant 1)$ for all $n \in \mathbb{N}$.
Then A has a fixed point $u^{*} \in W$.
Proof. Follows from Theorem 3.3 by following the same technique of the proof of Corollary 3.7.
Corollary 3.9. Let (W, b) be a complete b metric space with $\mathrm{s} \geqslant 1, A: W \rightarrow W$ be a mapping and α, β : $[0,+\infty) \rightarrow \mathbb{R}$ be two functions. Assume the following conditions are satisfied:
(1) A is (α, β)-cyclic;
(2) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) there exists a lower semi-continuous function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with $\phi(q)>0$ for all $q>0$ and $\phi(0)=0$ such that if $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, then

$$
\begin{aligned}
b(A u, A v) \leqslant & \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\} \\
& -\phi\left(\operatorname { m a x } \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right.\right. \\
& \left.\left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}\right)
\end{aligned}
$$

(4) A is continuous.

Then A has a fixed point $u^{*} \in W$.
Proof. Follows from Theorem 3.2 by defining $\zeta:[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ i.e. via $\zeta(q, p)=p-\phi(p)-q$ and following the same technique as in Corollary 3.7.

Corollary 3.10. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be a mapping and α, β : $[0,+\infty) \rightarrow \mathbb{R}$ be two functions. Assume the following conditions are satisfied:
(1) A is (α, β)-cyclic;
(2) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) there exists a lower semi-continuous function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with $\phi(q)>0$ for all $q>0$ and $\phi(0)=0$ such that if $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, then

$$
\begin{aligned}
\mathrm{b}(A u, A v) \leqslant & \max \left\{\mathrm{b}(u, v), \mathrm{b}(u, A u), \mathrm{b}(v, A v), \frac{\mathrm{b}(u, A u) \mathrm{b}(u, A v)+\mathrm{b}(v, A v) \mathrm{b}(v, A u)}{1+\mathrm{s}[\mathrm{~b}(u, A u)+\mathrm{b}(v, A v)]}\right. \\
& \left.\frac{\mathrm{b}(u, A u) \mathrm{b}(u, A v)+\mathrm{b}(v, A v) \mathrm{b}(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\phi\left(\operatorname { m a x } \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right.\right. \\
& \left.\left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}\right)
\end{aligned}
$$

(4) if $\left\{u_{n}\right\}$ is a sequence in W converges to $u \in W$ with $\alpha\left(u_{n}\right) \geqslant 1\left(\right.$ or $\left.\beta\left(u_{n}\right) \geqslant 1\right)$ for all $n \in \mathbb{N}$, then $\beta(u) \geqslant 1($ or $\alpha(u) \geqslant 1)$ for all $n \in \mathbb{N}$.
Then A has a fixed point $u^{*} \in W$.
Proof. It follows from Theorem 3.3 by defining $\zeta:[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ via $\zeta(q, p)=p-\phi(p)-q$ and following the same technique as in Corollary 3.7.

Corollary 3.11. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be a mapping and α, β : $[0,+\infty) \rightarrow \mathbb{R}$ be two functions. Assume the following conditions are satisfied:
(1) A is (α, β)-cyclic;
(2) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) there exists a lower semi-continuous function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with $\phi(\mathrm{q})<\mathrm{q}$ for all $\mathrm{q}>0$ and $\phi(0)=0$ such that if $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, then

$$
\begin{aligned}
\mathrm{b}(A u, A v) & \leqslant \phi \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]},\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

(4) A is continuous.

Then A has a fixed point $u^{*} \in W$.
Proof. It follows from Theorem 3.2 by defining the simulation function $\zeta:[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ via $\zeta(q, p)=\phi(p)-q$ and following the same technique as in Corollary 3.7.

Corollary 3.12. Let (W, b) be a complete b-metric space with $s \geqslant 1, A: W \rightarrow W$ be a mapping and α, β : $[0,+\infty) \rightarrow \mathbb{R}$ be two functions. Assume the following conditions are satisfied:
(1) A is (α, β)-cyclic;
(2) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(3) there exists a lower semi-continuous function $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$with $\phi(\mathrm{q})<\mathrm{q}$ for all $\mathrm{q}>0$ and $\phi(0)=0$ such that if $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, then

$$
\begin{aligned}
\mathrm{b}(A u, A v) \leqslant & \phi \max \left\{\mathrm{b}(\mathrm{u}, v), \mathrm{b}(\mathrm{u}, A u), \mathrm{b}(v, A v), \frac{\mathrm{b}(\mathrm{u}, A \mathrm{u}) \mathrm{b}(\mathrm{u}, A v)+\mathrm{b}(v, A v) \mathrm{b}(v, A u)}{1+\mathrm{s}[\mathrm{~b}(u, A u)+\mathrm{b}(v, A v)]},\right. \\
& \left.\frac{\mathrm{b}(u, A u) \mathrm{u}(u, A v)+\mathrm{b}(v, A v) \mathrm{b}(v, A u)}{1+\mathrm{b}(u, A v)+\mathrm{b}(v, A u)}\right\}
\end{aligned}
$$

(4) if $\left\{u_{n}\right\}$ is a sequence in W converges to $u \in W$ with $\alpha\left(u_{n}\right) \geqslant 1\left(\right.$ or $\left.\beta\left(u_{n}\right) \geqslant 1\right)$ for all $n \in \mathbb{N}$, then $\beta(u) \geqslant 1($ or $\alpha(u) \geqslant 1)$ for all $n \in \mathbb{N}$.

Then A has a fixed point $u^{*} \in W$.
Proof. It follows from Theorem 3.3 by defining the simulation function $\zeta:[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ via $\zeta(q, p)=\phi(p)-q$ and following the same technique as in Corollary 3.7.

Example 3.13. Let $\mathrm{W}=[-1,1]$ and $\mathrm{s}=2$. Define $\mathrm{b}: \mathrm{W} \times \mathrm{W} \rightarrow \mathbb{R}$ by $\mathfrak{b}(u, v)=|u-v|$. Also, define the mapping $A: W \rightarrow W$, two functions $\alpha, \beta: W \rightarrow[0,+\infty)$ and the function $\zeta:[0,+\infty) \times[0,+\infty) \rightarrow \mathbb{R}$ as follows:

$$
\begin{aligned}
A u & = \begin{cases}\frac{u}{2}, & \text { if } u \in[0,1], \\
\frac{1}{2}, & \text { otherwise, }\end{cases} \\
\beta(u) & = \begin{cases}\frac{u+5}{3}, & \text { if } u \in[0,1], \\
0, & \text { otherwise, }\end{cases} \\
\hline 0, & \text { otherwise, }
\end{aligned}, \begin{array}{ll}
\frac{u+3}{2}, & \text { if } u[0,1],
\end{array}
$$

Then, we have the following:
(1) (W, b) is a complete b -metric space;
(2) ζ is a simulation function;
(3) there exists $u_{0} \in W$ such that $\alpha\left(u_{0}\right) \geqslant 1$ and $\beta\left(u_{0}\right) \geqslant 1$;
(4) A is continuous;
(5) A is cyclic (α, β)-admissible mapping;
(6) for $u, v \in W$ with $\alpha(u) \beta(v) \geqslant 1$, we have $\zeta(b(A u, A v), M(u, v)) \geqslant 0$, where

$$
\begin{aligned}
M(u, v)= & \max \left\{b(u, v), b(u, A u), b(v, A v), \frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+s[b(u, A u)+b(v, A v)]}\right. \\
& \left.\frac{b(u, A u) b(u, A v)+b(v, A v) b(v, A u)}{1+b(u, A v)+b(v, A u)}\right\}
\end{aligned}
$$

Proof. The proof of (1), (2), (3), (4) are clear. To prove (5), let $u \in W$. If $\alpha(u) \geqslant 1$, then $u \in[0,1]$. So,

$$
\beta(A u)=\beta\left(\frac{u}{2}\right)=\frac{u+10}{6} \geqslant 1
$$

If $\beta(u) \geqslant 1$, then $u \in[0,1]$. So,

$$
\alpha(A u)=\alpha\left(\frac{u}{2}\right)=\frac{u+6}{4} \geqslant 1
$$

So, A is cyclic (α, β)-admissible. To prove (6), let $u, v \in W$ with $\alpha(u) \beta(u) \geqslant 1$. Then $u, v \in[0,1]$, therefore, we have

$$
\begin{aligned}
\zeta(b(A u, A v), M(u, v)) & =\frac{M(u, v)}{1+M(u, v)}-b(A u, A v) \\
& =\frac{M(u, v)}{1+M(u, v)}-\left|\frac{1}{2} u-\frac{1}{2} v\right| \\
& \geqslant \frac{b(u, v)}{1+b(u, v)}-\left|\frac{1}{2} u-\frac{1}{2} v\right| \\
& =\frac{|u-v|}{1+|u-v|}-\left|\frac{1}{2} u-\frac{1}{2} v\right| \\
& =\frac{|u-v|-|u-v|^{2}}{2(1+|u-v|)} \geqslant 0
\end{aligned}
$$

So, A is a generalized (α, β, Z)-contraction. Example 3.13 satisfies all the conditions of Theorem 3.2. So, A has fixed point. Here 0 is the fixed point of A.

Acknowledgment

The first author, Thounaojam Stephen is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for providing financial support in the form of research fellowship.

References

[1] M. A. Alghamadi, S. Gulyaz-Ozyurt, E. Karapinar, A note on extended Z-contraction, Mathematics, 8 (2020), 15 pages. 1
[2] S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for $(\alpha, \beta)-(\psi, \phi)$-contractive mappings, Filomat, 28 (2014), 635-647. 1, 2.3
[3] O. Alqahtani, E. Karapinar, A bilateral contraction via simulation function, Filomat, 33 (2019), 4837-4843. 1
[4] R. Alsubaic, B. Alqahtani, E. Karapinar, Extended simulation functions via rational expressions, Mathematics, 8 (2020), 12 pages. 1
[5] H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082-1094. 1, 2, 2.4, 2.5
[6] H. Aydi, E. Karapinar, V. Rakočević, Nonunique fixed point theorems on b-metric spaces via simulation functions, Jordan J. Math. Stat., 12 (2019), 265-288. 1
[7] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26-37. 1, 2, 2.1, 2.2
[8] A. Chanda, L. K. Dey, S. Radenović, Simulation functions: A survey of recent results, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113 (2019), 2923-2957. 1
[9] S. Chandok, A. Chanda, L. K. Dey, M. Pavlović, S. Radenović, Simulation functions and Geraghty type results, Bol. Soc. Parana. Mat. (3), 39 (2021), 35-50. 1
[10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11. 1, 2.1, 2.2
[11] M. B. Devi, N. Priyobata, Y. Rohen, Some common best proximity point theorems for generalized rational $(\alpha-\phi)$ Geraghty proximal contractions, J. Math. Comput. Sci., 10 (2020), 713-727. 1
[12] E. Karapınar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343-2350.
[13] E. Karapinar, R. P. Agarwal, Interpolative Rus-Reich-Ćirić type contractions via simulation functions, An. Stiint. Univ. "Ovidius" Constanta Ser. Mat., 27 (2019), 137-152.
[14] E. Karapinar, F. Khojasteh, An approach to best proximity point results via simulation functions, J. Fixed Point Theory Appl., 19 (2017), 1983-1995. 1
[15] E. Karapinar, B. Samet, Generalized $\alpha-\psi$-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 17 pages. 1
[16] M. S. Khan, N. Priyobarta, Y. Rohen, Fixed points of generalized rational $\alpha_{*}-\psi-G e r a g h t y ~ c o n t r a c t i o n ~ f o r ~ m u l t i v a l u e d ~$ mappings, J. Adv. Math. Stud., 12 (2019), 156-169. 1
[17] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189-1194. 1, 2, 2.4, 2.6
[18] A. Kostić, V. Rakočević, S. Radenović, Best proximity points involving simulation functions with w_{0}-distance, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113 (2019), 715-727. 1
[19] H. Isik, D. Turkoglu, common fixed points for (ψ, α, β)-weakly contractive mappings in generalized metric spaces, Fixed Point Theory Appl., 2013 (2013), 6 pages.
[20] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, K. Abodayeh, H. Alsamir, Fixed point for mappings under contractive condition based on simulation functions and cyclic (α, β)-admissibility, J. Math. Anal., 9 (2018), 38-51. 2, 2.7
[21] A. F. Roldán-López-de Hierro, E. Karapınar, C. Roldán-López-de Hierro, J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015), 345-355. 1
[22] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for α - ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 21542165. 1
[23] L. Shanjit, Y. Rohen, Best proximity point theorems in b-metric space satisfying rational contractions, J. Nonlinear Anal. Appl., 2019 (2019), 12-22. 1
[24] G. Soleimani Rad, S. Radenović, D. Dolićanin-Dekić, A shorter and simple approach to study fixed point results via b-simulation functions, Iran. J. Math. Sci. Inform., 13 (2018), 97-102. 1

[^0]: *Thounaojam Stephen
 Email addresses: stepthounaojam@gmail. com (Thounaojam Stephen), ymnehor2008@yahoo.com (Yumnam Rohen)
 doi: 10.22436/jmcs.024.04.07
 Received: 2020-10-17 Revised: 2020-12-26 Accepted: 2021-03-18

