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Abstract

A number of iterative algorithms have been established to solve equilibrium problems, and one of the most effective
methods is a two-step extragradient method. The main objective of this study is to introduce a modified algorithm that is
constructed around two methods; Halpern-type method and extragradient method with a new size rule to solve the equilibrium
problems accompanied with pseudo-monotone and Lipschitz-type continuous bi-function in a real Hilbert space. Using certain
mild conditions on the bi-function, as well as certain conditions on the iterative control parameters, proves a strong convergence
theorem. The proposed algorithm uses a monotonic step size rule depending on local bi-function information. The main results
are also used to solve variational inequalities and fixed-point problems. The numerical behavior of the proposed algorithm on
different test problems is provided compared to other existing algorithms.

Keywords: Equilibrium problem, Lipschitz-type continuity, strong convergence, fixed point problem, variational inequality
problem.
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1. Introduction

Suppose that € is a non-empty convex and closed subset of a real Hilbert space H. Let f: H{ x H{ — R
be a bi-function satisfying f(y1,y1) = 0, for each y; € C. An equilibrium problem [7, 11] for f on the set C is
defined in the following way:

Find u* € C such that f(u*,y1) >0, Vy; € C. (EP)

Furthermore, a solution set of equilibrium problem over the set € is denoted by Jg, and u* is an any
arbitrary element of Jg,,.

The problem (EP) is a general mathematical problem in the sense that it carries together many math-
ematical problems, i.e., the fixed point problems, the vector and scalar minimization problems, the prob-
lems of variational inequalities, complementarity problems, problems of the saddle point, the Nash equi-
librium problems in non-cooperative games and the inverse optimization problems [7, 28]. The problem
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(EP) is also known as the well-known Ky Fan inequality due to the previous contribution [11]. Due to the
importance of this problem (EP) and its applications in both pure and applied sciences, many researchers
have been studied this topic in recent years [2, 6, 13, 30-36].

An important iterative method is introduced by Tran et al. [39] and iterative sequence {u,} has the
following form:

Ug € G,
Yn = argmin{Cf(un, y) + 1 lun —y||%,

yee (1-1)
Un11 = arg min{(f(yn, y) + 3 un —y|?,

yee

where 0 < ¢ < min{i, 2172} This method is also considered as the two-step extragradient method

in [39] due to the previous contribution of the Korpelevich [23] extragradient method to solve saddle
point problems. It is important to mention that previous established methods are operating by the use
of constant step size depends upon Lipschitz-type constants as well as provides a weak convergence
sequence [12, 15, 25, 39] and others in [1, 16-19, 21, 29, 40].

In order to operate the method (1.1), previous knowledge of Lipschitz-type constants is required. Such
Lipschitz-type constants are normally not known or difficult to compute. To overcome this drawback,
Hieu et al. [20] established a method to solve equilibrium. The method has the following form:

y €€,
Yn = argmin{¢, f(un,y) + %Hun —y|I?,

vee (1.2)
Uni1 = arg min{Cn f(yn, y) + 5llun —yl?},

yee
where the step size rule {(y,} is revised as follows:

&

: f(un—ynl*+ I tnt1—ynll?)
min {Cn' 2[F (n o 1) — F (e, Yn ) —F (Y i1 )]

}/ if f(un/un+1) - f(unryn) - f(ynlun+1) >0,
Cn+1 —

Co, else.

However, the methods (1.1) and (1.2) generate weakly convergent iterative sequences in a real Hilbert
space. A natural question that arises in the case of infinite-dimensional Hilbert spaces is how to create
a method that gives strong convergence. The viscosity method [26] and hybrid (outer approximation)
method [10] have been designed to answer this question. Very recently, Kraikaew and Saejung [24] have
used the subgradient extragradient method in [9] and Halpern iteration in [14], and proposed the Halpern
subgradient extragradient method to figure out variational inequality problems in Hilbert spaces. In the
case of infinite-dimensional Hilbert spaces, it is always important to study strong convergence sequences.

The natural question that arises is: “Is it possible to modify the method (1.2) in the sense to obtain a
strongly convergent sequence with a monotone step size rule”?

In this paper, we provide a positive answer to this question, i.e., the extragradient method provides
a strong convergence sequence by using a monotonic step size rule for solving equilibrium problems
accompanied by pseudo-monotone bifunction. Motivated by the works of Censor et al. [9] and Halpern
method [14] we introduce new Halpern extragradient type method to solve the problem (EP) in the case
of infinite-dimensional a real Hilbert spaces. The original result of Halpern [14] was used to solve the
problem of finding a fixed point of a single operator and Bauschke [3] extended to that of finding a
common fixed point of finitely many operators.

In particular, the key contributions in this paper are listed below:

¢ In this paper, we introduce an explicit Halpern subgradient method with a monotone step size rule
to solve the equilibrium problem in a real Hilbert space.
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¢ In mild conditions, we have established a strong convergence result that is corresponding to the
proposed method.

¢ Applications of our main results are studied in order to solve particular classes of equilibrium
problems in real Hilbert spaces.

¢ We have provided a detailed numerical description of the proposed method to verify the theoretical
results and comparing the results in [15, Algorithm 3.2]. Our numerical results indicate that our
approach is more effective than the existing one.

The rest of this paper has been arranged as follows: Section 2 has some preliminary and necessary
results. Section 3 consists of the described method and provides a strong convergence result. Section
4 consists of applications of our main results. Section 5 consists of the numerical examination of the
proposed method compared to existing ones.

2. Preliminaries

Suppose that C be a non-empty convex and closed subset of a real Hilbert space 3{. We consider
different types of a bi-function monotonicity (see [5, 7] for more details). A bi-function f: 7 x H{ — R on
@ for vy > 0 is said to be

(f1) y-strongly monotone if
f(y1,v2) + fu2,y1) < =vlyi — w2l Yy, y2 € €

(f2) monotone if
f(y1,y2) +f(y2,y1) <0, Vy1,y2 € G

(£3) +y-strongly pseudo-monotone if
f(y1,y2) = 0 = f(y2,y1) < =vlly1 —v2/% Yy, 2 € &

(f4) pseudo-monotone if
fy1,y2) > 0= f(y2,y1) <0, Yy, y2 € C.

From the above definition the following consequences are obvious:
(fl1) = (f2) = (f4) and (f1) = (f3) = (f4).

Generally, the converse implication does not hold. A bi-function f : 7 x H{ — R is said to be Lipschitz-
type continuous on C if there exists two constants cq,c, > 0 such that

f(y1,93) < F(y1,Y2) + F(Y2,93) + e1llyr —val* + c2lly2 — v3l’, Yy, y2,y3 € €
The normal cone of € at u € C is defined by
Ne(uw) ={zeH:(z,y—u) <0,Vy e CL
Let ¢ : € — R is convex function. The sub-differential of ¢ at u € C is defined by
dp(u) ={zeH:oly) —o) > (z,y—u), Vy € C}.

Lemma 2.1 ([37, Theorem 27.4]). Let ¢ : C — R be a proper convex, subdifferentiable and lower semi-continuous
function on C. An element w € C is a minimizer of a function ¢ iff

0e0@(u)+ Ne(uw),

where 0@ (u) stands for the sub-differential of @ at uw € € and Ne(u) the normal cone of C at u.
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The metric projection Pe(u) of u € H onto a closed and convex subset € of H is defined by

Pe(u) = arg min|jy —ul.
yecl

Lemma 2.2 ([4]). Assume that Pe : H{ — C is a metric projection such that

@)
ly1 — Pe(y2) II* + [Pe(y2) — vol* < lly1 —val*, y1 € Cyz € H.

(ii) ys = Pelyi) if and only if
(Y1 —ys,y2—y3) <0, Vy, € €.

(iii)
ly1 = Pelyd)ll < lvi —v2ll, y2 € Cy1 € H.
Lemma 2.3 ([41]). Assume that {qn} C (0,400) is a sequence satisfying the following inequality
Jnt1 < (1 _Yn)qn +VYnbn, VN €N,

where {yn} C (0,1) and {6} C IR satisfies the following conditions:

+o00
. _ _ . <o.
T}gl;oyn 0, nZ_lvn +o00, and hgljo%p o, <0

Then, limy 0 qn, = 0.

Lemma 2.4 ([26]). Assume that a sequence {qn} C R and there exists a subsequence {ni} of {n} such that q, <
Qnq,,, for all i € IN. Then, there is a non decreasing sequence my. C IN such that my. — oo as k — oo, and the
following conditions are fulfilled by all (sufficiently large) numbers k € IN:
qmy < Imyq and qi < 9myciq-
In fact, my = max{j < k:qj <vj41}
Lemma 2.5 ([4]). For each yy,yz € H and & € R, then the following relationships hold.
@ 2 2 2 2
18y1 + (1= 8)y2|” = 8[[ya " + (1 — 8)[ly2[|” — 8(1 — &) [y — 2|
(if)
1 + 2l < Jlya]? +20y2, y1 +y2).
In this article, the equilibrium problem is studied based on the following hypothesis.

(®1) pseudo-monotone on C if
fy1,¥2) 2 0= f(y2,y1) <0, Yy, y2 € €.

(P2) Lipschitz-type continuous [27] on C if two constants ¢y, ¢, > 0 such as

f(y1,y3) < f(y1,y2) + (Y2, y3) + c1llyr —val* + cally2 —ysll>, Yy1, 92,93 € €.
(®3) limsup f(un,y) < f(p*,y) forally € € and {un} C € satisfies u, — p*;
(D4) f (Tl:o)o is sub-differentiable and convex upon H for every each u € J{.

3. Main results

In this section, we provide an iterative scheme for solving pseudo-monotone equilibrium problems
that are based on Tran et al. [39] and Halpern [14]. The main algorithm has been given as Algorithm 1.
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Algorithm 1 (Halpern-type algorithm for pseudo-monotone equilibrium problems)

StEP 0: Choose uy € €, (o > 0 and a sequence &, C (0,1) meet the following conditions, i.e.,

+o0
Tllgr(}oocn—Oamd Zcxn—+oo
n=1
Ster 1: Compute
Yn = arg min{Gn f(un,y) *Hun yl?-
yee

If uy, = yn, then stop the sequence. Otherwise, go to STEP 2.
Step 2: Construct a half-space

Hn={zeH: {(un —hwn —Yn,z—yn) <0},

where wy, € 02f(un,yn) satisfying un — Gnwn —Yn € Ne(yn). Compute
tn = argmin{(nf(yn,y) + Hun sz}.
yeHn

Step 3: Compute
Uni1 = onty + (1 — on)tn.

STEP 4: Evaluate

: n—Yn 2 n—Yn 2 :
Cn+1 _ {mln {CTL/ 2[f(LILL(T|L|,1’£Ln)7yf(l|l—n_|,_1ll|i)7?(ylll,2[n)] }I lf f(‘LLTI./ tTl.) - f(uﬂ./ Un) - f(Un/ tTL) > 0/

Co, otherwise.

Set n :=n+ 1 and go back to Step 1.

Remark 3.1. It can be easily prove that C C 3{y,. By yn and Lemma 2.1, we have

0 € 0] Cuflun, ) + 2 Jutn — I yn) + Nelyn).
Indeed, for some wy, € 0f(un,yn) there exists @W,, € Ne(yn) such that
ann“‘yn_un +w, =0.

Thus, we have
(Un —Yn,Y—Yn) = ta{Wn, Yy —Yn) +(On,y —yn), Yy cC.
Due to @y, € Ne(yn) means that (0n,y —yn) <0, for all y € C. It implies that

(Un —Yn,Y—Yn) < Gn{wn,y—yn), Yy egC,

which implies that
(Un — CnWn —Yn,Yy—yn) <0, Yy € C.

It proves that € C 3(,, for each n € IN.

Theorem 3.2. Assume that {un} is a sequence generated by Algorithm 1 and u* € Jgp. Then, {un} converges

strongly to u* = Pa. (uo).
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Proof. By the use of definition of t,,, we have

1
0 € 02{Cnf(yn,y) + 5llun —y|2} (tn) + Nac, (tn).
For some w € 9f(yn, tn) there exists @ € Ny, (tn) such that
(hw+th —un +w=0.

It follows that
<un _t'ruy _tn> - Cn<w1y _tn> + <w/y _tn>/ VU € j{n'

Due to @ € Ny, (tn) follows that (@,y —tn) < 0, for all y € H,,. Thus, we have
(Un —th,y—tn) < Cr{w,y—tn), Yy € Hy. (3.1)
Thus, w € 0f(yn, tn) implies that
f(yn,y) — f(yn, tn) = (w,y —tn), Yy € H. (3.2)
From (3.1) and (3.2), we get
nf(Yn, y) — Gnf(Yn, tn) = (Un —th,y —tn), Yy € I, (3.3)
By the use of definition of H(,,, we obtain
Cn(Wn, th =Yn) = (Un —Yn, th —Yn). (3.4)
For wn € 0f(un,yn), we get
f(un,y) = f(un,yn) = (Wn,y —yn), Yy € H.
By taking y = t,,, we obtain
fun, tn) — f(Un,Yn) = (Wn, th —yn), Yy € H. (3.5)
By the use of (3.4) and (3.5), we get
Cn{f(Un, tn) = f(tn, Yn) } = (Un —Yn, th —Yn). (3.6)
By substituting y = u* in (3.3), we get
Cnf(Yn, u*) — Cnflyn, tn) = (un —tp, " —ty).

Since u* € Jgp, we have f(u*,yn) > 0. From the pseudo-monotonicity of bi-function f we get f(yn, u*) <
0. Thus, it gives that
<un —tn, th — u*> = Cnf(ynz tn)- (37)

From the explanation (;, 1, we obtain

tun _Un”z + pltn _‘JnHZ
2Cn+1

f(unr tTL) - f(un/yn) - f(yﬂ./ tn) g (38)

From (3.7) and (3.8), we obtain

HCn

win H
ZCTL+1

LTI th —ynl/® 3.9
2001 n [tn —ynll (3.9)

(Un —tn, th —U") = CGn{f(un, th) — f(un,yn)} —ynl?—
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From (3.6) and (3.9), we obtain

" C C
(Un =t tn = 1) > (U — Y, tn = Yn) = 5o fun —yn P = 52 ta —yal® (310)
2Cn 11 20n+41
We have the following formulas:
“2(un — tn, tn = u) = —flun =P+ tn = un|® + [[ta — |,
2(Yn —Un, Yn —tn) = [[un _UnHz + [tn _UnH2 — flun — tn”2~ (3.11)
Combining (3.10) and (3.11), we obtain
ftn =2 < Jun = w2 = (1= 22 Y un =yl = (1= 222 )t —ynl (3.12)
Cn+1 Cn+
Due to ¢, — (, there exits a number € € (0,1 — u) such that
lim <1— “C“) —1—pu>e>0.
n—oo Cn+1
Thus, there exits a finite number n; € IN such that
(1— uCn> >e>0, Vn > ny.
Cn+1
From (3.12), we obtain
[tn —u)? < Jun —u*|?, V1 = ny. (3.13)
Due to u* € Jgp, and by the use of definition of {u, 1}, we obtain
Un —u| = || +(1— o )tn —u*
H +1 H H nUo ( n) n H (314)

= H(Xn[uo — U4 (1= an)ltn _u*]H < (XTLHuO _u*H +(1— (xn)th _U-*H-
Combining (3.13) and (3.14) and o, C (0,1), we have

s 0 < g — 0+ (1~ )~

I} < max { ).

Thus, we conclude that the {u,} is bounded sequence. Next, we explain the strong convergence of
the iterative sequence {un} constructed by Algorithm 1. The Lipschitz-continuity and pseudo-monotone
property of the bi-function f indicates that the solution set Jg, is a convex and closed set (see [15, 39]).
Let u* = P3¢ (ug) and by Lemma 2.2 (ii), we have

< max{

(up—u*,y—u”) <0, Vy € Jgp.
Due to Lemma 2.5 (i) and (3.12), we get

i = ottt + (1 o)t — P

= [|otn [0 — w*] 4+ (1 — o) [tm — ]|
u*|? + 12 = otn (1 — o) [[ug — ta ||

* * C
< oo — w4 (1= on) [l — P = (1= 2 ) futn —yn P
n+1

= 0tn ||up — +(1—on)|lth —u

(3.15)
win 2 2
= (1 2 )l = ynlP] = o (1= ) o —
< et uto — | 4 n — P
1in 2 Hin 2
(= an) (1= 2 =yl = (1= an) (1= 2 e =
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The above relation implies that

(1= o) (1= ) =yl (1= ) (1= 22 =y

< ot [[up = w2+ flun — w2 = fupnn — w2

The remainder of the proof shall be split into the following two parts.

Case 1: Assume that there is a fixed number n; € IN such that
[uns1 — U < lun —u™f|, Vn > no.

Thus, above implies that lim,_,  ||un —u*|| exists and let limy o [|un —u*|| = L. From (3.15), we get

(1= o) (1= 25 ot =yl (1= ) (1= 22t =y

< ot [l = w P+ flun — w2 = lupnn —ut

The existence of limp _, ||un —u*|| = land &, — 0, we can deduce that

lim |[un —yn|| = lim [tn —ynl| =0. (3.16)
n—,oo n—,oo
It follows that
lim |[up —tn| < Im [Jun —yn| + lim [jyn —ta| =0. (3.17)
n—o0 n—o0 n—oo
Furthermore, we obtain
Hun—l—l _unH = HocnuO + (1 —an)tn _unH

= Hocn[uo_un] + (1_ocn)[tn_un]H < o‘nHuO_unH + (1_(xn)th_unH-

It follows that

Jim flun g —un = 0.

Thus, the implies that the sequences {yn} and {t,,} are bounded. Due to the reflexivity of J and the
boundedness of {u,,} guarantees that there is a subsequence {u, } such that {un, } — @ € H as k — oo.

Next, we need to prove that it € Jgp. Due to the inequality (3.3), the Lipschitz-like condition of f and
(3.6), we obtain

anf(ynk’y) 2 anf(ynk’ tnk) + <unk _tnk’y - tnk>
H’an

2
w —
2C . 1|| Ty 1Jnfk”

P anf(unkz tnk) - anf(unk/ ynk) -

118
- e Hynk - tnkHZ + <unk - tnk/y - tle>
Zan+1

ne
> (Un, —Ynys tn, —Yny) — 20 nil [, _Unk”2
L33

18
- T Hynk - tnk||2 + <uﬂk - tnk/y - tnk>’
chk"‘l

where y € H,,. From (3.16) and (3.17) imply that right-hand side reaches to zero. From (., > 0, the
condition (®3) and y,, — 1, we obtain

0 < limsup f(yn,, y) < f(Q,y), Vy € Hn.

k—o0
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It follows that f(11,y) > 0, for all y € C, and hence 1t € Jg,. Next, consider
lim sup(up —u*, un —u*) = limsup(up —u*, un, —u*) = (up —u*, 0t —u*) <O0.
n—00 k—o0
By the use of limn HUnH —Un H = 0, we may conclude that
lim sup(up —u*, un 1 —u*) < limsup(up —u*, upn+1 —un) +limsup(ug —u*, un —u*) <O0. (3.18)
n—oo n—oo n—oo
From Lemma 2.5 (ii) and (3.12), we have
x (2 *|2
HunH —u H = Hocnuo +(1—on)tn —u H
— |otn o — w*] + (1 — o) [t — u*]||?
< (1= o) [tn — 1 |* + 200 (g — ", (1= o) [t — ] + ot frig — 1)) (3.19)
* 2 * *
=(1-— ocn)thn —u H + 200 (up —u*, Uy —u)
* 2 * k
<(1-— ocn)HuTl —u H + 200 (up — u*, up 1 —uF).
From (3.18), (3.19), and using Lemma 2.3, we may deduce that Hun —u* H — 0asn — oco.
Case 2: Assume there exits a subsequence {n;} of {n} such that
tn, = < ftny — w7, ¥i €N
Thus, by Lemma 2.4, there exists a sequence {my} C IN as {my} — oo, such that
wm, —u|| < Jum,,, —u*|| and |lux —u*|| < [[um,,, —u*|, forall k € IN. (3.20)
Similar to Case 1, expression (3.15) provides that
C C
(1= oty ) (1= 27 Y, — Yo 2+ (1= ety ) (1= 22 . — Y,
ka—l—l ka—i—l
< oty fJuo = w2+ iy, — w1 = [fwm 1 — w2
Due to oy, — 0, we deduce the following;:
nlE};o Humk _ymk” = T}E}}x} ”tmk _ymkH =0.
Also, we can obtain
Humk+1 _umkH = H(kauo + (1 - o‘mk)tmk _umkH
= H(ka [UO _umk] + (1 - “mk)[tmk _umk]H
< o‘mkHuO _umkH + (1 - mek) Htmk _uTTLkH — 0.
We use the same argument as in Case 1, which is as follows:
lim sup(up —u*, Uy, 41 —u*) <O0. (3.21)

k—o00

Now, using expressions (3.19) and (3.20), we have

ity = < (0t by, — 0 200 (00— 6 1~ 1)
<
~

(1 - mek) Hukar] _u*Hz + Zocmk <LLO _u*/ukarl _u*>'



K. Muangchoo, J. Math. Computer Sci., 25 (2022), 115-132 124

It continues from that
Hukar] —u* H2 <2(up —u’, U 41 —u"). (3.22)
Since o, — 0 and ||um, —u*|| is bounded, thus from (3.21) and (3.22) we obtain
1 —w? =0, as k — oco.

It implies that

lim flug —u*|> < Im [[um, 1 —u*|> <0.
n—oo n—oo

Consequently, u,, — u*. This completes the proof of the theorem.

4. Applications

Now, we consider the application of our main results to solve the problem of classic variational in-
equalities [38]. A mapping M : H — H is defined as follows:

Find u* € € such that (M(u*),y —u*) >0, Vy € C. (VIP)
We consider the following conditions to study variational inequalities.
(M1) The solution set of the problem (VIP) denoted by VI(M, €) is non-empty.
(M2) M : H — K is called to be a pseudo-monotone, i.e.,

(M(u),y—u) >0= (M(y),u—y) <0, Vu,y € C.

(M3) M : H — K is called to be a Lipschitz continuous if there exits a constants L > 0 such that

[M{w) =My)| <Hu-yl, Vwy €€

(M4) limsupM(un),y —un) < M(q*),y—q*) for every y € C and {u,} C C satisfies un — q*.
n—oo
By the use of f(u,y) = <M(u),y — u>, for all u,y € C, thus, our main problem turns into the problem
of variational inequalities outlined above while L = 2¢; = 2c,. From the above value of the bi-function f,
we get
Yn = arg min{Gn f(un,y) + 1|un —y|?} = Pe(un — tnM(un)),
yee
th = argmin{Cnf(ynry) + %”un —UHZ} = Pan (un - CnM(yn))
yeHn
Corollary 4.1. Let M : C — H be a mapping satisfying the conditions (M1)—(M4). Choose uy € C, (o > 0 and a
sequence oy, C (0,1) meet the following conditions, i.e.,

“+o00
Iim o, =0 and E o, = +o0.
n—oo 1

n—=

Assume that {un} generated as follows:

Yn = Pelun — GnM(uy)),
th = Pﬂ-fn (un - CnM(Un))/
Un1 = XnlUp + (1 — otn ) tn,
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where Hn ={z € H : (un — (aM(Un) —Yn, z—yn) < 0}. The step size rule revised in the following way:

& &

oy = {min{Cn, u||un %n Tgﬂ;;:gzﬂ }/ lf<M(un) —M(yn), tn _Un> >0,
n+1 —

n, else.

Then, the sequence {un} converges strongly to u* € VI(M, C).

Next, we study the application of our main results to solve the fixed-point problems associated with
the k-strict pseudo-contraction mapping. The fixed point problem for a mapping N : H — K is defined as
follows:

Find u* € € such that N(u*) = u*. (FPP)
We assume that the following conditions have been satisfied.

(N1) N: € — Cis said to be a k-strict pseudo-contraction [8] on C if

ITu—Ty|? < Ju—yl? +«[(u—Tw —(y =Ty Yuy ec;

(N2) limsup(un —M(un),y—un) < (q*—G(q*),y—q*) for each y € € and {un} C € satisfies u, — q*.

n—o0

If we consider that the mapping N is a k-strict pseudocontraction and weakly continuous then f(u,y) =
(u—Nu,y —u) satisfies the conditions (®1)-(®4) and 2¢; = 2¢p = 31 2;_

Yn = argmin{(:nf(un/y) + %Hun _UHZ} = Pe [un — Cnl(un — N(un))]/
yeel

tn = argmin{(,f (Yn,y) + ] ||un UHZ} = Py, [un — Cnlyn — N(‘Jn))]
yeHn

Corollary 4.2. Let C be a nonempty, convex and closed subset of a Hilbert space . Moreover, N : € — Cis a
Kk-strict pseudo-contraction and weakly continuous with solution set Fix(N) # 0. Choose ug € C, (o > 0 and a
sequence xn, C (0,1) meet the following conditions, i.e.,

“+o00
Iim o, =0 and Zocn——l—oo
n—oo

n

Assume that {un } generated as follows:

Yn = Pe [un Cn(un N(un))]/
tn:PfJ—Cn[un Cn Un_Nyn ]/
Un41 = KnlUp + (1 an)tn/

where Hy, ={z € H : (1 — {n)un + tnN(un) —Yn, z—yn) < 0}. Compute

2 (un—yn )~ N(n)=N(yn)], ta—yn
Cny else.

— {min{cn, it oy 2t my >}, if ((tn = yn) = N(un) = N(yn)l, tn —yn) >0,
n+1 —

Then, sequence {un } strongly converges to u* € Fix(N).
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5. Numerical illustrations

The numerical results of the study are provided in the following section to illustrate the effectiveness
of the proposed method. We studied one test problem in finite-dimensional space and second in-finite
dimensional space. From the experiments, we have seen how the starting point affects the efficiency of
algorithms.

Example 5.1. Assume that f: € x € — R is defined by
fluy) =(Pu+Qy+cy—u), Yu,yecc,

where ¢ € R™ and P, Q are matrices of order n. The matrix P is symmetric positive semi-definite and
the matrix Q-P is symmetric negative semi-definite with Lipschitz-type constants ¢; = ¢, = %HP — Q]
(see [39] for details). The matrices P, Q and vector c are defined as follows:

31 2 0 0 O 16 1 0 0 O 1
2 36 0 0 O 1 16 0 0 O —2
pP=]10 0 35 2 0|, Q=0 0 15 1 O0f, c=1|-1
0 0 2 330 0 0 1 150 2

o 0 0 o0 3 0o 0o 0 o0 2 —1

The constraint set C C R™ is defined by
C={ueR":-10 <u; <10}

The numerically and graphically findings of the three methods are shown in Figures 1-5 and Table 1 by
using y_1 = (0,0,0,0, 0)" and letting different starting points 1y = yo. The control parameters criteria are
used as mentioned in the following:

(i) ¢= %, Xn = S(nliﬂ) and Dy, = ||un —yn||? for Algorithm 2 (Algorithm-2) in [15].

(i) ¢o=0.22, u =033, xp = ——5, Dp = lun —ynl? for Algorithm 4.1 (Algorithm-4.1) in [22].

(n+1)

(i) Co =022, =033, oan = 5

stz and D = [[un —yn|f* for Algorithm 1 (Algorithm-1).

102 102

—+— Algorithm-2 —+— Algorithm-2
— % - Algorithm-4.1 — % - Algorithm-4.1
o Algorithm-1 X o Algorithm-1

3 100 "

100 F

Q 10%¢ Q 102¢

. L . . . . . 8 . .
0 10 20 30 40 50 60 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Number of iterations Elapsed time [sec]

(a) (b)

Figure 1: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when up = (1,1,1,1,1)T.
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—+— Algorithm-2
— % - Algorithm-4.1
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- Algorithm-1

N
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~~—
L X %

10° ; ; ; ; ; i i i i
—+— Algorithm-2
— % - Algorithm-4.1
s Algorithm-1

100 F

S 102k

IS
0 10 20 30

(a)

40 50
Number of iterations

10°°

60 0 005 01 015 02 025 03

Elapsed time [sec]

(b)

035 04

Figure 2: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in

[15] when uy = (2,2,2,2,2)T

102 T T T T T :

102 : T T T !
. —— Algorithm-2
- - - Algorithm-4.1
---------- Algorithm-1
1000

S 102k

10

—— Algorithm-2
- - - Algorithm-4.1

---------- Algorithm-1

S 102k

104

L
0 10 20 30

(a)

40 50
Number of iterations

. e
60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Elapsed time [sec]

(b)

Figure 3: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when ug = (—1,—2,—4,—1,—5)".

102

100k

S 102

104

10°°

Algorithm-2
Algorithm-4.1
Algorithm-1

E 100 1

—— Algorithm-2
: - - - Algorithm-4.1
S N Algorithm-1
i

1

1

S 102

104

40

Number of iterations

(a)

-, L
50 60 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

106 . . e

Elapsed time [sec]

(b)

Figure 4: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when uy = (—2,—2,—2,—2,—2)".
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Figure 5: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in

[15] when vy = (1,2,—3,—4,5)7.

Table 1: Numerical results data for Figures 1-5.

Number of iterations \ CPU time in seconds
i Algorithm-2  Algorithm-4.1 Algorithm-1 ‘ Algorithm-2  Algorithm-4.1  Algorithm-1
(1,1,1,1,1)T 35 52 25 0.2947482 0.4185463 0.2085999
(2,2,2,2,2)T 38 55 27 0.3676513 0.4883899 0.2315488
(—1,-2,—4,-1,-5)T 52 54 36 0.4838859 0.6724367 0.4223327
(—2,-2,-2,-2,-2)T 38 55 27 0.4550715 0.6656828 0.3164745
(1,2,-3,-4,5)T 42 54 31 0.3845626 0.6906321 0.30042470

Example 5.2. Suppose that H = L?([0, 1]) is a Hilbert space with an inner product

1

(wy) = L wtly(t)dt, Yy € 12(0,1)),

where the induced norm is defined by

1
ull = /| wtva, vue o),
0

Moreover, assume that a bi-function f : 7 x H — R is defined by
flu,y) = (Mu),y —u),

where M(u(t)) = J“S u(s)ds for every u € L([0,1]) and t € [0,1]. The feasible set C := {u € L?([0,1]) :

f(l) tu(t)dt = 2}. It is easy to note that that f is monotone and Lipschitz-type continuous with c; = c; = 1
(see [4]). The projection on set C is computed in the following way:

B [ tu(t)dt —2

t, t e [0,1].
Jo t2dt

Pe(u)(t) :==u(t)
The numerically and graphically findings of the three methods are shown in Figures 6-9 and Table 2 by
using y_; = t and letting different starting points uy = yo. The control parameters criteria are used as
mentioned in the following:

(i) ¢= 71?1, X = m and D;, = |[un —yn|? for Algorithm 2 (Algorithm-2) in [15].

(i) ¢o=0.12, n=0.33, an = D = [[un —yn|? for Algorithm 4.1 (Algorithm-4.1) in [22].

1
(n+1)05~
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(iii) ¢p=0.12, 1 =0.33, an, = ﬁ and D;, = ||un, —yn|? for Algorithm 1 (Algorithm-1).

(n+2

10° i ' '
——— Algorithm-2
= = = Algorithm-4.1
.......... Algorithm-1

101 E ]

S 102}

10'3 L

104k L 1 L . L L
0 5 10 15 20 25 30 35 40

Number of iterations

(a)

Figure 6: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in

[15] when ug = 3t2.

100 T T T T T T T T

k ——— Algorithm-2

= = = Algorithm-4.1
Algorithm-1

0 5 10 15 20 25 30 35 40 45 50
Number of iterations

(a)

Figure 7: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in

[15] when uy = —2t + 5t2.

10°

——— Algorithm-2
= = = Algorithm-4.1
Algorithm-1 ||

1075 L L L
0 10 20 30 40 50 60
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Figure 8: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in

[15] when 1y = 2etsin(t).
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Figure 9: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when uy = —2et cos(t).

Table 2: Numerical results values for Figures 6-9.

Number of iterations CPU time in seconds

i Algorithm-2  Algorithm-4.1  Algorithm-1 ‘ Algorithm-2  Algorithm-4.1 Algorithm-1
3t2 28 36 19 1.1741502 2.1310576 1.3805529
—2t + 5t2 31 46 13 1.689667 3.3207762 0.889326
2etsin(t) 41 51 26 1.7857041 3.3381265 1.8077202
—2e* cos(t) 33 51 13 2.5144959 3.9310611 1.0745534

6. Conclusion

We have designed an explicit Halpern-type extragradient method to solve pseudo-monotone equi-
librium problem in a real Hilbert space, and we also confirm that the generated sequence is strongly
convergent to the solution. The applications of main results are being discussed to solve particular classes
of equilibrium problems. Numerical conclusions have been drawn to explain the numerical efficiency of
our algorithms compared to other methods. These numerical studies have shown that viscosity effects
improve the efficiency of the iterative sequence in this context.
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