
J. Math. Computer Sci., 25 (2022), 115–132

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Explicit Halpern-type iterative algorithm for solving equi-
librium problems with applications

Kanikar Muangchoo

Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon (RMUTP), 1381 Pracharat 1 Road,
Wongsawang, Bang Sue, Bangkok 10800, Thailand.

Abstract

A number of iterative algorithms have been established to solve equilibrium problems, and one of the most effective
methods is a two-step extragradient method. The main objective of this study is to introduce a modified algorithm that is
constructed around two methods; Halpern-type method and extragradient method with a new size rule to solve the equilibrium
problems accompanied with pseudo-monotone and Lipschitz-type continuous bi-function in a real Hilbert space. Using certain
mild conditions on the bi-function, as well as certain conditions on the iterative control parameters, proves a strong convergence
theorem. The proposed algorithm uses a monotonic step size rule depending on local bi-function information. The main results
are also used to solve variational inequalities and fixed-point problems. The numerical behavior of the proposed algorithm on
different test problems is provided compared to other existing algorithms.
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1. Introduction

Suppose that C is a non-empty convex and closed subset of a real Hilbert space H. Let f : H×H→ R

be a bi-function satisfying f(y1,y1) = 0, for each y1 ∈ C. An equilibrium problem [7, 11] for f on the set C is
defined in the following way:

Find u∗ ∈ C such that f(u∗,y1) > 0, ∀y1 ∈ C. (EP)

Furthermore, a solution set of equilibrium problem over the set C is denoted by iEp and u∗ is an any
arbitrary element of iEp.

The problem (EP) is a general mathematical problem in the sense that it carries together many math-
ematical problems, i.e., the fixed point problems, the vector and scalar minimization problems, the prob-
lems of variational inequalities, complementarity problems, problems of the saddle point, the Nash equi-
librium problems in non-cooperative games and the inverse optimization problems [7, 28]. The problem
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(EP) is also known as the well-known Ky Fan inequality due to the previous contribution [11]. Due to the
importance of this problem (EP) and its applications in both pure and applied sciences, many researchers
have been studied this topic in recent years [2, 6, 13, 30–36].

An important iterative method is introduced by Tran et al. [39] and iterative sequence {un} has the
following form: 

u0 ∈ C,
yn = arg min

y∈C
{ζf(un,y) + 1

2‖un − y‖2},

un+1 = arg min
y∈C

{ζf(yn,y) + 1
2‖un − y‖2},

(1.1)

where 0 < ζ < min
{ 1

2c1
, 1

2c2

}
. This method is also considered as the two-step extragradient method

in [39] due to the previous contribution of the Korpelevich [23] extragradient method to solve saddle
point problems. It is important to mention that previous established methods are operating by the use
of constant step size depends upon Lipschitz-type constants as well as provides a weak convergence
sequence [12, 15, 25, 39] and others in [1, 16–19, 21, 29, 40].

In order to operate the method (1.1), previous knowledge of Lipschitz-type constants is required. Such
Lipschitz-type constants are normally not known or difficult to compute. To overcome this drawback,
Hieu et al. [20] established a method to solve equilibrium. The method has the following form:

u0 ∈ C,
yn = arg min

y∈C
{ζnf(un,y) + 1

2‖un − y‖2},

un+1 = arg min
y∈C

{ζnf(yn,y) + 1
2‖un − y‖2},

(1.2)

where the step size rule {ζn} is revised as follows:

ζn+1 =

min
{
ζn, µ(‖un−yn‖2+‖un+1−yn‖2)

2[f(un,un+1)−f(un,yn)−f(yn,un+1)]

}
, if f(un,un+1) − f(un,yn) − f(yn,un+1) > 0,

ζ0, else.

However, the methods (1.1) and (1.2) generate weakly convergent iterative sequences in a real Hilbert
space. A natural question that arises in the case of infinite-dimensional Hilbert spaces is how to create
a method that gives strong convergence. The viscosity method [26] and hybrid (outer approximation)
method [10] have been designed to answer this question. Very recently, Kraikaew and Saejung [24] have
used the subgradient extragradient method in [9] and Halpern iteration in [14], and proposed the Halpern
subgradient extragradient method to figure out variational inequality problems in Hilbert spaces. In the
case of infinite-dimensional Hilbert spaces, it is always important to study strong convergence sequences.

The natural question that arises is: “Is it possible to modify the method (1.2) in the sense to obtain a
strongly convergent sequence with a monotone step size rule”?

In this paper, we provide a positive answer to this question, i.e., the extragradient method provides
a strong convergence sequence by using a monotonic step size rule for solving equilibrium problems
accompanied by pseudo-monotone bifunction. Motivated by the works of Censor et al. [9] and Halpern
method [14] we introduce new Halpern extragradient type method to solve the problem (EP) in the case
of infinite-dimensional a real Hilbert spaces. The original result of Halpern [14] was used to solve the
problem of finding a fixed point of a single operator and Bauschke [3] extended to that of finding a
common fixed point of finitely many operators.

In particular, the key contributions in this paper are listed below:

• In this paper, we introduce an explicit Halpern subgradient method with a monotone step size rule
to solve the equilibrium problem in a real Hilbert space.
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• In mild conditions, we have established a strong convergence result that is corresponding to the
proposed method.

• Applications of our main results are studied in order to solve particular classes of equilibrium
problems in real Hilbert spaces.

• We have provided a detailed numerical description of the proposed method to verify the theoretical
results and comparing the results in [15, Algorithm 3.2]. Our numerical results indicate that our
approach is more effective than the existing one.

The rest of this paper has been arranged as follows: Section 2 has some preliminary and necessary
results. Section 3 consists of the described method and provides a strong convergence result. Section
4 consists of applications of our main results. Section 5 consists of the numerical examination of the
proposed method compared to existing ones.

2. Preliminaries

Suppose that C be a non-empty convex and closed subset of a real Hilbert space H. We consider
different types of a bi-function monotonicity (see [5, 7] for more details). A bi-function f : H×H→ R on
C for γ > 0 is said to be

(f1) γ-strongly monotone if

f(y1,y2) + f(y2,y1) 6 −γ‖y1 − y2‖2, ∀y1,y2 ∈ C;

(f2) monotone if
f(y1,y2) + f(y2,y1) 6 0, ∀y1,y2 ∈ C;

(f3) γ-strongly pseudo-monotone if

f(y1,y2) > 0 =⇒ f(y2,y1) 6 −γ‖y1 − y2‖2, ∀y1,y2 ∈ C;

(f4) pseudo-monotone if
f(y1,y2) > 0 =⇒ f(y2,y1) 6 0, ∀y1,y2 ∈ C.

From the above definition the following consequences are obvious:

(f1) =⇒ (f2) =⇒ (f4) and (f1) =⇒ (f3) =⇒ (f4).

Generally, the converse implication does not hold. A bi-function f : H×H→ R is said to be Lipschitz-
type continuous on C if there exists two constants c1, c2 > 0 such that

f(y1,y3) 6 f(y1,y2) + f(y2,y3) + c1‖y1 − y2‖2 + c2‖y2 − y3‖2, ∀y1,y2,y3 ∈ C.

The normal cone of C at u ∈ C is defined by

NC(u) = {z ∈ H : 〈z,y− u〉 6 0, ∀y ∈ C}.

Let ϕ : C→ R is convex function. The sub-differential of ϕ at u ∈ C is defined by

∂ϕ(u) = {z ∈ H : ϕ(y) −ϕ(u) > 〈z,y− u〉, ∀y ∈ C}.

Lemma 2.1 ([37, Theorem 27.4]). Let ϕ : C→ R be a proper convex, subdifferentiable and lower semi-continuous
function on C. An element u ∈ C is a minimizer of a function ϕ iff

0 ∈ ∂ϕ(u) +NC(u),

where ∂ϕ(u) stands for the sub-differential of ϕ at u ∈ C and NC(u) the normal cone of C at u.
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The metric projection PC(u) of u ∈ H onto a closed and convex subset C of H is defined by

PC(u) = arg min
y∈C

‖y− u‖.

Lemma 2.2 ([4]). Assume that PC : H→ C is a metric projection such that

(i)
‖y1 − PC(y2)‖2 + ‖PC(y2) − y2‖2 6 ‖y1 − y2‖2, y1 ∈ C,y2 ∈ H.

(ii) y3 = PC(y1) if and only if
〈y1 − y3,y2 − y3〉 6 0, ∀y2 ∈ C.

(iii)
‖y1 − PC(y1)‖ 6 ‖y1 − y2‖, y2 ∈ C,y1 ∈ H.

Lemma 2.3 ([41]). Assume that {qn} ⊂ (0,+∞) is a sequence satisfying the following inequality

qn+1 6 (1 − γn)qn + γnδn, ∀n ∈N,

where {γn} ⊂ (0, 1) and {δn} ⊂ R satisfies the following conditions:

lim
n→∞γn = 0,

+∞∑
n=1

γn = +∞, and lim sup
n→∞ δn 6 0.

Then, limn→∞ qn = 0.

Lemma 2.4 ([26]). Assume that a sequence {qn} ⊂ R and there exists a subsequence {ni} of {n} such that qni <
qni+1 , for all i ∈ N. Then, there is a non decreasing sequence mk ⊂ N such that mk → ∞ as k → ∞, and the
following conditions are fulfilled by all (sufficiently large) numbers k ∈N:

qmk
6 qmk+1 and qk 6 qmk+1 .

In fact, mk = max{j 6 k : qj 6 υj+1}.

Lemma 2.5 ([4]). For each y1,y2 ∈ H and δ ∈ R, then the following relationships hold.

(i)
‖δy1 + (1 − δ)y2‖2 = δ‖y1‖2 + (1 − δ)‖y2‖2 − δ(1 − δ)‖y1 − y2‖2.

(ii)
‖y1 + y2‖2 6 ‖y1‖2 + 2〈y2,y1 + y2〉.

In this article, the equilibrium problem is studied based on the following hypothesis.

(Φ1) pseudo-monotone on C if
f(y1,y2) > 0 =⇒ f(y2,y1) 6 0, ∀y1,y2 ∈ C.

(Φ2) Lipschitz-type continuous [27] on C if two constants c1, c2 > 0 such as

f(y1,y3) 6 f(y1,y2) + f(y2,y3) + c1‖y1 − y2‖2 + c2‖y2 − y3‖2, ∀y1,y2,y3 ∈ C.

(Φ3) lim sup
n→∞ f(un,y) 6 f(p∗,y) for all y ∈ C and {un} ⊂ C satisfies un ⇀ p∗;

(Φ4) f(u, ·) is sub-differentiable and convex upon H for every each u ∈ H.

3. Main results

In this section, we provide an iterative scheme for solving pseudo-monotone equilibrium problems
that are based on Tran et al. [39] and Halpern [14]. The main algorithm has been given as Algorithm 1.
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Algorithm 1 (Halpern-type algorithm for pseudo-monotone equilibrium problems)

Step 0: Choose u0 ∈ C, ζ0 > 0 and a sequence αn ⊂ (0, 1) meet the following conditions, i.e.,

lim
n→∞αn = 0 and

+∞∑
n=1

αn = +∞.

Step 1: Compute

yn = arg min
y∈C

{ζnf(un,y) +
1
2
‖un − y‖2}.

If un = yn, then stop the sequence. Otherwise, go to Step 2.
Step 2: Construct a half-space

Hn = {z ∈ H : 〈un − ζnωn − yn, z− yn〉 6 0},

where ωn ∈ ∂2f(un,yn) satisfying un − ζnωn − yn ∈ NC(yn). Compute

tn = arg min
y∈Hn

{ζnf(yn,y) +
1
2
‖un − y‖2}.

Step 3: Compute
un+1 = αnu0 + (1 −αn)tn.

Step 4: Evaluate

ζn+1 =

min
{
ζn, µ(‖un−yn‖2+‖tn−yn‖2)

2[f(un,tn)−f(un,yn)−f(yn,tn)]

}
, if f(un, tn) − f(un,yn) − f(yn, tn) > 0,

ζ0, otherwise.

Set n := n+ 1 and go back to Step 1.

Remark 3.1. It can be easily prove that C ⊂ Hn. By yn and Lemma 2.1, we have

0 ∈ ∂2

{
ζnf(un,y) +

1
2
‖un − y‖2

}
(yn) +NC(yn).

Indeed, for some ωn ∈ ∂f(un,yn) there exists ωn ∈ NC(yn) such that

ζnωn + yn − un +ωn = 0.

Thus, we have
〈un − yn,y− yn〉 = ζn〈ωn,y− yn〉+ 〈ωn,y− yn〉, ∀ y ∈ C.

Due to ωn ∈ NC(yn) means that 〈ωn,y− yn〉 6 0, for all y ∈ C. It implies that

〈un − yn,y− yn〉 6 ζn〈ωn,y− yn〉, ∀ y ∈ C,

which implies that
〈un − ζnωn − yn,y− yn〉 6 0, ∀y ∈ C.

It proves that C ⊂ Hn for each n ∈N.

Theorem 3.2. Assume that {un} is a sequence generated by Algorithm 1 and u∗ ∈ iEp. Then, {un} converges
strongly to u∗ = PiEp(u0).
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Proof. By the use of definition of tn, we have

0 ∈ ∂2

{
ζnf(yn,y) +

1
2
‖un − y‖2

}
(tn) +NHn

(tn).

For some ω ∈ ∂f(yn, tn) there exists ω ∈ NHn
(tn) such that

ζnω+ tn − un +ω = 0.

It follows that
〈un − tn,y− tn〉 = ζn〈ω,y− tn〉+ 〈ω,y− tn〉, ∀y ∈ Hn.

Due to ω ∈ NHn
(tn) follows that 〈ω,y− tn〉 6 0, for all y ∈ Hn. Thus, we have

〈un − tn,y− tn〉 6 ζn〈ω,y− tn〉, ∀y ∈ Hn. (3.1)

Thus, ω ∈ ∂f(yn, tn) implies that

f(yn,y) − f(yn, tn) > 〈ω,y− tn〉, ∀y ∈ H. (3.2)

From (3.1) and (3.2), we get

ζnf(yn,y) − ζnf(yn, tn) > 〈un − tn,y− tn〉, ∀y ∈ Hn. (3.3)

By the use of definition of Hn, we obtain

ζn〈ωn, tn − yn〉 > 〈un − yn, tn − yn〉. (3.4)

For ωn ∈ ∂f(un,yn), we get

f(un,y) − f(un,yn) > 〈ωn,y− yn〉, ∀y ∈ H.

By taking y = tn, we obtain

f(un, tn) − f(un,yn) > 〈ωn, tn − yn〉, ∀y ∈ H. (3.5)

By the use of (3.4) and (3.5), we get

ζn
{
f(un, tn) − f(un,yn)

}
> 〈un − yn, tn − yn〉. (3.6)

By substituting y = u∗ in (3.3), we get

ζnf(yn,u∗) − ζnf(yn, tn) > 〈un − tn,u∗ − tn〉.

Since u∗ ∈ iEp, we have f(u∗,yn) > 0. From the pseudo-monotonicity of bi-function f we get f(yn,u∗) 6
0. Thus, it gives that

〈un − tn, tn − u∗〉 > ζnf(yn, tn). (3.7)

From the explanation ζn+1, we obtain

f(un, tn) − f(un,yn) − f(yn, tn) 6
µ‖un − yn‖2 + µ‖tn − yn‖2

2ζn+1
. (3.8)

From (3.7) and (3.8), we obtain

〈un − tn, tn − u∗〉 > ζn{f(un, tn) − f(un,yn)}−
µζn

2ζn+1
‖un − yn‖2 −

µζn

2ζn+1
‖tn − yn‖2. (3.9)
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From (3.6) and (3.9), we obtain

〈un − tn, tn − u∗〉 > 〈un − yn, tn − yn〉−
µζn

2ζn+1
‖un − yn‖2 −

µζn

2ζn+1
‖tn − yn‖2. (3.10)

We have the following formulas:

−2〈un − tn, tn − u∗〉 = −‖un − u∗‖2 + ‖tn − un‖2 + ‖tn − u∗‖2,

2〈yn − un,yn − tn〉 = ‖un − yn‖2 + ‖tn − yn‖2 − ‖un − tn‖2. (3.11)

Combining (3.10) and (3.11), we obtain

‖tn − u∗‖2 6 ‖un − u∗‖2 −
(

1 −
µζn

ζn+1

)
‖un − yn‖2 −

(
1 −

µζn

ζn+1

)
‖tn − yn‖2. (3.12)

Due to ζn → ζ, there exits a number ε ∈ (0, 1 − µ) such that

lim
n→∞

(
1 −

µζn

ζn+1

)
= 1 − µ > ε > 0.

Thus, there exits a finite number n1 ∈N such that(
1 −

µζn

ζn+1

)
> ε > 0, ∀n > n1.

From (3.12), we obtain
‖tn − u∗‖2 6 ‖un − u∗‖2, ∀n > n1. (3.13)

Due to u∗ ∈ iEp and by the use of definition of {un+1}, we obtain∥∥un+1 − u
∗∥∥ =

∥∥αnu0 + (1 −αn)tn − u∗
∥∥

=
∥∥αn[u0 − u

∗] + (1 −αn)[tn − u∗]
∥∥ 6 αn

∥∥u0 − u
∗∥∥+ (1 −αn)

∥∥tn − u∗
∥∥.

(3.14)

Combining (3.13) and (3.14) and αn ⊂ (0, 1), we have∥∥un+1 − u
∗∥∥ 6 αn

∥∥u0 − u
∗∥∥+ (1 −αn)

∥∥un − u∗
∥∥.

6 max
{∥∥u0 − u

∗∥∥,
∥∥un − u∗

∥∥} 6 max
{∥∥u0 − u

∗∥∥,
∥∥un1 − u

∗∥∥}.

Thus, we conclude that the {un} is bounded sequence. Next, we explain the strong convergence of
the iterative sequence {un} constructed by Algorithm 1. The Lipschitz-continuity and pseudo-monotone
property of the bi-function f indicates that the solution set iEp is a convex and closed set (see [15, 39]).
Let u∗ = PiEp(u0) and by Lemma 2.2 (ii), we have

〈u0 − u
∗,y− u∗〉 6 0, ∀y ∈ iEp.

Due to Lemma 2.5 (i) and (3.12), we get∥∥un+1 − u
∗∥∥2

=
∥∥αnu0 + (1 −αn)tn − u∗

∥∥2

=
∥∥αn[u0 − u

∗] + (1 −αn)[tn − u∗]
∥∥2

= αn‖u0 − u
∗‖2 + (1 −αn)‖tn − u∗‖2 −αn(1 −αn)‖u0 − tn‖2

6 αn‖u0 − u
∗‖2 + (1 −αn)

[
‖un − u∗‖2 −

(
1 −

µζn

ζn+1

)
‖un − yn‖2

−
(

1 −
µζn

ζn+1

)
‖tn − yn‖2

]
−αn(1 −αn)‖u0 − tn‖2

6 αn‖u0 − u
∗‖2 + ‖un − u∗‖2

− (1 −αn)
(

1 −
µζn

ζn+1

)
‖un − yn‖2 − (1 −αn)

(
1 −

µζn

ζn+1

)
‖tn − yn‖2.

(3.15)
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The above relation implies that

(1 −αn)
(

1 −
µζn

ζn+1

)
‖un − yn‖2 + (1 −αn)

(
1 −

µζn

ζn+1

)
‖tn − yn‖2

6 αn‖u0 − u
∗‖2 + ‖un − u∗‖2 − ‖un+1 − u

∗‖2.

The remainder of the proof shall be split into the following two parts.

Case 1: Assume that there is a fixed number n2 ∈N such that

‖un+1 − u
∗‖ 6 ‖un − u∗‖, ∀n > n2.

Thus, above implies that limn→∞ ‖un − u∗‖ exists and let limn→∞ ‖un − u∗‖ = l. From (3.15), we get

(1 −αn)
(

1 −
µζn

ζn+1

)
‖un − yn‖2 + (1 −αn)

(
1 −

µζn

ζn+1

)
‖tn − yn‖2

6 αn‖u0 − u
∗‖2 + ‖un − u∗‖2 − ‖un+1 − u

∗‖2.

The existence of limn→∞ ‖un − u∗‖ = l and αn → 0, we can deduce that

lim
n→∞ ‖un − yn‖ = lim

n→∞ ‖tn − yn‖ = 0. (3.16)

It follows that
lim
n→∞ ‖un − tn‖ 6 lim

n→∞ ‖un − yn‖+ lim
n→∞ ‖yn − tn‖ = 0. (3.17)

Furthermore, we obtain∥∥un+1 − un
∥∥ =

∥∥αnu0 + (1 −αn)tn − un
∥∥

=
∥∥αn[u0 − un] + (1 −αn)[tn − un]

∥∥ 6 αn
∥∥u0 − un

∥∥+ (1 −αn)
∥∥tn − un

∥∥.

It follows that
lim
n→∞ ‖un+1 − un‖ = 0.

Thus, the implies that the sequences {yn} and {tn} are bounded. Due to the reflexivity of H and the
boundedness of {un} guarantees that there is a subsequence {unk} such that {unk} ⇀ û ∈ H as k → ∞.
Next, we need to prove that û ∈ iEp. Due to the inequality (3.3), the Lipschitz-like condition of f and
(3.6), we obtain

ζnkf(ynk ,y) > ζnkf(ynk , tnk) + 〈unk − tnk ,y− tnk〉

> ζnkf(unk , tnk) − ζnkf(unk ,ynk) −
µζnk

2ζnk+1
‖unk − ynk‖

2

−
µζnk

2ζnk+1
‖ynk − tnk‖

2 + 〈unk − tnk ,y− tnk〉

> 〈unk − ynk , tnk − ynk〉−
µζnk

2ζnk+1
‖unk − ynk‖

2

−
µζnk

2ζnk+1
‖ynk − tnk‖

2 + 〈unk − tnk ,y− tnk〉,

where y ∈ Hn. From (3.16) and (3.17) imply that right-hand side reaches to zero. From ζnk > 0, the
condition (Φ3) and ynk ⇀ û, we obtain

0 6 lim sup
k→∞ f(ynk ,y) 6 f(û,y), ∀y ∈ Hn.
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It follows that f(û,y) > 0, for all y ∈ C, and hence û ∈ iEp. Next, consider

lim sup
n→∞ 〈u0 − u

∗,un − u∗〉 = lim sup
k→∞ 〈u0 − u

∗,unk − u
∗〉 = 〈u0 − u

∗, û− u∗〉 6 0.

By the use of limn→∞ ∥∥un+1 − un
∥∥ = 0, we may conclude that

lim sup
n→∞ 〈u0 − u

∗,un+1 − u
∗〉 6 lim sup

n→∞ 〈u0 − u
∗,un+1 − un〉+ lim sup

n→∞ 〈u0 − u
∗,un − u∗〉 6 0. (3.18)

From Lemma 2.5 (ii) and (3.12), we have∥∥un+1 − u
∗∥∥2

=
∥∥αnu0 + (1 −αn)tn − u∗

∥∥2

=
∥∥αn[u0 − u

∗] + (1 −αn)[tn − u∗]
∥∥2

6 (1 −αn)
2∥∥tn − u∗

∥∥2
+ 2αn〈u0 − u

∗, (1 −αn)[tn − u∗] +αn[u0 − u
∗]〉

= (1 −αn)
2∥∥tn − u∗

∥∥2
+ 2αn〈u0 − u

∗,un+1 − u
∗〉

6 (1 −αn)
∥∥un − u∗

∥∥2
+ 2αn〈u0 − u

∗,un+1 − u
∗〉.

(3.19)

From (3.18), (3.19), and using Lemma 2.3, we may deduce that
∥∥un − u∗

∥∥→ 0 as n→∞.

Case 2: Assume there exits a subsequence {ni} of {n} such that

‖uni − u
∗‖ 6 ‖uni+1 − u

∗‖, ∀ i ∈N.

Thus, by Lemma 2.4, there exists a sequence {mk} ⊂N as {mk}→∞, such that

‖umk
− u∗‖ 6 ‖umk+1 − u

∗‖ and ‖uk − u∗‖ 6 ‖umk+1 − u
∗‖, for all k ∈N. (3.20)

Similar to Case 1, expression (3.15) provides that

(1 −αmk
)
(

1 −
µζmk

ζmk+1

)
‖umk

− ymk
‖2 + (1 −αmk

)
(

1 −
µζmk

ζmk+1

)
‖tmk

− ymk
‖2

6 αmk
‖u0 − u

∗‖2 + ‖umk
− u∗‖2 − ‖umk+1 − u

∗‖2.

Due to αmk
→ 0, we deduce the following:

lim
n→∞ ‖umk

− ymk
‖ = lim

n→∞ ‖tmk
− ymk

‖ = 0.

Also, we can obtain∥∥umk+1 − umk

∥∥ =
∥∥αmk

u0 + (1 −αmk
)tmk

− umk

∥∥
=
∥∥αmk

[u0 − umk
] + (1 −αmk

)[tmk
− umk

]
∥∥

6 αmk

∥∥u0 − umk

∥∥+ (1 −αmk
)
∥∥tmk

− umk

∥∥ −→ 0.

We use the same argument as in Case 1, which is as follows:

lim sup
k→∞ 〈u0 − u

∗,umk+1 − u
∗〉 6 0. (3.21)

Now, using expressions (3.19) and (3.20), we have∥∥umk+1 − u
∗∥∥2

6 (1 −αmk
)
∥∥umk

− u∗
∥∥2

+ 2αmk
〈u0 − u

∗,umk+1 − u
∗〉

6 (1 −αmk
)
∥∥umk+1 − u

∗∥∥2
+ 2αmk

〈u0 − u
∗,umk+1 − u

∗〉.
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It continues from that ∥∥umk+1 − u
∗∥∥2

6 2〈u0 − u
∗,umk+1 − u

∗〉. (3.22)

Since αmk
→ 0 and

∥∥umk
− u∗

∥∥ is bounded, thus from (3.21) and (3.22) we obtain

‖umk+1 − u
∗‖2 → 0, as k→∞.

It implies that
lim
n→∞ ‖uk − u∗‖2 6 lim

n→∞ ‖umk+1 − u
∗‖2 6 0.

Consequently, un → u∗. This completes the proof of the theorem.

4. Applications

Now, we consider the application of our main results to solve the problem of classic variational in-
equalities [38]. A mapping M : H→ H is defined as follows:

Find u∗ ∈ C such that
〈
M(u∗),y− u∗

〉
> 0, ∀y ∈ C. (VIP)

We consider the following conditions to study variational inequalities.

(M1) The solution set of the problem (VIP) denoted by VI(M,C) is non-empty.

(M2) M : H→ H is called to be a pseudo-monotone, i.e.,〈
M(u),y− u

〉
> 0 =⇒

〈
M(y),u− y

〉
6 0, ∀u,y ∈ C.

(M3) M : H→ H is called to be a Lipschitz continuous if there exits a constants L > 0 such that

‖M(u) −M(y)‖ 6 L‖u− y‖, ∀u,y ∈ C;

(M4) lim sup
n→∞ 〈M(un),y− un〉 6 〈M(q∗),y− q∗〉 for every y ∈ C and {un} ⊂ C satisfies un ⇀ q∗.

By the use of f(u,y) :=
〈
M(u),y− u

〉
, for all u,y ∈ C, thus, our main problem turns into the problem

of variational inequalities outlined above while L = 2c1 = 2c2. From the above value of the bi-function f,
we get 

yn = arg min
y∈C

{ζnf(un,y) + 1
2‖un − y‖2} = PC(un − ζnM(un)),

tn = arg min
y∈Hn

{ζnf(yn,y) + 1
2‖un − y‖2} = PHn

(un − ζnM(yn)).

Corollary 4.1. Let M : C → H be a mapping satisfying the conditions (M1)–(M4). Choose u0 ∈ C, ζ0 > 0 and a
sequence αn ⊂ (0, 1) meet the following conditions, i.e.,

lim
n→∞αn = 0 and

+∞∑
n=1

αn = +∞.

Assume that {un} generated as follows: 
yn = PC(un − ζnM(un)),
tn = PHn

(un − ζnM(yn)),
un+1 = αnu0 + (1 −αn)tn,



K. Muangchoo, J. Math. Computer Sci., 25 (2022), 115–132 125

where Hn = {z ∈ H : 〈un − ζnM(un) − yn, z− yn〉 6 0}. The step size rule revised in the following way:

ζn+1 =

{
min
{
ζn, µ‖un−yn‖

2+µ‖tn−yn‖2

2〈M(un)−M(yn),tn−yn〉

}
, if

〈
M(un) −M(yn), tn − yn

〉
> 0,

ζn, else.

Then, the sequence {un} converges strongly to u∗ ∈ VI(M,C).

Next, we study the application of our main results to solve the fixed-point problems associated with
the κ-strict pseudo-contraction mapping. The fixed point problem for a mapping N : H → H is defined as
follows:

Find u∗ ∈ C such that N(u∗) = u∗. (FPP)

We assume that the following conditions have been satisfied.

(N1) N : C→ C is said to be a κ-strict pseudo-contraction [8] on C if

‖Tu− Ty‖2 6 ‖u− y‖2 + κ‖(u− Tu) − (y− Ty)‖2, ∀u,y ∈ C;

(N2) lim sup
n→∞ 〈un −M(un),y− un〉 6 〈q∗ −G(q∗),y− q∗〉 for each y ∈ C and {un} ⊂ C satisfies un ⇀ q∗.

If we consider that the mapping N is a κ-strict pseudocontraction and weakly continuous then f(u,y) =
〈u−Nu,y− u〉 satisfies the conditions (Φ1)-(Φ4) and 2c1 = 2c2 = 3−2κ

1−κ .


yn = arg min

y∈C
{ζnf(un,y) + 1

2‖un − y‖2} = PC
[
un − ζn(un −N(un))

]
,

tn = arg min
y∈Hn

{ζnf(yn,y) + 1
2‖un − y‖2} = PHn

[
un − ζn(yn −N(yn))

]
.

Corollary 4.2. Let C be a nonempty, convex and closed subset of a Hilbert space H. Moreover, N : C → C is a
κ-strict pseudo-contraction and weakly continuous with solution set Fix(N) 6= ∅. Choose u0 ∈ C, ζ0 > 0 and a
sequence αn ⊂ (0, 1) meet the following conditions, i.e.,

lim
n→∞αn = 0 and

+∞∑
n

αn = +∞.

Assume that {un} generated as follows:
yn = PC

[
un − ζn(un −N(un))

]
,

tn = PHn

[
un − ζn(yn −N(yn))

]
,

un+1 = αnu0 + (1 −αn)tn,

where Hn = {z ∈ H : 〈(1 − ζn)un + ζnN(un) − yn, z− yn〉 6 0}. Compute

ζn+1 =

min
{
ζn, µ‖un−yn‖2+µ‖tn−yn‖2

2
〈
(un−yn)−[N(un)−N(yn)], tn−yn

〉}, if
〈
(un − yn) − [N(un) −N(yn)], tn − yn

〉
> 0,

ζn, else.

Then, sequence {un} strongly converges to u∗ ∈ Fix(N).
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5. Numerical illustrations

The numerical results of the study are provided in the following section to illustrate the effectiveness
of the proposed method. We studied one test problem in finite-dimensional space and second in-finite
dimensional space. From the experiments, we have seen how the starting point affects the efficiency of
algorithms.

Example 5.1. Assume that f : C× C→ R is defined by

f(u,y) = 〈Pu+Qy+ c,y− u〉, ∀u,y ∈ C,

where c ∈ Rn and P, Q are matrices of order n. The matrix P is symmetric positive semi-definite and
the matrix Q-P is symmetric negative semi-definite with Lipschitz-type constants c1 = c2 = 1

2‖P −Q‖
(see [39] for details). The matrices P,Q and vector c are defined as follows:

P =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 , Q =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 , c =


1
−2
−1
2
−1

 .

The constraint set C ⊂ Rn is defined by

C := {u ∈ Rn : −10 6 ui 6 10}.

The numerically and graphically findings of the three methods are shown in Figures 1-5 and Table 1 by
using y−1 = (0, 0, 0, 0, 0)T and letting different starting points u0 = y0. The control parameters criteria are
used as mentioned in the following:

(i) ζ = 1
5c1

, αn = 1
5(n+2) and Dn = ‖un − yn‖2 for Algorithm 2 (Algorithm-2) in [15].

(ii) ζ0 = 0.22, µ = 0.33, αn = 1
(n+1)0.5 , Dn = ‖un − yn‖2 for Algorithm 4.1 (Algorithm-4.1) in [22].

(iii) ζ0 = 0.22, µ = 0.33, αn = 1
5(n+2) and Dn = ‖un − yn‖2 for Algorithm 1 (Algorithm-1).
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100
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(b)

Figure 1: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = (1, 1, 1, 1, 1)T .
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Figure 2: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = (2, 2, 2, 2, 2)T .
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Figure 3: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = (−1,−2,−4,−1,−5)T .
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Figure 4: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = (−2,−2,−2,−2,−2)T .
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Figure 5: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = (1, 2,−3,−4, 5)T .

Table 1: Numerical results data for Figures 1-5.

Number of iterations CPU time in seconds

u0 Algorithm-2 Algorithm-4.1 Algorithm-1 Algorithm-2 Algorithm-4.1 Algorithm-1

(1, 1, 1, 1, 1)T 35 52 25 0.2947482 0.4185463 0.2085999
(2, 2, 2, 2, 2)T 38 55 27 0.3676513 0.4883899 0.2315488

(−1,−2,−4,−1,−5)T 52 54 36 0.4838859 0.6724367 0.4223327
(−2,−2,−2,−2,−2)T 38 55 27 0.4550715 0.6656828 0.3164745

(1, 2,−3,−4, 5)T 42 54 31 0.3845626 0.6906321 0.30042470

Example 5.2. Suppose that H = L2([0, 1]) is a Hilbert space with an inner product

〈u,y〉 =
∫ 1

0
u(t)y(t)dt, ∀u,y ∈ L2([0, 1]),

where the induced norm is defined by

‖u‖ =

√∫ 1

0
u2(t)dt, ∀u ∈ L2([0, 1]).

Moreover, assume that a bi-function f : H×H→ R is defined by

f(u,y) = 〈M(u),y− u〉,

where M(u(t)) =
∫t

0 u(s)ds for every u ∈ L2([0, 1]) and t ∈ [0, 1]. The feasible set C := {u ∈ L2([0, 1]) :∫1
0 tu(t)dt = 2}. It is easy to note that that f is monotone and Lipschitz-type continuous with c1 = c2 = 1

π

(see [4]). The projection on set C is computed in the following way:

PC(u)(t) := u(t) −

∫1
0 tu(t)dt− 2∫1

0 t
2dt

t, t ∈ [0, 1].

The numerically and graphically findings of the three methods are shown in Figures 6-9 and Table 2 by
using y−1 = t and letting different starting points u0 = y0. The control parameters criteria are used as
mentioned in the following:

(i) ζ = 1
7c1

, αn = 1
10(n+2) and Dn = ‖un − yn‖2 for Algorithm 2 (Algorithm-2) in [15].

(ii) ζ0 = 0.12, µ = 0.33, αn = 1
(n+1)0.5 , Dn = ‖un − yn‖2 for Algorithm 4.1 (Algorithm-4.1) in [22].
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(iii) ζ0 = 0.12, µ = 0.33, αn = 1
10(n+2) and Dn = ‖un − yn‖2 for Algorithm 1 (Algorithm-1).
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Figure 6: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = 3t2.
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Figure 7: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = −2t+ 5t2.
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Figure 8: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = 2et sin(t).
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Figure 9: Numerical comparison behaviour of Algorithm 1 with Algorithm 4.1 in [22] and Algorithm 2 in
[15] when u0 = −2et cos(t).

Table 2: Numerical results values for Figures 6-9.

Number of iterations CPU time in seconds

u0 Algorithm-2 Algorithm-4.1 Algorithm-1 Algorithm-2 Algorithm-4.1 Algorithm-1

3t2 28 36 19 1.1741502 2.1310576 1.3805529
−2t+ 5t2 31 46 13 1.689667 3.3207762 0.889326
2et sin(t) 41 51 26 1.7857041 3.3381265 1.8077202
−2et cos(t) 33 51 13 2.5144959 3.9310611 1.0745534

6. Conclusion

We have designed an explicit Halpern-type extragradient method to solve pseudo-monotone equi-
librium problem in a real Hilbert space, and we also confirm that the generated sequence is strongly
convergent to the solution. The applications of main results are being discussed to solve particular classes
of equilibrium problems. Numerical conclusions have been drawn to explain the numerical efficiency of
our algorithms compared to other methods. These numerical studies have shown that viscosity effects
improve the efficiency of the iterative sequence in this context.
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