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Abstract

This paper presents a new algorithm to find a non-zero positive real root of the transcendental equations. The proposed
method is based on the combination of the inverse tan(x) function and the Newton-Raphson method. Implementation of the
proposed method in MATLAB is applied to different problems to ensure the method’s applicability. The proposed method is
tested on number of numerical examples and results indicate that our methods are better and more effective as compared to
well-known methods. Error calculation has been done for available existing methods and the new proposed method. The errors
have been reduced rapidly and obtained the real root in less number of iterations as compared to renowned methods. Certain
numerical examples are presented in this paper to show the effectiveness of the proposed method. The Convergence of the
proposed method is discussed and shown that the method reduces to Newton-Raphson method that is quadratic convergent.
This approach will also help to produce a non-zero real root of a given non-linear equations (transcendental, algebraic, and
exponential) in the commercial package.
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1. Introduction

Root finding methods have enormous applications in many fields such as Finding Methods Applied
to Digital Maximum Power Point tracking of sustainable photovoltaic energy generation, computation of
gradient retention times in liquid chromatography, for solving non-linear differential equations, in circuit
analysis, analysis of state equations for a real gas, mechanical motions/oscillations, weather forecasting,
in optimization and many other fields of engineering designing processes. Root finding methods can also
be applied in the discrete stochastic arithmetic (DSA) to validate the class of multi-step iterative methods
and find the optimal numerical solution of non-linear equations.

In [5], Gemechu used derivative estimations up to the third-order (in root finding, some new initia-
tives) are applied in Taylor’s approximation of a non-linear function/equation to achieve efficient iterative
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methods. Competent methods of higher order for solving simple roots of nonlinear equations, which im-
prove the convergence of some basic existing methods, are investigated. The Control of Accuracy and
Debugging for Numerical Applications (CADNA) library are applied in [1]. By using this approach,
the optimal number of iteration and the optimal solution with its accuracy are found. In this case, the
usual stopping termination in the iterative procedure is replaced by a new criterion that is independent
of the given tolerance such that the optimal results are evaluated computationally. In [2], Kwasinski and
Chun discussed the application of classical mathematical root-finding optimization methods for maxi-
mum power point tracking (MPPT) of photovoltaic (PV) systems. Since in this study these methods are
implemented digitally, practical issues encountered when digitally implementing a method originally
based on a continuous domain are also explored. In particular, this study discusses potential errors inher-
ently caused by digital processes not substantially explored in previous MPPT papers, such as algorithm
numerical stability, quantization error, and discretization error analysis.

López-Ureña et. al [6], enhanced the computation of gradient retention times in liquid chromatog-
raphy using root-finding methods. In this approach, the authors solved an integral equation (i.e., the
fundamental equation of gradient elution), which has an analytical solution only for certain combinations
of the retention model and gradient program. This limitation can be overcome by using numerical integra-
tion, which is a universal approach although at the cost of longer computation times. A simple algorithm
is proposed by the author in [10], to construct Newton iteration formulae of any order commencing from
the traditional linearly convergent fixed point iteration method and quadratically convergent Newton-
Raphson method of frequently at the disposal of the scientific community. It is also shown that the
well-known variants like Halley’s method or Haouseholder’s methods of a high order can be reproduced
from the general case outlined.

Most of the engineering and scientific problems are expressed as non-linear transcendental equations
for which the evaluation of roots are more complicated. Such non-linear equations involve in various
physical problems like van der waal equation, decay equation, charlesrichter magnitude of earthquake
and surface-wave formula. In [7], Mahesh et. al proposed a quadratic convergent iterative method which
reduced the error rapidly and very efficient for finding roots of non-linear equations. Noor [9] introduced
a two-step iterative method for finding roots of non-linear equations, these methods perform better than
one-step iterative methods including Newton method. He also suggested and analyzed a new family of
iterative methods for solving non-linear equations using the system of coupled equations coupled with
the decomposition technique [8].

2. Proposed method

The alternative iterative trigonometric equation is proposed as

xn+1 = xn

1 + 2 tan−1
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 , n = 0, 1, 2, · · · . (2.1)

By extending the above iterative formula, as in the first two terms, one can obtain the standard Newton-
Raphson method, and several methods are obtained based on series truncation. In reality:

Theorem 2.1. Suppose α 6= 0 is a real exact root of the algebraic/trancendental equation f(x) and h is a very small
neighborhood of α. Let f′′(x) exists and f′(x) 6= 0 in h. Then the proposed method given in (2.1) produces a sequence
of terms {xn : n = 0, 1, 2, · · · } with quadratically convergent.

Proof. The proposed method in (2.1) can be expressed in the form as
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Using standard expansion tan−1(x) = x− x3

3 + x5

5 − · · · , Neglecting the higher order terms, we get
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as
(

f(xn

f′(xn)

)2
= h2 → 0 since h is very small.

The above equation (2.3) reduces to

xn+1 =xn
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This shows that the proposed method reduces to Newton-Raphson method and having quadratic conver-
gence.

2.1. Proposed algorithm
• Identify the initial approximations x0 & x1 such that f(x0)× f(x1) < 0.

• Apply the proposed method to find the next approximation root of the given equation.

• Repeat the above step until we get the desired approximate root.

Flow chart of the proposed method is presented in Figure 1.

3. Numerical experiments

This section presents some numerical examples to explain the efficiency of the proposed method
provided in the section above, and comparisons are taken into consideration to ensure that the proposed
method is more efficient than other methods.

The following problems are considered to show the effectiveness of our proposed method. Here x0 is
considered as the initial approximation to the root.

Example 3.1. f(x) = xe−x − 0.1 with x0 = 0.1.

Example 3.2. f(x) = 11x11 − 1 with x0 = 1.

Example 3.3. f(x) = x− esinx + 1 with x0 = 2.

Example 3.4. f(x) = ln x with x0 = 0.5.

In the numerical experiments, the errors are taken as 10−15, and the maximum number of iterations is
limited to 100, the results of examples 1 to 4 are shown in Table 1.
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Figure 1: Flow chart of the proposed method.

Table 1: The numerical comparison of examples using various existing methods.
Ex. Chen & Li [3] Chen & Li [4] Proposed method

n xn |f(xn)| n xn |f(xn)| n xn |f(xn)|

1 6 1.11833e-01 0.00000e+00 6 1.11833e-01 0.00000e+00 3 1.11833e-01 0.0000e+00
2 7 8.04133e-01 1.22124e-15 8 8.04133e-01 4.44089e-16 7 8.04133e-01 4.44089e-16
3 5 1.69681e+00 4.44089e-16 11 1.69681e+00 4.44089e-16 5 1.69681e+00 4.44089e-16
4 6 1.00000e+00 0.00000e+00 7 1.00000e+00 0.00000e+00 5 1.00000e+00 0.0000e+00

Example 3.1. Consider a transcendental equation

f(x) = xe−x − 0.1. (3.1)

The following Table 2 shows the comparison between different existing methods and proposed method
with initial approximations x0 = 0 and x1 = 1. Here n represents iteration numbers and xn represents the
corresponding approximation root.

Table 2: The numerical comparison of Example 3.1 using different existing methods.
Bisection Regula-Falsi method Proposed method

n xn n xn n xn
1 0.5 1 0.271828182845905 1 0.11171239019496900
2 0.25000000000000000 2 0.13123614957214600 2 0.11183254383445500
3 0.12500000000000000 3 0.11402370160043800 3 0.11183255915896300
4 0.06250000000000000 4 0.11207786888180100 4 0.11183255915896300
...

...
...

...
42 0.11183255915898400 17 0.11183255915896300
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Example 3.2. Consider a transcendental equation

f(x) = 11x11 − 1. (3.2)

The following Table 3 shows the comparison between different existing methods and proposed method
with initial approximations x0 = 0 and x1 = 1. Here n represents iteration numbers and xn represents
corresponding approximation root.

Table 3: The numerical comparison of Example 3.2 using different existing methods.
Bisection Regula-Falsi method Proposed method

n xn n xn n xn
1 0.5 1 0.090909090909091 1 0.917261051121725
2 0.75 2 0.173553719005368 2 0.853423490462349
3 0.875 3 0.248685195862868 3 0.816152164916169
4 0.8125 4 0.316986388027222 4 0.804979772313121
...

...
...

...
49 0.804133097503664 108 0.804133097503664 7 0.804133097503664

Example 3.3. Consider a transcendental equation

f(x) = x− esinx + 1. (3.3)

The following Table 4 shows the comparison between different existing methods and proposed method
with initial approximations x0 = 1.5 and x1 = 2. Here n represents iteration numbers and xn represents
corresponding approximation root.

Table 4: The numerical comparison of Example 3.3 using different existing methods.
Bisection Regula-Falsi method Proposed method

n xn n xn n xn
1 1.75 1 1.645067953924812 1 1.744811921632327
2 1.625 2 1.685074247441264 2 1.698840973066092
3 1.6875 3 1.694253896381327 3 1.696816413391276
4 1.71875 4 1.696259793878769 4 1.696812386825692
...

...
...

...
...

...
49 1.696812386809751 24 1.696812386809751 6 1.696812386809751

Example 3.4. Consider a transcendental equation

f(x) = ln x. (3.4)

The following Table 5 shows the comparison between different existing methods and proposed method
with initial approximations x0 = 0.5 and x1 = 1.2. Here n represents iteration numbers and xn represents
corresponding approximation root.
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Table 5: The numerical comparison of Example 3.4 using different existing methods.
Bisection Regula-Falsi method Proposed method

n xn n xn n xn
1 0.85 1 1.000001949490732 1 0.874016607739766
2 1.025 2 1.000000543230269 2 0.992066210397659
3 0.9375 3 1.000000151372449 3 0.999968527492996
4 0.98125 4 1.000000042180307 4 0.999999999504741
...

...
...

...
53 1.000000000000000 23 1.000000000000000 5 1.000000000000000

4. Conclusions

The proposed work proves the primacy for finding the approximate root of a given transcendental
function is much better than previously existing methods such as Bisection, Regula-Falsi and secant
methods. This act has been illustrated through standard numerical examples. The proposed method is
based on the combination of inverse tan series and Newton-Raphson method. The rate of convergence
of the proposed method is discussed and found to be quadratic. Performance of the proposed method
is done through Matlab programming. On the whole, the proposed method executes much faster and
more accurate convergence to the exact solution than the previously existing standard methods. This
proposed algorithm can be applied in the discrete stochastic arithmetic (DSA) to validate the class of
multi-step iterative methods and find the optimal numerical solution of nonlinear equations, maximum
power point tracking (MPPT) of photovoltaic (PV) systems. This method is also applicable for finding
potential errors inherently caused by digital processes such as algorithm numerical stability, quantization
error and concretization error analysis.
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