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Abstract

In this study, the concept of θs-open set is introduced. The topology formed by θs-open sets is strictly finer than the
topology formed by θ-open sets but is not comparable with the topology formed by ωθ-open sets. Related concepts such as θs-
open and θs-closed functions, θs-continuous function, θs-connected space, and some versions of separation axioms are defined
and characterized. Finally, the concept of θs-continuous function from an arbitrary topological space into the product space is
investigated further.
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1. Introduction and Preliminaries

Introducing new versions of open sets in a topological space which may acquire either weaker or
stronger properties is often studied. The first attempt was done by Levine [21], where he introduced the
concepts of semi-open set, semi-closed set and semi-continuity of a function.

A subset O of a space X is semi-open if O ⊆ Cl(Int(O)). Equivalently, O is semi-open if there exists
an open set G in X such that G ⊆ O ⊆ Cl(G). A subset F of X is semi-closed if its complement X \ F is
semi-open in X. Let A be a subset of a space X. A point p ∈ X is a semi-closure point of A if for every
semi-open set G in X containing x, G ∩A 6= ∅. We denote by sCl(A) the set of all semi-closure points of
A.

In 1968, Velicko [24] introduced the concept of θ-continuity between topological spaces and defined
the concepts of θ-closure and θ-interior of a set. The concepts of θ-open sets and its related topological
concepts had been also studied by numerous authors, see [1, 5, 6, 13, 14, 17–19, 22, 23].

Let (X,T) be a topological space and A ⊆ X. The θ-closure and θ-interior of A are, respectively, defined
by Clθ(A) = {x ∈ X : Cl(U) ∩A 6= ∅ for every open set U containing x} and Intθ(A) = {x ∈ X : Cl(U) ⊆
A for some open set U containing x}, where Cl(U) is the closure of U in X. A is θ-closed if Clθ(A) = A
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and θ-open if Intθ(A) = A. Equivalently, A is θ-open if and only if X \A is θ-closed. It is known that the
collection Tθ of all θ-open sets forms a topology on X, which is strictly coarser that T.

In 1982, Hdeib [16] introduced the concepts of ω-open, ω-closed sets and ω-closed mappings on a
topological space. He showed that ω-closed mappings are strictly weaker than closed mappings. The col-
lection Tω of all ω-open sets forms a topology on X, which is strictly finer than T. Several mathematicians
studied the concepts related toω-open sets and its corresponding topological concepts, see [2–4, 7–12, 20].

In 2010, Ekici et al. [15] introduced the concepts ofωθ-open andωθ-closed sets on a topological space.
Then the concepts of ωθ-interior, ωθ-closure, ωθ-continuity and ωθ-connectedness were subsequently
defined.

A point x of a topological space X is called a condensation point of A ⊆ X if for each open set G
containing x, G ∩ A is uncountable. A subset B of X is ω-closed if it contains all of its condensation
points. The complement of B is ω-open. Equivalently, a subset U of X is ω-open (resp., ωθ-open) if and
only if for each x ∈ U, there exists an open set O containing x such that O \U (resp., O \ Intθ(U)) is
countable. A subset B of X is ωθ-closed if its complement X \ B is ωθ-open. It is worth noting that the
collection Tωθ of ωθ-open sets forms a topology on X that is strictly finer than Tθ but is not comparable
with T.

Let A be an indexing set and {Yα : α ∈ A} be a family of topological spaces. For each α ∈ A, let
Tα be the topology on Yα. The Tychonoff topology on Π{Yα : α ∈ A} is the topology generated by a
subbase consisting of all sets p−1

α (Uα), where the projection map pα : Π{Yα : α ∈ A} → Yα is defined by
pα(〈yβ〉) = yα, Uα ranges over all members of Tα, and α ranges over all elements of A. Corresponding to
Uα ⊆ Yα, denote p−1

α (Uα) by 〈Uα〉. Similarly, for finitely many indices α1,α2, . . . ,αn, and sets Uα1 ⊆ Yα1 ,
Uα2 ⊆ Yα2 , . . . ,Uαn ⊆ Yαn , the subset 〈Uα1〉 ∩ 〈Uα2〉 ∩ · · · ∩ 〈Uαn〉 = p−1

α1
(Uα1)∩p−1

α2
(Uα2)∩ · · · ∩p−1

αn
(Uαn)

is denoted by 〈Uα1 ,Uα2 , . . . ,Uαn〉. We note that for each open set Uα subset of Yα, 〈Uα〉 = p−1
α (Uα) =

Uα ×Πβ 6=αYβ. Hence, a basis for the Tychonoff topology consists of sets of the form 〈Bα1 ,Bα2 , . . . ,Bαk〉,
where Bαi is open in Yαi for every i ∈ K = {1, 2, . . . , k}.

Now, the projection map pα : Π{Yα : α ∈ A} → Yα is defined by pα(〈yβ〉) = yα for each α ∈ A. It is
known that every projection map is a continuous open surjection. Also, it is well known that a function
f from an arbitrary space X into the Cartesian product Y of the family of spaces {Yα : α ∈ A} with the
Tychonoff topology is continuous if and only if each coordinate function pα ◦ f is continuous, where pα
is the α-th coordinate projection map.

In this paper, we define a new type of topology that is strictly finer than Tθ, strictly coarser than T,
and is not comparable with Tωθ .

2. θs-open sets and some functions

In this section, we shall define the concept of θs-open set and determine its connection to the classical
open, θ-open, and ωθ-open sets. We shall also define and characterize the concepts of θs-open and
θs-closed functions.

Definition 2.1. Let X be a topological space. A ⊆ X is said to be θs-open if for every x ∈ A, there exists
an open set U containing x such that sCl(U) ⊆ A. A subset F of X is called a θs-closed if its complement
X \ F is θs-open.

Remark 2.2. The following diagram holds for a subset of a topological space.

ωθ-open ω-open

θ-open θs-open open semi-open

We also remark that the above diagram is also true for their respective closed sets. We note that since
ωθ-open and open are two independent notions [15, Example 5], ωθ-open does not imply θs-open.
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Remark 2.3. The implications in the above diagram (with respect to θs-open set) are not reversible. To see
this, consider the following examples.

(i) Let X = {a,b, c,d} with topology T = {∅,X, {a}, {b}, {c}, {a,b}, {a, c}, {b, c}, {a,b, c}}. Then {a} is θs-open
but not θ-open.

(ii) Let X = {a,b, c} with topology T = {∅,X, {a}, {b}, {a,b}}. Then {a,b} is open but not θs-open.
(iii) Consider R as the real number line with topology T = {∅, R, N, R \ Z, N ∪ (R \ Z)}. Then R \ Z is

θs-open but not ωθ-open.

Before showing that the collection of θs-open sets forms a topology, we shall consider first the follow-
ing remark.

Remark 2.4. Let A ⊆ X. Then sCl(A) is the smallest semi-closed set containing A, that is, sCl(A)=
⋂
{F : F is

semi-closed and A ⊆ F}. Moreover, for B,C ⊆ X, we have

(i) if B ⊆ C, then sCl(B) ⊆ sCl(C);
(ii) sCl(sCl(B)) = sCl(B);

(iii) sCl(B)∪ sCl(C) ⊆ sCl(B∪C);
(iv) if A is closed, then sCl(A) = A.

Theorem 2.5. Let Tθs be a family of all θs-open subsets of a topological space X. Then Tθs forms a topology on X.

Proof. Obviously, ∅,X ∈ Tθs . Now, let {Aα : α ∈ I} be a collection of a θs-open subsets of X. Let
x ∈ ∪{Aα : α ∈ I}. Then x ∈ Aα for some α ∈ I. Since Aα is θs-open, there exists an open set U containing
x such that sCl(U) ⊆ Aα ⊆ ∪{Aα : α ∈ I}. Thus, ∪{Aα : α ∈ I} is θs-open.

Next, x ∈ A1 ∩A2, where A1,A2 ∈ Tθs . Then there exist open sets U1 and U2 both containing x such
that sCl(U1) ⊆ A1 and sCl(U1) ⊆ A2. Note that U1 ∩U2 is an open set containing x. By Remark 2.4,
sCl(U1 ∩ U2) ⊆ sCl(U1) ∩ sCl(U2) ⊆ A1 ∩ A2. Hence, A1 ∩ A2 is θs-open. Consequently, Tθs forms a
topology on X.

Definition 2.6. Let X be a topological space and A ⊆ X. Then the θs-interior of A is denoted and defined
by Intθs(A)=∪{U : U is θs-open and U ⊆ A}. We note that by Theorem 2.5, Intθs(A) is the largest θs-open
set contained in A. Moreover, x ∈ Intθs(A) if and only if there exists a θs-open set U containing x such
that U ⊆ A.

Definition 2.7. Let X be a topological space and A ⊆ X. Then the θs-closure of A is denoted and defined
by Clθs(A)=∩{F : F is θs-closed and A ⊆ F}. We note that by Theorem 2.5, Clθs(A) is the smallest θs-closed
set containing A.

Remark 2.8. Let X be a topological space and A,B ⊆ X. Then

(i) if A ⊆ B, then Intθs(A) ⊆ Intθs(B);
(ii) A is θs-open if and only if A = Intθs(A);

(iii) Intθs(Intθs(A)) = Intθs(A);
(iv) Intθs(A∩B) = Intθs(A)∩ Intθs(B);
(v) x ∈ Clθs(A) if and only if for every θs-open subset U containing x, U∩A 6= ∅;
(v) A ⊆ B implies that Clθs(A) ⊆ Clθs(B);

(vi) A is θs-closed if and only if Clθs(A) = A;
(vii) Clθs(Clθs(A)) = Clθs(A);

(viii) Clθs(A)∪Clθs(B) = Clθs(A∪B);
(ix) Intθs(X \A) = X \ Clθs(A);
(x) Clθs(X \A) = X \ Intθs(A);

(xi) A is θs-open if and only if for every x ∈ A, there exists a basic open set B containing x such that
sCl(B) ⊆ A;
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(xii) x ∈ Intθs(A) if and only if there exists an open set O containing x such that sCl(O) ⊆ A;
(xiii) x ∈ Clθs(A) if and only if for every open set U containing x, sCl(U)∩A 6= ∅.

Next, we introduce and characterize the concepts of θs-open and θs-closed functions.

Definition 2.9. Let X and Y be topological spaces. A function f : X→ Y is θs-open (resp., θs-closed) on X
if f(G) is θs-open (resp., θs-closed) in Y for every open (resp., closed) set G in X.

Theorem 2.10. Let X and Y be topological spaces and f : X → Y be a function. Then the following statements are
equivalent.

(i) f is θs-open on X.
(ii) f(Int(A)) ⊆ Intθs(f(A)) for every A ⊆ X.

(iii) f(B) is θs-open for every basic open set B in X.
(iv) For each x ∈ X and for every open set U in X containing x, there exists an open set V in Y containing f(x)

such that sCl(V) ⊆ f(U).

Proof.

(i)⇒(ii): Let A ⊆ X. Note that f(Int(A)) ⊆ f(A) and f(Int(A)) is θs-open. In view of Definition 2.6,
f(Int(A)) ⊆ Intθs(f(A)).

(ii)⇒(iii): Let B be a basic open set in X. Then f(B) = f(Int(B)) ⊆ Intθs(f(B)) ⊆ f(B). By Remark 2.8,
f(B) is θs-open.

(iii)⇒(iv): Let x ∈ X and let U be an open set containing x. Then there exists a basic open set B containing
x such that B ⊆ U, which implies that f(x) ∈ f(B) ⊆ f(U). By assumption, there exists an open set V in Y
containing f(x) such that sCl(V) ⊆ f(B) ⊆ f(U).

(iv)⇒(i): Let U be an open set in X and let y ∈ f(U). Then there exists x ∈ U such that f(x) = y. By
assumption, there exists an open set V in Y containing y such that sCl(V) ⊆ f(U), hence f(U) is θs-open
in Y. Thus, f is θs-open on X.

Theorem 2.11. Let X and Y be topological spaces and f : X → Y be a function. Then the following statements are
equivalent:

(i) f is θs-closed on X;
(ii) Clθs(f(A)) ⊆ f(Cl(A)) for every A ⊆ X.

Proof.

(i)⇒ (ii): Let A ⊆ X. Note that f(A) ⊆ f(Cl(A)) and f(Cl(A)) is θs-closed. In view of Definition 2.7,
Clθs(f(A)) ⊆ f(Cl(A)).

(ii)⇒(i): Let F be a closed set in X. By assumption, f(F) ⊆ Clθs(f(F)) ⊆ f(Cl(F)) = f(F). Thus, f(F) is
θs-closed. Therefore, f is θs-closed on X.

Remark 2.12. Let X and Y be topological spaces and f : X→ Y be a bijective function. Then f is θs-open on
X if and only if f is θs-closed on X.

3. θs-continuity of functions in the product space

In this section, we define the concept of θs-continuous function and then give its characterization from
an arbitrary topological space into the product space.

Definition 3.1. A function f : X→ Y is θs-continuous if f−1(G) is θs-open for every open set G of Y.

The proofs of the following results are standard, hence omitted.



J. A. Hassan, M. A. Labendia, J. Math. Computer Sci., 25 (2022), 182–190 186

Theorem 3.2. Let X and Y be topological spaces and f : X → Y be a function. Then the following statements are
equivalent:

(i) f is θs-continuous on X;
(ii) f−1(F) is θs-closed in X for each closed subset F of Y;

(iii) f−1(B) is θs-open for each (subbasic) basic open set B in Y;
(iv) for every p ∈ X and every open set V of Y containing f(p), there exists a θs-open set U containing p such that

f(U) ⊆ V ;
(v) f(Clθs(A) ⊆ Cl(f(A)) for each A ⊆ X;

(vi) Clθs(f
−1(B)) ⊆ f−1(Cl(B)).

Theorem 3.3. Let X and Y be topological spaces and fA : X → D the characteristic function of a subset A of X,
where D is the set {0, 1} with the discrete topology. Then fA is θs-continuous if and only if A is both θs-open and
θs-closed.

In the following results, if Y = Π{Yα : α ∈ A} is a product space and Aα ⊆ Yα for each α ∈ A, we
denote Aα1 × · · · ×Aαn ×Π{Yα : α /∈ K} by 〈Aα1 , · · · ,Aαn〉, where K = {α1, · · · ,αn}.

If Y = Π{Yαi : 1 6 i 6 n} is a finite product, denote Aα1 × · · · ×Aαn by 〈Aα1 , · · · ,Aαn〉.

Theorem 3.4. Let Y = Π{Yα : α ∈ A} be a product space, S = {α1,α2, . . . ,αn} ⊆ A and ∅ 6= Oαi ⊆ Yαi for each
αi ∈ S. If each Oai is semi-open in Yαi , then O = 〈Oα1 ,Oα2 , . . . ,Oαn〉 is semi-open in Y.

Proof. Suppose that Oαi is semi-open in Yαi . Then for each αi ∈ S, there exists an open set Gαi such that
Gαi ⊆ Oαi ⊆ Cl(Gαi). Let G = 〈Gα1 ,Gα2 , . . . ,Gαn〉 which is open in Y. Hence,

G ⊆ O ⊆ 〈Cl(Gα1), Cl(Gα2), . . . , Cl(Gαn)〉 = Cl(〈G〉).

Thus, O is semi-open in Y.

Theorem 3.5. Let Y = Π{Yα : α ∈ A} be a product space and Aα ⊆ Yα for each α ∈ A. Then sCl(Π{Aα : α ∈
A}) ⊆ Π{sCl(Aα) : α ∈ A}.

Proof. Let x = 〈aα〉 /∈ Π{sCl(Aα) : α ∈ A}. Then aβ /∈ sCl(Aβ) for some β ∈ A. This means that there
exists a semi-open set Gβ containing aβ such that Gβ ∩Aβ = ∅. By Theorem 3.4, 〈Gβ〉 is semi-open
containing x. Hence 〈Gβ〉 ∩Π{Aα : α ∈ A} = ∅. Thus, x /∈ sCl(Π{Aα : α ∈ A}).

Theorem 3.6. Let Y = Π{Yα : α ∈ A} be a product space and Aα ⊆ Yα for each α ∈ A. Then Clθs(Π{Aα : α ∈
A}) ⊆ Π{Clθs(Aα) : α ∈ A}.

Proof. Let x = 〈aα〉 ∈ Clθs(Π{Aα : α ∈ A}). Then for every open set O containing x, sCl(O) ∩ Π{Aα :
α ∈ A} 6= ∅. Suppose that there exists β ∈ A such that aβ /∈ Clθs(Aβ). Then there exists an open set
Uβ containing aβ such that sCl(Uβ) ∩Aβ = ∅. By Theorem 3.5, sCl(〈Gβ〉) ⊆ 〈sCl(Gβ)〉. It follows that
x = 〈aα〉 ∈ 〈Uβ〉 and sCl(〈Gβ〉)∩Π{Aα : α ∈ A} = ∅, a contradiction. Thus, x ∈ Π{Clθs(Aα) : α ∈ A}.

Theorem 3.7. Let Y = Π{Yi : 1 6 i 6 n} be a (finite) product space and Ai ⊆ Yi for each i = 1, . . . ,n. Then

Π{Intθs(Ai) : 1 6 i 6 n} ⊆ Intθs(Π{Ai : 1 6 i 6 n}).

Proof. Let x = 〈a1,a2, . . . ,an〉 ∈ Π{Intθs(Ai) : 1 6 i 6 n}. Then ai ∈ Intθs(Ai) for all i = 1, 2, . . . ,n. This
means that for all i = 1, 2, . . . ,n, there esists an open set Oi containing ai such that sCl(Oi) ⊆ Ai. Let O =
〈O1,O2, . . . ,On〉, which is an open set in Y containing x. By Theorem 3.5, sCl(O) = sCl(〈O1,O2, . . . ,On〉) ⊆
〈sCl(O1), sCl(O2), . . . , sCl(On)〉 ⊆ 〈A1,A2, . . .An〉. Hence, x ∈ Int(Π{Ai : 1 6 i 6 n}).

Theorem 3.8. Let Y = Π{Yα : α ∈ A} be a product space, S = {α1,α2, . . . ,αn} ⊆ A and ∅ 6= Oαi ⊆ Yαi for each
αi ∈ S. If each Oai is θs-open in Yαi , then O = 〈Oα1 ,Oα2 , . . . ,Oαn〉 is θs-open in Y.
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Proof. Let x = 〈aα〉 ∈ O. Then, aαi ∈ Oαi for every αi ∈ S. This means that for every αi ∈ S, there exists
an open set Uαi containing aαi such that sCl(Uαi) ⊆ Oαi . Let U = 〈Uα1 ,Uα2 , . . . ,Uαn〉. Then x ∈ U and
by Theorem 3.5, sCl(U) = 〈sCl(Uα1), sCl(Uα2), . . . , sCl(Uαn)〉 ⊆ O. Thus, O is θs-open in Y.

Theorem 3.9. Let X = Π{Xα : α ∈ A} and Y = Π{Yα : α ∈ A} be product spaces and for each α ∈ A,
let fα : Xα → Yα be a function. If each fα is θs-continuous on Xα, then the function f : X → Y defined by
f(〈xα〉) = 〈fα(xα)〉 is θs-continuous on X.

Proof. Let 〈Vα〉 be a subbasic open set in Y. Then f−1(〈Vα〉) = 〈f−1
α (Vα)〉. Since each fα is θs-continuous,

f−1
α (Vα) is θs-open in Xα. Let x = 〈xβ〉 ∈ f−1(〈Vα〉) = 〈f−1

α (Vα)〉. Then xα ∈ f−1
α (Vα). Hence, there exists

an open set Uα containing xα such that sCl(Uα) ⊆ f−1
α (Vα). Note that 〈Uα〉 is open in X containing x. By

Theorem 3.5, sCl(U) ⊆ 〈sCl(Uα)〉 ⊆ 〈f−1
α (Vα)〉 = f−1(〈Vα〉). This means that f−1(〈Vα〉) is θs-open in X.

Thus, f is θs-continuous on X.

Theorem 3.10. Let X be a topological space and Y = Π{Yα : α ∈ A} be a product space. A function f : X → Y is
θs-continuous on X if and only if pα ◦ f is θs-continuous on X for every α ∈ A.

Proof. Suppose that f is θs-continuous on X. Let α ∈ A, and Oα be open in Yα. Since pα is continuous,
p−1
α (Oα) is open in Y. Hence, f−1(p−1

α (Oα)) = (pα ◦ f)−1(Oα) is θs-open in X. Thus, pα ◦ f is θs-
continuous for every α ∈ A.

Conversely, suppose that each coordinate function pα ◦ f is θs-continuous. Let Gα be open in Yα.
Then 〈Gα〉 is a subbasic open set in Y and (pα ◦ f)−1(Gα) = f−1(p−1

α (Gα)) = f−1(〈Gα〉) is θs-open in X.
Therefore, f is θs-continuous on X.

Corollary 3.11. Let X be a topological space, Y = Π{Yα : α ∈ A} be a product space, and fα : X→ Yα be a function
for each α ∈ A. Let f : X→ Y be the function defined by f(x) = 〈fα(x)〉. Then, f is θs-continuous on X if and only
if each fα is θs-continuous on X for each α ∈ A.

4. θs-connected spaces and some versions of separation axioms

In this section, we define and characterize the concepts of θs-connected, θs-Hausdorff, θs-regular, and
θs-normal spaces

Definition 4.1. A topological space X is said to be θs-connected if it is not the union of two nonempty
disjoint θs-open sets. Otherwise, X is θs-disconnected. A subset B of X is θs-connected if it is θs-connected
as a subspace of X.

Theorem 4.2. Let X be a topological space. Then the following statements are equivalent:

(i) X is θs-connected;
(ii) the only subsets of X that are both θs-open and θs-closed are ∅ and X;

(iii) no θs-continuous function f : X→ D is surjective.

Theorem 4.3 ([20]). A topological space X is connected if and only if it is θ-connected.

In view of Remark 2.2 and Theorem 4.3, we have the following result.

Theorem 4.4. A topological space X is θs-connected if and only if it is θ-connected.

Remark 4.5. The following diagram holds for a subset of a topological space.

ωθ-connected ω-connected

θ-connected θs-connected connected semi-connected
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Definition 4.6. A topological space X is said to be

(i) θs-Hausdorff if given any pair of distinct points p, q in X there exist disjoint θs-open sets U and V
such that p ∈ U and q ∈ V ;

(ii) θs-regular if for each closed set F and each point x /∈ F, there exist disjoint θs-open sets U and V such
that x ∈ U and F ⊆ V ;

(iii) θs-normal if for every pair of disjoint closed sets E and F of X, there exist disjoint θs-open sets U and
V such that E ⊆ U and F ⊆ V .

In view of Remark 2.2, every θs-Hausdorff (resp., θs-regular, θs-normal) space is Hausdorff (resp.,
regular, normal).

Theorem 4.7. Let X be a topological space. Then the following statements are equivalent:

(i) X is θs-Hausdorff;
(ii) let x ∈ X, for y 6= x, there exists a θs-open set U containing x such that y /∈ Clθs(U);

(iii) for each x ∈ X, C = ∩{Clθs(U) : U is θs-open containing x}={x}.

Proof.

(i)⇒(ii): For every distinct points x,y ∈ X, there exist disjoint θs-open sets U and V such that x ∈ U and
y ∈ V . By Remark 2.8, y /∈ Clθs(U).

(ii)⇒ (iii): Note that x ∈ C. By assumption, for every y 6= x, there exists a θs-open set U containing x
such that y /∈ Clθs(U). Thus, y /∈ C. Since y is arbitrary, C = {x}.

(iii)⇒(i): Let x,y ∈ X such that x 6= y. By assumption, there exists a θs-open set U containing x such that
y /∈ Clθs(U). By Remark 2.8, there exists a θs-open set V containing y such that U∩ V = ∅. Hence, X is a
θs-Hausdorff.

Theorem 4.8. Let X be a topological space. Then the following statements are equivalent:

(i) X is θs-regular;
(ii) for each x ∈ X and an open set U containing x, there exists θs-open set V such that x ∈ V ⊆ Clθs(V) ⊆ U;

(iii) for each x ∈ X and closed set Fwith x /∈ F, there exists a θs-open set V containing x such that F∩Clθs(V) = ∅.

Proof.

(i)⇒(ii): Let x ∈ X and U be an open set containing x. By assumption, there exist disjoint θs-open sets
V and W such that x ∈ V and X \U ⊆ W. By Remark 2.8, Clθs(V) ⊆ Clθs(X \W) = X \W. Moreover,
Clθs(V)∩ (X \U) ⊆ Clθs(V)∩W = ∅. Hence, Clθs(V) ⊆ U. Therefore, x ∈ V ⊆ Clθs(V) ⊆ U.

(ii)⇒(iii): Let x ∈ X and F be a closed set in X with x /∈ F. By assumption, there exists a θs-open set V
containing x such that V ⊆ Clθs(V) ⊆ X \ F. This means that Clθs(V)∩ F = ∅.

(iii)⇒(i): Let x ∈ X and F be a closed set with x /∈ F. By assumption, there exists a θs-open set V
containing x such that Clθs(V) ∩ F = ∅. Note that X \ Clθs(V) is a θs-open set and F ⊆ X \ Clθs(V).
Furthermore, V ∩X \ Clθs(V) = ∅. Hence, X is a θs-regular.

Theorem 4.9. Let X be a topological space. Then the following statements are equivalent:

(i) X is θs-normal;
(ii) for each closed set A and an open setU ⊇ A, there exists a θs-open set V containing A such that Clθs(V) ⊆ U;

(iii) for each pair of disjoint closed sets A and B, there exists a θs-open set V containing A such that Clθs(V)∩B =
∅.

Proof.

(i)⇒(ii): Let A be a closed set and U be an open set in X containing A. Then A and X \U are disjoint
closed sets in X. By assumption, there exist disjoint θs-open sets V andW such that A ⊆ V and X \U ⊆W.
By Remark 2.8, Clθs(V) ⊆ Clθs(X \W) = X \W. Hence, Clθs(V) ⊆ X \W ⊆ U.
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(ii)⇒(iii): Let A and B be a disjoint closed sets in X. Then A ⊆ X \ B and X \ B is open. By assumption,
there exists a θs-open set V containing A such that Clθs(V) ⊆ X \B. This means that Clθs(V)∩B = ∅.

(iii)⇒(i): Let A and B be disjoint closed sets in X. By assumption, there exists a θs-open set V containing
A such that Clθs(V) ∩ B = ∅. Then B ⊆ X \ Clθs(V). Since V and X \ Clθs(V) are disjoint θs-open sets, X
is θs-normal.

A topological space X is said to be a T1-space if for each p,q ∈ X with p 6= q, there exist an open sets
U and V such that p ∈ U, q /∈ U and q ∈ V , p /∈ V .

Theorem 4.10. Let X be a T1 space. Then

(i) if X is θs-regular, then X is θs-Hausdorff;
(ii) if X is θs-normal, then X is θs-regular.

Proof.

(i): Suppose that X is θs-regular. Since X is a T1-space, for each x,y ∈ X with x 6= y, there exist disjoint
open sets U and V such that x ∈ U and y /∈ U, and y ∈ V and x /∈ V . This implies that x /∈ X \U and
y /∈ X \ V . Since X is θs-regular, there exist disjoint θs-open sets A and B such that x ∈ A and X \U ⊆ B.
Note that y ∈ X \U. Hence, y ∈ B. Thus, X is θs-Hausdorff.

We can prove (ii) by following the same argument used in (i).

5. Conclusion and recommendations

The paper has introduced the concept of θs-open set and described its connection to the other well-
known concepts such as the classical open, θ-open, and ωθ-open sets. The paper has also defined and
characterized the concepts of θs-open and θs-closed functions, θs-continuous function, and θs-connected,
θs-Hausdorff, θs-regular, and θs-normal spaces. Moreover, the paper has formulated a necessary and
sufficient condition for a θs-continuous function from an arbitrary space into the product space. A worth-
while direction for further investigation is to establish versions of Urysohn’s Lemma and Tietze Extension
Theorem with respect to θs-open sets. One may also try to investigate θs-open sets in a generalized
topological space.
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