New coupled and common coupled fixed point results with generalized c-distance on cone b-metric spaces

Sahar M Abusalim ${ }^{\text {a }}$, Zaid M Fadail ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Department of Mathematics, College of Sciences and Arts, Jouf University, AI-qurayyat, KSA.
${ }^{\text {b }}$ Department of Mathematics, Faculty of Education, Thamar University, 87246, Thamar, Republic of Yemen.

Abstract

In this paper, we prove the existence and uniqueness of common coupled fixed point and coupled fixed point in cone bmetric spaces with generalized c-distance. Our results extend and generalize several well-known comparable results in literature. We provide one example to support our obtained results.

Keywords: Cone b-metric spaces, coupled fixed points, coupled coincidence points, common coupled fixed points, generalized c-distance.

2020 MSC: 47H10, 54 H 25.
(c)2022 All rights reserved.

1. Introduction

In 2011, Hussain and Shah [26] introduced a cone b-metric space as a generalization of b-metric spaces and cone metric spaces of Bakhtin [3] (for more information about b-metric space see [32]) and Huang and Zhang [24], respectively. They provided and build up some topological properties which will be needed to upgrade and prove some results in literature to cone b-metric space. This work, opened a new area in analysis which stimulated many authors to generalized several well-known comparable results in literature under many type of contractive conditions to cone b-metric spaces (see [7, 13, 20, 23, 25, 33, 3537] and the references therein).

On the other hand for a cone b-metric space in 2015, Bao et al. [4] introduced the concept of a generalized c-distance on a cone b-metric space which is a generalization of c-distance of Cho et al. [6] in cone metric see (for more details about c-distance in cone metric spaces and abstract metric spaces see $[8-12,14,15,17-19,28,31,34,38]$ and the references contained therein). He proved some fixed and common fixed point results in ordered cone b-metric spaces using this distance. Bao et al. [4] have done a beginning work on generalized c-distance then, many authors have been studied and proved some fixed point and common fixed points results in cone b-metric space under generalized c-distance see for example ($[16,21,22,30]$).

Fadail and Ahmad [13] proved the following Coupled coincidence point and common coupled fixed point results in cone b-metric spaces for w-compatible mappings.

[^0]Theorem 1.1. Let (X, d) be a cone b-metric space with the coefficient $s \geqslant 1$ relative to a solid cone P. Let $F: X^{2} \longrightarrow$ X and $g: X \longrightarrow X$ be two mappings and suppose that there exist nonnegative constants $a_{i} \in[0,1), i=1,2, \ldots, 10$ with $(s+1)\left(a_{1}+a_{2}+a_{3}+a_{4}\right)+s(s+1)\left(a_{5}+a_{6}+a_{7}+a_{8}\right)+2 s\left(a_{9}+a_{10}\right)<2$ and $\sum_{i=1}^{10} a_{i}<1$ such that the following contractive condition hold for all $x, y, u, v \in X$:

$$
\begin{aligned}
d(F(x, y), F(u, v)) \preceq & {\left[a_{1} d(g x, F(x, y))+a_{2} d(g y, F(y, x))\right]+\left[a_{3} d(g u, F(u, v))+a_{4} d(g v, F(v, u))\right] } \\
& +\left[a_{5} d(g x, F(u, v))+a_{6} d(g y, F(v, u))\right]+\left[a_{7} d(g u, F(x, y))+a_{8} d(g v, F(y, x))\right] \\
& +\left[a_{9} d(g x, g u)+a_{10} d(g y, g v)\right]
\end{aligned}
$$

If $F\left(X^{2}\right) \subseteq g(X)$ and $g(X)$ is a complete subspace of X, then F and g have a coupled coincidence point $\left(x^{*}, y^{*}\right) \in X^{2}$.
Theorem 1.2. In addition to the hypotheses of Theorem 1.1, if F and g are w-compatible, then F and g have a unique common coupled fixed point. Moreover, a common coupled fixed point of F and g is of the form (u, u) for some $u \in X$.

In this paper, we extend the results of Fadail and Ahmad [13] and prove it on generalized c-distance in cone b-metric spaces for w-compatible mappings with out condition of normality for cones and continuity for mappings, but the only assumption is that the cone P is solid, that is $\operatorname{int}(P) \neq \emptyset$.

2. Preliminaries

Let E be a real Banach space and θ denote to the zero element in E. A cone P is called normal if there exists a number K such that:

$$
\begin{equation*}
\theta \preceq x \preceq y \quad \text { implies } \quad\|x\| \leqslant K\|y\| \tag{2.1}
\end{equation*}
$$

for all $x, y \in E$. Equivalently, the cone P is normal if for all n :

$$
\begin{equation*}
x_{n} \preceq y_{n} \preceq z_{n} \text { and } \lim _{n \rightarrow+\infty} x_{n}=\lim _{n \rightarrow+\infty} z_{n}=x \quad \text { imply } \lim _{n \rightarrow+\infty} y_{n}=x . \tag{2.2}
\end{equation*}
$$

The least positive number K satisfying condition (2.1) is called the normal constant of P.
Example 2.1 ([2]). Let $E=C_{\mathbb{R}}^{1}[0,1]$ with $\|x\|=\|x\|_{\infty}+\left\|x^{\prime}\right\|_{\infty}$ and $P=\{x \in E: x(t) \geqslant 0\}$. This cone is nonnormal. Consider, for example, $x_{n}(t)=\frac{t^{n}}{n}$ and $y_{n}(t)=\frac{1}{n}$. Then $\theta \preceq x_{n} \preceq y_{n}$, and $\lim _{n \rightarrow \infty} y_{n}=\theta$, but $\left\|x_{n}\right\|=\max _{t \in[0,1]}\left|\frac{t^{n}}{n}\right|+\max _{t \in[0,1]}\left|t^{n-1}\right|=\frac{1}{n}+1>1$; hence x_{n} does not converge to zero. It follows by condition (2.2) that P is a nonnormal cone.

Definition 2.2 ([26]). Let X be a nonempty set and E be a real Banach space equipped with the partial ordering \preceq with respect to the cone P. A vector-valued function $d: X \times X \longrightarrow E$ is said to be a cone b-metric function on X with the constant $s \geqslant 1$ if the following conditions are satisfied:

1. $\theta \preceq d(x, y)$ for all $x, y \in X$ and $d(x, y)=\theta$ if and only if $x=y$;
2. $d(x, y)=d(y, x)$ for all $x, y \in X$;
3. $d(x, y) \preceq s(d(x, y)+d(y, z))$ for all $x, y, z \in X$.

Then pair (X, d) is called a cone b-metric space (or a cone metric type space), we will use the first mentioned term.

Definition 2.3 ([26]). Let (X, d) be a cone b-metric space, $\left\{x_{n}\right\}$ be a sequence in X, and $x \in X$.

1. For all $c \in E$ with $\theta \ll c$, if there exists a positive integer N such that $d\left(x_{n}, x\right) \ll c$ for all $n>N$, then x_{n} is said to be convergent and x is the limit of $\left\{x_{n}\right\}$. We denote this by $x_{n} \longrightarrow x$.
2. For all $c \in E$ with $\theta \ll c$, if there exists a positive integer N such that $d\left(x_{n}, x_{m}\right) \ll c$ for all $n, m>N$, then $\left\{x_{n}\right\}$ is called a Cauchy sequence in X.
3. A cone b-metric space (X, d) is called complete if every Cauchy sequence in X is convergent.

Lemma 2.4 ([27]).

1. If E be a real Banach space with a cone P and $a \preceq \lambda a$, where $a \in P$ and $0 \leqslant \lambda<1$, then $a=\theta$.
2. If $c \in \operatorname{int} \mathrm{P}, \theta \preceq \mathrm{a}_{\mathrm{n}}$ and $\mathrm{a}_{\mathrm{n}} \longrightarrow \theta$, then there exists a positive integer N such that $\mathrm{a}_{\mathrm{n}} \ll \mathrm{c}$ for all $\mathrm{n} \geqslant \mathrm{N}$.
3. If $\mathrm{a} \preceq \mathrm{b}$ and $\mathrm{b} \ll \mathrm{c}$, then $\mathrm{a} \ll \mathrm{c}$.
4. If $\theta \preceq u \ll c$ for each $\theta \ll c$, then $u=\theta$.

Recall the following definitions.
Definition 2.5 ([5]). An element $(x, y) \in X^{2}$ is said to be a coupled fixed point of the mapping $F: X^{2} \longrightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Definition 2.6 ([29]). An element $(x, y) \in X^{2}$ is called

1. a coupled coincidence point of mappings $F: X^{2} \longrightarrow X$ and $g: X \longrightarrow X$ if $g x=F(x, y)$ and $g y=$ $F(y, x)$, and ($g x, g y$) is called coupled point of coincidence;
2. a common coupled fixed point of mappings $F: X^{2} \longrightarrow X$ and $g: X \longrightarrow X$ if $x=g x=F(x, y)$ and $y=g y=F(y, x)$.

Definition 2.7 ([1]). The mappings $F: X^{2} \longrightarrow X$ and $g: X \longrightarrow X$ are called w-compatible if $g(F(x, y))=$ $F(g x, g y)$ whenever $g x=F(x, y)$ and $g y=F(y, x)$.

Definition $2.8([4])$. Let (X, d) be a cone b-metric space with the coefficient $s \geqslant 1$ relative to a solid cone P. A function $q: X \times X \longrightarrow E$ is called a generalized c-distance on X if the following conditions hold:
(q1) $\theta \preceq q(x, y)$ for all $x, y \in X$;
(q2) $q(x, z) \preceq s(q(x, y)+q(y, z))$ for all $x, y, z \in X$;
(q3) for each $x \in X$ and $n \geqslant 1$, if $q\left(x, y_{n}\right) \preceq u$ for some $u=u_{x} \in P$, then $q(x, y) \preceq$ su whenever $\left\{y_{n}\right\}$ is a sequence in X converging to a point $y \in X$;
(q4) for all $c \in E$ with $\theta \ll c$, there exists $e \in E$ with $\theta \ll e$ such that $q(z, x) \ll e$ and $q(z, y) \ll e$ imply $d(x, y) \ll c$.

Example 2.9. Let $X=[0,1]$ and $E=C_{\mathbb{R}}^{1}[0,1]$ with $\|u\|=\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty}, u \in E$ and let $P=\{u \in E: u(t) \geqslant 0$ on $[0,1]\}$. It is well known that this cone is solid but it is not normal (see Example 2.1). Define a cone b-metric $d: X \times X \longrightarrow E$ by $d(x, y)(t)=|x-y|^{2} e^{t}$. Then (X, d) is a complete cone b-metric space with the coefficient $s=2$. Define a mapping $q: X \times X \longrightarrow E$ by $q(x, y)(t):=y^{2} \cdot e^{t}$ for all $x, y \in X$. Then q is a generalized c-distance on X. In fact, (q1), (q2), and (q3) are immediate. Let $c \in E$ with $\theta \ll c$ be given and put $e=\frac{c}{4}$. Suppose that $q(z, x) \ll e$ and $q(z, y) \ll e$, then we have

$$
d(x, y)(t)=|x-y|^{2} e^{t} \preceq 2 x^{2} e^{t}+2 y^{2} e^{t}=2 q(z, x)(t)+2 q(z, y) \ll 2 \frac{c}{4}+2 \frac{c}{4}=c
$$

This shows that q satisfies ($q 4$) and hence q is a generalized c-distance.
Lemma 2.10. Let (X, d) be a cone b-metric space with the coefficient $s \geqslant 1$ relative to a solid cone P and q is a generalized c-distance on X. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in X and $x, y, z \in X$. Suppose that u_{n} is a sequence in P converging to θ. Then the following hold.

1. If $\mathrm{q}\left(x_{n}, y\right) \preceq u_{n}$ and $q\left(x_{n}, z\right) \preceq u_{n}$, then $y=z$.
2. If $q\left(x_{n}, y_{n}\right) \preceq u_{n}$ and $q\left(x_{n}, z\right) \preceq u_{n}$, then $\left\{y_{n}\right\}$ converges to z.
3. If $q\left(x_{n}, x_{m}\right) \preceq u_{n}$ for $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
4. If $q\left(y, x_{n}\right) \preceq u_{n}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

Remark 2.11.

1. $q(x, y)=q(y, x)$ does not necessarily for all $x, y \in X$.
2. $q(x, y)=\theta$ is not necessarily equivalent to $x=y$ for all $x, y \in X$.

3. Common coupled fixed point results

In this section, we prove some common coupled fixed point results in cone b-metric spaces with generalized c-distance.

Theorem 3.1. Let (X, d) be a cone b-metric space with the coefficient $\mathrm{s} \geqslant 1$ relative to a solid cone P and q is a generalized c-distance on X . Let $\mathrm{F}: \mathrm{X}^{2} \longrightarrow \mathrm{X}$ and $\mathrm{g}: \mathrm{X} \longrightarrow \mathrm{X}$ be two mappings and suppose that there exist nonnegative constants $a_{i} \in[0,1), i=1,2, \ldots, 10$ with $s\left(a_{1}+a_{2}+a_{7}+a_{8}\right)+s(s+1)\left(a_{5}+a_{6}\right)+2 s\left(a_{3}+a_{4}\right)<1$ and $\sum_{i=1}^{8} a_{i}<1$ such that the following contractive condition hold for all $x, y, u, v \in X$:

$$
\begin{aligned}
q(F(x, y), F(u, v)) \preceq & {\left[a_{1} q(g x, F(x, y))+a_{2} q(g y, F(y, x))\right]+\left[a_{3} q(g u, F(u, v))+a_{4} q(g v, F(v, u))\right] } \\
& +\left[a_{5} q(g x, F(u, v))+a_{6} q(g y, F(v, u))\right]+\left[a_{7} q(g x, g u)+a_{8} q(g y, g v)\right] .
\end{aligned}
$$

If $F\left(X^{2}\right) \subseteq g(X)$ and $g(X)$ is a complete subspace of X, then F and g have a coupled coincidence point $\left(x^{*}, y^{*}\right) \in X^{2}$. Further, if $\mathrm{u}_{1}=\mathrm{g} \mathrm{x}_{1}=\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\nu_{1}=\mathrm{g} \mathrm{y}_{1}=\mathrm{F}\left(\mathrm{y}_{1}, \mathrm{x}_{1}\right)$ then $\mathrm{q}\left(\mathrm{u}_{1}, \mathrm{u}_{1}\right)=\theta$ and $\mathrm{q}\left(v_{1}, v_{1}\right)=\theta$. In addition, if F and g are w-compatible, then F and g have a unique common coupled fixed point. Moreover, a common coupled fixed point of F and g is of the form (u, u) for some $\mathrm{u} \in \mathrm{X}$.

Proof. Choose $x_{0}, y_{0} \in X$. Set $g x_{1}=F\left(x_{0}, y_{0}\right), g y_{1}=F\left(y_{0}, x_{0}\right)$, this can be done because $F\left(X^{2}\right) \subseteq g(X)$. Continuing this process we obtain two sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ such that $g x_{n+1}=F\left(x_{n}, y_{n}\right), g y_{n+1}=F\left(y_{n}, x_{n}\right)$. Then we have

$$
\begin{aligned}
q\left(g x_{n}, g x_{n+1}\right)= & q\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \\
\preceq & {\left[a_{1} q\left(g x_{n-1}, F\left(x_{n-1}, y_{n-1}\right)\right)+a_{2} q\left(g y_{n-1}, F\left(y_{n-1}, x_{n-1}\right)\right)\right] } \\
& +\left[a_{3} q\left(g x_{n}, F\left(x_{n}, y_{n}\right)\right)+a_{4} q\left(g y_{n}, F\left(y_{n}, x_{n}\right)\right)\right] \\
& +\left[a_{5} q\left(g x_{n-1}, F\left(x_{n}, y_{n}\right)\right)+a_{6} q\left(g y_{n-1}, F\left(y_{n}, x_{n}\right)\right)\right] \\
& +\left[a_{7} q\left(g x_{n-1}, g x_{n}\right)+a_{8} q\left(g y_{n-1}, g y_{n}\right)\right] .
\end{aligned}
$$

So that,

$$
\begin{aligned}
q\left(g x_{n}, g x_{n+1}\right)= & q\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \\
\preceq & {\left[a_{1} q\left(g x_{n-1}, g x_{n}\right)+a_{2} q\left(g y_{n-1}, g y_{n}\right)\right]+\left[a_{3} q\left(g x_{n}, g x_{n+1}\right)+a_{4} q\left(g y_{n}, g y_{n+1}\right)\right] } \\
& +\left[a_{5} q\left(g x_{n-1}, g x_{n+1}\right)+a_{6} q\left(g y_{n-1}, g y_{n+1}\right)\right]+\left[a_{7} q\left(g x_{n-1}, g x_{n}\right)+a_{8} q\left(g y_{n-1}, g y_{n}\right)\right] .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
q\left(g x_{n}, g x_{n+1}\right)= & q\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \\
\preceq & {\left[a_{1} q\left(g x_{n-1}, g x_{n}\right)+a_{2} q\left(g y_{n-1}, g y_{n}\right)\right]+\left[a_{3} q\left(g x_{n}, g x_{n+1}\right)+a_{4} q\left(g y_{n}, g y_{n+1}\right)\right] } \\
& +\left[\operatorname{sa5}\left(q\left(g x_{n-1}, g x_{n}\right)+q\left(g x_{n}, g x_{n+1}\right)\right)+\operatorname{sa} a_{6}\left(q\left(g y_{n-1}, g y_{n}\right)+q\left(g y_{n}, g y_{n+1}\right)\right)\right] \\
& +\left[a_{7} q\left(g x_{n-1}, g x_{n}\right)+a_{8} q\left(g y_{n-1}, g y_{n}\right)\right] .
\end{aligned}
$$

Hence

$$
\begin{align*}
q\left(g x_{n}, g x_{n+1}\right) \preceq & {\left[\left(a_{1}+s a_{5}+a_{7}\right) q\left(g x_{n-1}, g x_{n}\right)+\left(a_{2}+s a_{6}+a_{8}\right) q\left(g y_{n-1}, g y_{n}\right)\right] } \\
& +\left[\left(a_{3}+s a_{5}\right) q\left(g x_{n}, g x_{n+1}\right)+\left(a_{4}+s a_{6}\right) q\left(g y_{n}, g y_{n+1}\right)\right] . \tag{3.1}
\end{align*}
$$

Similarly, we can prove that

$$
\begin{align*}
q\left(g y_{n}, g y_{n+1}\right) \preceq & {\left[\left(a_{1}+s a_{5}+a_{7}\right) q\left(g y_{n-1}, g y_{n}\right)+\left(a_{2}+s a_{6}+a_{8}\right) q\left(g x_{n-1}, g x_{n}\right)\right] } \\
& +\left[\left(a_{3}+s a_{5}\right) q\left(g y_{n}, g y_{n+1}\right)+\left(a_{4}+s a_{6}\right) q\left(g x_{n}, g x_{n+1}\right)\right] . \tag{3.2}
\end{align*}
$$

Put $q_{n}=q\left(g x_{n}, g x_{n+1}\right)+q\left(g y_{n}, g y_{n+1}\right)$. Adding inequalities (3.1) and (3.2), one can assert that

$$
q_{n} \preceq\left(a_{1}+a_{2}+s\left(a_{5}+a_{6}\right)+a_{7}+a_{8}\right) q_{n-1}+\left(a_{3}+a_{4}+s\left(a_{5}+a_{6}\right)\right) q_{n} .
$$

Consequently, we have

$$
\begin{equation*}
q_{n} \preceq \frac{\left(a_{1}+a_{2}+s\left(a_{5}+a_{6}\right)+a_{7}+a_{8}\right)}{1-\left(a_{3}+a_{4}+s\left(a_{5}+a_{6}\right)\right)} q_{n-1}=h q_{n-1} \preceq h^{2} q_{n-2} \preceq h^{3} q_{n-3} \preceq \cdots \preceq h^{n} q_{0} \tag{3.3}
\end{equation*}
$$

where $h=\frac{\left(a_{1}+a_{2}+s\left(a_{5}+a_{6}\right)+a_{7}+a_{8}\right)}{1-\left(a_{3}+a_{4}+s\left(a_{5}+a_{6}\right)\right)}$. Note that, $s\left(a_{1}+a_{2}+a_{7}+a_{8}\right)+s(s+1)\left(a_{5}+a_{6}\right)+2 s\left(a_{3}+a_{4}\right)<1$ means that $h=\frac{\left(a_{1}+a_{2}+s\left(a_{5}+a_{6}\right)+a_{7}+a_{8}\right)}{1-\left(a_{3}+a_{4}+s\left(a_{5}+a_{6}\right)\right)}<\frac{1}{s}$ and $s h<1$. Let $m>n \geqslant 1$. It follows that

$$
q\left(g x_{n}, g x_{m}\right) \preceq \operatorname{sq}\left(g x_{n}, g x_{n+1}\right)+s^{2} q\left(g x_{n+1}, g x_{n+2}\right)+\cdots+s^{m-n} q\left(g x_{m-1}, g x_{m}\right),
$$

and

$$
q\left(g y_{n}, g y_{m}\right) \preceq s q\left(g y_{n}, g y_{n+1}\right)+s^{2} q\left(g y_{n+1}, g x_{n+2}\right)+\cdots+s^{m-n} q\left(g y_{m-1}, g y_{m}\right) .
$$

Now, (3.3) and sh <1 imply that

$$
\begin{align*}
q\left(g x_{n}, g x_{m}\right)+q\left(g y_{n}, g y_{m}\right) & \preceq s q_{n}+s^{2} q_{n+1}+\cdots+s^{m-n} q_{m-1} \\
& \preceq s h^{n} q_{0}+s^{2} h^{n+1} q_{0}+\cdots+s^{m-n} h^{m-1} q_{0} \\
& =\left(s h^{n}+s^{2} h^{n+1}+\cdots+s^{m-n} h^{m-1}\right) q_{0} \tag{3.4}\\
& =\operatorname{sh}^{n}\left(1+s h+(s h)^{2}+\cdots+(s h)^{m-n-1}\right) q_{0} \\
& \preceq \frac{s h^{n}}{1-h} q_{0} .
\end{align*}
$$

From (3.4) we have

$$
\mathrm{q}\left(\mathrm{gx} x_{n}, \mathrm{~g} x_{\mathrm{m}}\right) \preceq \frac{\mathrm{sh}^{n}}{1-\mathrm{h}} \mathrm{q}_{0} \longrightarrow \theta \quad \text { as } \quad(\mathrm{n} \longrightarrow+\infty)
$$

and

$$
\mathrm{q}\left(\mathrm{gy} \mathrm{~g}_{\mathrm{n}}, \mathrm{~g} \mathrm{y}_{\mathrm{m}}\right) \preceq \frac{\mathrm{sh}^{n}}{1-\mathrm{h}} \mathrm{q}_{0} \longrightarrow \theta \quad \text { as } \quad(\mathrm{n} \longrightarrow+\infty) .
$$

Thus, Lemma 2.10 (3) shows that $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences in $g(X)$. Since $g(X)$ is complete, there exist x^{*} and $y^{*} \in X$ such that $g x_{n} \longrightarrow g x^{*}$ and $g y_{n} \longrightarrow g y^{*}$ as $n \longrightarrow+\infty$. By (q3) we have:

$$
\begin{equation*}
q\left(g x_{n}, g x^{*}\right) \preceq \frac{s^{2} h^{n}}{1-h} q_{0} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
q\left(g y_{n}, g y^{*}\right) \preceq \frac{s^{2} h^{n}}{1-h} q_{0} \tag{3.6}
\end{equation*}
$$

On the other hand, from (3.3) we have:

$$
\begin{aligned}
q\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) & =q\left(g x_{n}, g x_{n+1}\right) \\
& \preceq q\left(g x_{n}, g x_{n+1}\right)+q\left(g y_{n}, g y_{n+1}\right) \preceq h\left(q\left(g x_{n-1}, g x_{n}\right)+q\left(g y_{n-1}, g y_{n}\right)\right) .
\end{aligned}
$$

Hence

$$
q\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \preceq h\left(q\left(g x_{n-1}, g x_{n}\right)+q\left(g y_{n}, g y_{n-1}\right)\right) .
$$

Then we have

$$
q\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x^{*}, y^{*}\right)\right) \preceq h\left(q\left(g x_{n-1}, g x^{*}\right)+q\left(g y_{n-1}, g y^{*}\right)\right) .
$$

By using (3.5) and (3.6), we get

$$
\begin{align*}
\mathrm{q}\left(g x_{n}, F\left(x^{*}, y^{*}\right)\right) & =\mathrm{q}\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x^{*}, y^{*}\right)\right) \\
& \preceq h\left(q\left(g x_{n-1}, g x^{*}\right)+q\left(g y_{n-1}, g y^{*}\right)\right) \tag{3.7}\\
& \preceq h\left(\frac{s^{2} h^{n-1}}{1-h} q_{0}+\frac{s^{2} h^{n-1}}{1-h} q_{0}\right)=\frac{2 s^{2} h^{n}}{1-h} q_{0}
\end{align*}
$$

Also, from (3.5), we have

$$
\begin{equation*}
\mathrm{q}\left(\mathrm{~g} x_{n}, g x^{*}\right) \preceq \frac{s^{2} h^{n}}{1-h} q_{0} \preceq \frac{2 s^{2} h^{n}}{1-h} q_{0} . \tag{3.8}
\end{equation*}
$$

By Lemma 2.10 (1), (3.7), and (3.8), we have $g x^{*}=F\left(x^{*}, y^{*}\right)$. By similar way, we can prove that $g y^{*}=$ $F\left(y^{*}, x^{*}\right)$. Therefore $\left(x^{*}, y^{*}\right)$ is a coupled coincidence point of F and g. Suppose that $u_{1}=g x_{1}=F\left(x_{1}, y_{1}\right)$ and $v_{1}=g y_{1}=F\left(y_{1}, x_{1}\right)$. Then we have

$$
\begin{aligned}
q\left(u_{1}, u_{1}\right)= & q\left(g x_{1}, g x_{1}\right) \\
= & q\left(F\left(x_{1}, y_{1}\right), F\left(x_{1}, y_{1}\right)\right) \\
\preceq & {\left[a_{1} q\left(g x_{1}, F\left(x_{1}, y_{1}\right)\right)+a_{2} q\left(g y_{1}, F\left(y_{1}, x_{1}\right)\right)\right]+\left[a_{3} q\left(g x_{1}, F\left(x_{1}, y_{1}\right)\right)+a_{4} q\left(g y_{1}, F\left(y_{1}, x_{1}\right)\right)\right] } \\
& +\left[a_{5} q\left(g x_{1}, F\left(x_{1}, y_{1}\right)\right)+a_{6} q\left(g y_{1}, F\left(y_{1}, x_{1}\right)\right)\right]+\left[a_{7} q\left(g x_{1}, g x_{1}\right)+a_{8} q\left(g y_{1}, g y_{1}\right)\right] \\
= & {\left[a_{1} q\left(g x_{1}, g x_{1}\right)+a_{2} q\left(g y_{1}, g y_{1}\right)\right]+\left[a_{3} q\left(g x_{1}, g x_{1}\right)+a_{4} q\left(g y_{1}, g y_{1}\right)\right] } \\
& +\left[a_{5} q\left(g x_{1}, g x_{1}\right)+a_{6} q\left(g y_{1}, g y_{1}\right)\right]+\left[a_{7} q\left(g x_{1}, g x_{1}\right)+a_{8} q\left(g y_{1}, g y_{1}\right)\right] \\
= & {\left[a_{1} q\left(u_{1}, u_{1}\right)+a_{2} q\left(v_{1}, v_{1}\right)\right]+\left[a_{3} q\left(u_{1}, u_{1}\right)+a_{4} q\left(v_{1}, v_{1}\right)\right] } \\
& +\left[a_{5} q\left(u_{1}, u_{1}\right)+a_{6} q\left(v_{1}, v_{1}\right)\right]+\left[a_{7} q\left(u_{1}, u_{1}\right)+a_{8} q\left(v_{1}, v_{1}\right)\right] .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
q\left(u_{1}, u_{1}\right) \preceq\left(a_{1}+a_{3}+a_{5}+a_{7}\right) q\left(u_{1}, u_{1}\right)+\left(a_{2}+a_{4}+a_{6}+a_{8}\right) q\left(v_{1}, v_{1}\right) . \tag{3.9}
\end{equation*}
$$

By similar way we can show that

$$
\begin{equation*}
q\left(v_{1}, v_{1}\right) \preceq\left(a_{1}+a_{3}+a_{5}+a_{7}\right) q\left(v_{1}, v_{1}\right)+\left(a_{2}+a_{4}+a_{6}+a_{8}\right) q\left(u_{1}, u_{1}\right) \tag{3.10}
\end{equation*}
$$

By adding inequalities (3.9) and (3.10), we get

$$
q\left(u_{1}, u_{1}\right)+q\left(v_{1}, v_{1}\right) \preceq\left(\sum_{i=1}^{8} a_{i}\right)\left(q\left(u_{1}, u_{1}\right)+q\left(v_{1}, v_{1}\right)\right)
$$

Since $\sum_{i=1}^{8} a_{i}<1$, Lemma 2.4 (1) shows that $q\left(u_{1}, u_{1}\right)+q\left(v_{1}, v_{1}\right)=\theta$. But $q\left(u_{1}, u_{1}\right) \succeq \theta$, and $q\left(v_{1}, v_{1}\right) \succeq$ θ. Hence, $q\left(u_{1}, u_{1}\right)=\theta$ and $q\left(v_{1}, v_{1}\right)=\theta$. Finally, since F and g have a coupled coincidence point $\left(x^{*}, y^{*}\right) \in X^{2}$, then, $\left(g x^{*}, g y^{*}\right)$ is a coupled point of coincidence of F and g such that $g x^{*}=F\left(x^{*}, y^{*}\right)$ and $g y^{*}=F\left(y^{*}, x^{*}\right)$ with $q\left(g x^{*}, g x^{*}\right)=\theta$, and $q\left(g y^{*}, g y^{*}\right)=\theta$. First, we will show that the coupled point of coincidence is unique. Suppose that F and g have another coupled point of coincidence ($g x^{\prime}, g y^{\prime}$) such that $g x^{\prime}=F\left(x^{\prime}, y^{\prime}\right)$, and $g y^{\prime}=F\left(y^{\prime}, x^{\prime}\right)$, where $x^{\prime}, y^{\prime} \in X$. Then we have

$$
\begin{aligned}
q\left(g x^{*}, g x^{\prime}\right)= & q\left(F\left(x^{*}, y^{*}\right), F\left(x^{\prime}, y^{\prime}\right)\right) \\
\preceq & {\left[a_{1} q\left(x^{*}, F\left(x^{*}, y^{*}\right)\right)+a_{2} q\left(g y^{*}, F\left(y^{*}, x^{*}\right)\right)\right]+\left[a_{3} q\left(g x^{\prime}, F\left(x^{\prime}, y^{\prime}\right)\right)+a_{4} q\left(g y^{\prime}, F\left(y^{\prime}, x^{\prime}\right)\right)\right] } \\
& +\left[a_{5} q\left(g x^{*}, F\left(x^{\prime}, y^{\prime}\right)\right)+a_{6} q\left(g y^{*}, F\left(y^{\prime}, x^{\prime}\right)\right)\right]+\left[a_{7} q\left(g x^{*}, g x^{\prime}\right)+a_{8} q\left(g y^{*}, g y^{\prime}\right)\right] \\
= & {\left[a_{1} q\left(g x^{*}, g x^{*}\right)+a_{2} q\left(g y^{*}, g y^{*}\right)\right]+\left[a_{3} q\left(g x^{\prime}, g x^{\prime}\right)+a_{4} q\left(g y^{\prime}, g y^{\prime}\right)\right] } \\
& +\left[a_{5} q\left(g x^{*}, g x^{\prime}\right)+a_{6} q\left(g y^{*}, g y^{\prime}\right)\right]+\left[a_{7} q\left(g x^{*}, g x^{\prime}\right)+a_{8} q\left(g y^{*}, g y^{\prime}\right)\right] \\
= & {\left[a_{5} q\left(g x^{*}, g x^{\prime}\right)+a_{6} q g\left(y^{*}, g y^{\prime}\right)\right]+\left[a_{7} q\left(g x^{*}, g x^{\prime}\right)+a_{8} q\left(g y^{*}, g y^{\prime}\right)\right] . }
\end{aligned}
$$

Hence,

$$
\begin{equation*}
q\left(g x^{*}, g x^{\prime}\right) \preceq\left(a_{5}+a_{7}\right) q\left(g x^{*}, g x^{\prime}\right)+\left(a_{6}+a_{8}\right) q\left(g y^{*}, g y^{\prime}\right) . \tag{3.11}
\end{equation*}
$$

By similar way, we can show that

$$
\begin{equation*}
q\left(g y^{*}, g y^{\prime}\right) \preceq\left(a_{5}+a_{7}\right) q\left(g y^{*}, g y^{\prime}\right)+\left(a_{6}+a_{8}\right) q\left(g x^{*}, g x^{\prime}\right) . \tag{3.12}
\end{equation*}
$$

By adding inequalities (3.11) and (3.12), we get

$$
\mathrm{q}\left(g x^{*}, g x^{\prime}\right)+\mathrm{q}\left(g y^{*}, g y^{\prime}\right) \preceq\left(a_{5}+a_{6}+a_{7}+a_{8}\right)\left(q\left(g x^{*}, g x^{\prime}\right)+q\left(g y^{*}, g y^{\prime}\right)\right) .
$$

Since $\left(a_{5}+a_{6}+a_{7}+a_{8}\right)<1$, Lemma 2.4 (1) shows that $q\left(g x^{*}, g x^{\prime}\right)+q\left(g y^{*}, g y^{\prime}\right)=\theta$. But $q\left(g x^{*}, g x^{\prime}\right) \succeq \theta$ and $\mathrm{q}\left(g y^{*}, g y^{\prime}\right) \succeq \theta$. Hence, $\mathrm{q}\left(g x^{*}, g x^{\prime}\right)=\theta$ and $\mathrm{q}\left(g y^{*}, g y^{\prime}\right)=\theta$. Also, we have from Theorem 3.1, $\mathrm{q}\left(\mathrm{g} x^{*}, \mathrm{~g} x^{*}\right)=\theta$ and $\mathrm{q}\left(\mathrm{gy} \mathrm{y}^{*}, \mathrm{~g} \mathrm{y}^{*}\right)=\theta$. Hence, Lemma 2.10 (1) shows that

$$
\begin{equation*}
\mathrm{gx} \mathrm{x}^{*}=\mathrm{g} x^{\prime} \quad \text { and } \quad \mathrm{g} y^{*}=\mathrm{gy}^{\prime} \tag{3.13}
\end{equation*}
$$

which implies the uniqueness of the coupled point of coincidence of F and g, that is, $\left(g x^{*}, g y^{*}\right)$. Note that

$$
\begin{aligned}
q\left(g x^{*}, g y^{\prime}\right)= & q\left(F\left(x^{*}, y^{*}\right), F\left(y^{\prime}, x^{\prime}\right)\right) \\
\preceq & {\left[a_{1} q\left(x^{*}, F\left(x^{*}, y^{*}\right)\right)+a_{2} q\left(g y^{*}, F\left(y^{*}, x^{*}\right)\right)\right]+\left[a_{3} q\left(g y^{\prime}, F\left(y^{\prime}, x^{\prime}\right)\right)+a_{4} q\left(g x^{\prime}, F\left(x^{\prime}, y^{\prime}\right)\right)\right] } \\
& +\left[a_{5} q\left(g x^{*}, F\left(y^{\prime}, x^{\prime}\right)\right)+a_{6} q\left(g y^{*}, F\left(x^{\prime}, y^{\prime}\right)\right)\right]+\left[a_{7} q\left(g x^{*}, g y^{\prime}\right)+a_{8} q\left(g y^{*}, g x^{\prime}\right)\right] \\
= & {\left[a_{1} q\left(g x^{*}, g x^{*}\right)+a_{2} q\left(g y^{*}, g y^{*}\right)\right]+\left[a_{3} q\left(g y^{\prime}, g y^{\prime}\right)+a_{4} q\left(g x^{\prime}, g x^{\prime}\right)\right] } \\
& +\left[a_{5} q\left(g x^{*}, g y^{\prime}\right)+a_{6} q\left(g y^{*}, g x^{\prime}\right)\right]+\left[a_{7} q\left(g x^{*}, g y^{\prime}\right)+a_{8} q\left(g y^{*}, g x^{\prime}\right)\right] \\
= & {\left[a_{5} q\left(g x^{*}, g y^{\prime}\right)+a_{6} q\left(g y^{*}, g x^{\prime}\right)\right]+\left[a_{7} q\left(g x^{*}, g y^{\prime}\right)+a_{8} q\left(g y^{*}, g x^{\prime}\right)\right] . }
\end{aligned}
$$

Hence,

$$
\begin{equation*}
q\left(g x^{*}, g y^{\prime}\right) \preceq\left(a_{5}+a_{7}\right) q\left(g x^{*}, g y^{\prime}\right)+\left(a_{6}+a_{8}\right) q\left(g y^{*}, g x^{\prime}\right) \tag{3.14}
\end{equation*}
$$

By similar way, we can show that

$$
\begin{equation*}
q\left(g y^{*}, g x^{\prime}\right) \preceq\left(a_{5}+a_{7}\right) q\left(g y^{*}, g x^{\prime}\right)+\left(a_{6}+a_{8}\right) q\left(g x^{*}, g y^{\prime}\right) . \tag{3.15}
\end{equation*}
$$

By adding inequalities (3.14) and (3.15), we get

$$
q\left(g x^{*}, g y^{\prime}\right)+q\left(g y^{*}, g x^{\prime}\right) \preceq\left(a_{5}+a_{6}+a_{7}+a_{8}\right)\left(q\left(g x^{*}, g y^{\prime}\right)+q\left(g y^{*}, g x^{\prime}\right)\right) .
$$

Since $\left(a_{5}+a_{6}+a_{7}+a_{8}\right)<1$, Lemma 2.4 (1) shows that $q\left(g x^{*}, g y^{\prime}\right)+q\left(g y^{*}, g x^{\prime}\right)=\theta$. But $q\left(g x^{*}, g y^{\prime}\right) \succeq \theta$ and $\mathrm{q}\left(\mathrm{gy} \mathrm{y}^{*}, \mathrm{~g} x^{\prime}\right) \succeq \theta$. Hence, $\mathrm{q}\left(\mathrm{gx} x^{*}, \mathrm{gy}\right)=\theta$ and $\mathrm{q}\left(\mathrm{gy}{ }^{*}, \mathrm{~g} x^{\prime}\right)=\theta$. Also, we have $\mathrm{q}\left(\mathrm{gx}{ }^{*}, \mathrm{~g} x^{*}\right)=\theta$ and $q\left(g y^{*}, g y^{*}\right)=\theta$. Hence, Lemma 2.10 (1) shows that

$$
\begin{equation*}
\mathrm{gx} x^{*}=\mathrm{gy} y^{\prime} \text { and } \quad \mathrm{gy} y^{*}=\mathrm{g} x^{\prime} \tag{3.16}
\end{equation*}
$$

In view of (3.13) and (3.16), one can assert that

$$
\mathrm{gx} \mathrm{x}^{*}=\mathrm{g} \mathrm{y}^{*}
$$

That is, the unique coupled point of coincidence of F and g is $\left(g x^{*}, g x^{*}\right)$. Now, let $u=g x^{*}=F\left(x^{*}, y^{*}\right)$. Since F and g are w-compatible, then we have

$$
\mathrm{gu}=\mathrm{g}\left(\mathrm{~g} x^{*}\right)=\mathrm{gF}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)=\mathrm{F}\left(\mathrm{~g} x^{*}, \mathrm{~g} \mathrm{y}^{*}\right)=\mathrm{F}\left(\mathrm{~g} x^{*}, \mathrm{~g} x^{*}\right)=\mathrm{F}(\mathrm{u}, \mathrm{u})
$$

Then $(g u, g u)$ is a coupled point of coincidence and also we have (u, u) is a coupled point of coincidence. The uniqueness of the coupled point of coincidence implies that $g u=u$. Therefore $u=g u=F(u, u)$. Hence (u, u) is the unique common coupled fixed point of F and g. This completes the proof.

Now, we give one example to explain our results. The conditions of Theorem 3.1 is fulfilled, but Theorems 1.1 and 1.2 of Fadail and Ahmad [13] are not applicable.

Example 3.2 (The case of a nonnormal cone). Consider Example 2.9. Define the mappings $\mathrm{F}: \mathrm{X} \times \mathrm{X} \longrightarrow \mathrm{X}$ by $F(x, y)=\frac{(x+y)^{2}}{16}$ and $g: X \longrightarrow X$ by $g x=\frac{x}{2}$ for all $x \in X$. Clear that $F\left(X^{2}\right) \subseteq g(X)$ and $g(X)$ is a complete subset of X. We have

$$
\begin{aligned}
\mathrm{d}(F(x, y), F(u, v))(t) & =\left|\frac{(x+y)^{2}}{8}-\frac{(u+v)^{2}}{8}\right|^{2} e^{t} \\
& =\frac{1}{16^{2}}|(x+y-u-v)(x+y+u+v)|^{2} e^{t} \\
& =\frac{1}{16^{2}}|((x-u)+(y-v))(x+y+u+v)|^{2} e^{t} \\
& \preceq \frac{4^{2}}{16^{2}}|(x-u)+(y-v)|^{2} e^{t} \\
& \preceq \frac{32}{16^{2}}|x-u|^{2} e^{t}+\frac{3}{11^{2}}|y-v|^{2} e^{t} \\
& =\frac{32}{16^{2}}\left(4\left|\frac{x}{2}-\frac{u}{2}\right|^{2}\right) e^{t}+\frac{32}{16^{2}}\left(4\left|\frac{y}{2}-\frac{v}{2}\right|^{2}\right) e^{t} \\
& =\frac{1}{2}\left|\frac{x}{2}-\frac{u}{2}\right|^{2} e^{t}+\frac{1}{2}\left|\frac{y}{2}-\frac{v}{2}\right|^{2} e^{t} \\
& =\frac{1}{2} d(g x, g u)(t)+\frac{1}{2} d(g y, g v)(t),
\end{aligned}
$$

where $a_{9}=\frac{1}{2}, a_{10}=\frac{1}{2}, a_{i}=0, i=1,2, \ldots, 8$. Note that, $2 s\left(a_{9}+a_{10}\right)=4\left(\frac{1}{2}+\frac{1}{2}\right)=4 \nless 2$. Then, we can not use Theorems 1.1 and 1.2 of Fadail and Ahmad [13] for this example on a cone b-metric space. To check this example on generalized c-distance, we have:

$$
\begin{aligned}
\mathrm{q}(\mathrm{~F}(\mathrm{x}, \mathrm{y}), \mathrm{F}(\mathrm{u}, v))(\mathrm{t}) & =(\mathrm{F}(\mathrm{u}, v))^{2} \cdot e^{\mathrm{t}} \\
& =\left(\frac{(\mathrm{u}+v)^{2}}{16}\right)^{2} \cdot e^{\mathrm{t}} \\
& =\frac{1}{16^{2}}(u+v)^{4} \cdot e^{\mathrm{t}} \\
& \preceq \frac{4}{16^{2}}(u+v)^{2} \cdot e^{\mathrm{t}} \\
& \preceq \frac{8}{16^{2}} u^{2} \cdot e^{\mathrm{t}}+\frac{8}{16^{2}} v^{2} \cdot e^{\mathrm{t}} \\
& =\frac{32}{16^{2}} \frac{u^{2}}{4} \cdot e^{\mathrm{t}}+\frac{32}{16^{2}} \frac{v^{2}}{4} \cdot e^{\mathrm{t}} \\
& =\frac{1}{8} \frac{u^{2}}{4} \cdot e^{\mathrm{t}}+\frac{1}{8} \frac{v^{2}}{4} \cdot e^{\mathrm{t}} \\
& =\frac{1}{8} q(g x, g u)(\mathrm{t})+\frac{1}{8} q(g y, g v)(\mathrm{t})
\end{aligned}
$$

where $a_{7}=\frac{1}{8}, a_{8}=\frac{1}{8}, a_{i}=0, i=1,2, \ldots, 6$. Note that, $s\left(a_{7}+a_{8}\right)=2\left(\frac{1}{8}+\frac{1}{8}\right)=\frac{1}{2}<2$. Hence, the conditions of Theorem 3.1 are satisfied, that is, F and g have a coupled coincidence point (0,0). Also, F and g are w-compatible at $(0,0)$. Again, Theorem 3.1 shows that, $(0,0)$ is the unique common coupled fixed point of F and g.

Finally, we have the following coupled fixed point theorem.

Theorem 3.3. Let (X, d) be a cone b-metric space with the coefficient $\mathrm{s} \geqslant 1$ relative to a solid cone P and q is a generalized c -distance on X . Let $\mathrm{F}: \mathrm{X}^{2} \longrightarrow \mathrm{X}$ be a mapping and suppose that there exist nonnegative constants $a_{i} \in[0,1), i=1,2, \ldots, 10$ with $s\left(a_{1}+a_{2}+a_{7}+a_{8}\right)+s(s+1)\left(a_{5}+a_{6}\right)+2 s\left(a_{3}+a_{4}\right)<1$ and $\sum_{i=1}^{8} a_{i}<1$ such that the following contractive condition holds for all $x, y, u, v \in X$:

$$
\begin{aligned}
q(F(x, y), F(u, v)) \preceq & {\left[a_{1} q(x, F(x, y))+a_{2} q(y, F(y, x))\right]+\left[a_{3} q(u, F(u, v))+a_{4} q(v, F(v, u))\right] } \\
& +\left[a_{5} q(x, F(u, v))+a_{6} q(y, F(v, u))\right]+\left[a_{7} q(x, u)+a_{8} q(y, v)\right] .
\end{aligned}
$$

Then F has a coupled fixed point $\left(x^{*}, y^{*}\right) \in X^{2}$. Further, if $x_{1}=F\left(x_{1}, y_{1}\right)$ and $y_{1}=F\left(y_{1}, x_{1}\right)$, then $q\left(x_{1}, x_{1}\right)=\theta$, and $\mathrm{q}\left(\mathrm{y}_{1}, \mathrm{y}_{1}\right)=\theta$. Moreover, the coupled fixed point is unique and of the form $\left(\mathrm{x}^{*}, \mathrm{x}^{*}\right)$ for some $\mathrm{x}^{*} \in \mathrm{X}$.

Proof. Put $g(x)=x$ in Theorem 3.1. The proof is complete.

Acknowledgment

The authors thank the referee for his/her careful reading of the manuscript and useful suggestions..

References

[1] M. Abbas, M. A. Khan, S. Radenović, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217 (2010), 195-202. 2.7
[2] A. G. B. Ahmad, Z. M. Fadail, M. Abbas, Z. Kadelburg, S. Radenović, Some fixed and periodic points in abstract metric spaces, Abstr. Appl. Anal., 2012 (2012), 15 pages. 2.1
[3] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Ul'yanovsk. Gos. Ped. Inst., Ul'yanovsk, 30 (1989), 26-37. 1
[4] B. Baoa, S. Xu, L. Shi, V. C. Rajic, Fixed point theorems on generalized c-distance in ordered cone b-metric spaces, Int. J. Nonlinear Anal. Appl., 6 (2015), 9-22. 1, 2.8
[5] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393. 2.5
[6] Y. J. Cho, R. Saadati, S. Wang, Common fixed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl., 61 (2011), 1254-1260. 1
[7] A. S. Cvetković, M. P. Stanić, S. Dimitrijević, S. Simić, Common fixed point theorems for four mappings on cone metric type space, Fixed Point Theory Appl., 2011 (2011), 15 pages. 1
[8] M. Đorđević, D. Đorić, Z. Kadelburg, S. Radenović, D. Spasić, Fixed point results under c-distance in tvs-cone metric spaces, Fixed Point Theory Appl., 2011 (2011), 9 pages. 1
[9] Z. M. Fadail, S. M. Abusalim, T-Reich Contraction and Fixed Point Results in Cone Metric Spaces with c-Distance, Int. J. Math. Anal., 11 (2017), 397-405.
[10] Z. M. Fadail, A. G. B. Ahmad, Coupled fixed point theorems of single-valued mapping for c-distance in cone metric spaces, J. Appl. Math., 2012 (2012), 20 pages.
[11] Z. M. Fadail, A. G. B. Ahmad, Common coupled fixed point theorems of single-valued mapping for c-distance in cone metric spaces, Abstr. Appl. Anal., 2012 (2012), 24 pages.
[12] Z. M. Fadail, A. G. B. Ahmad, Fixed point theorems of T-contraction mappings under c-distance in cone metric spaces, AIP Conf. Proc., 1571 (2013), 1030-1034. 1
[13] Z. M. Fadail, A. G. B. Ahmad, Coupled coincidence point and common coupled fixed point results in cone b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 14 pages. 1, 1, 3, 3.2
[14] Z. M. Fadail, A. G. B. Ahmad, New Coupled Coincidence Point and Common Coupled Fixed Point Results in Cone Metric Spaces with c-Distance, Far East J. Math. Sci., 77 (2013), 65-84. 1
[15] Z. M. Fadail, A. G. B. Ahmad, Fixed Point Results of T-Kannan Contraction On Generalized Distance in Cone Metric Spaces, Proceedings of the 3rd International Conference on Mathematical Sciences, AIP Conf. Proc., 1602 (2014), 680-683. 1
[16] Z. M. Fadail, A. G. B. Ahmad, Generalized c-distance in cone b-metric spaces and common fixed point results for weakly compatible self mappings, Int. J. Math. Anal., 9 (2015), 1593-1607. 1
[17] Z. M. Fadail, A. G. B. Ahmad, Z. Golubović, Fixed point theorems of single-valued mapping for c-distance in cone metric spaces, Abstr. Appl. Anal., 2012 (2012), 11 pages. 1
[18] Z. M. Fadail, A. G. B. Ahmad, L. Paunović, New fixed point results of single-valued mapping for c-distance in cone metric spaces, Abstr. Appl. Anal., 2012 (2012), 12 pages.
[19] Z. M. Fadail, A. G. B. Ahmad, S. Radenović, Common Fixed Point and Fixed Point Results under c-Distance in Cone Metric Spaces, Appl. Math. Inf. Sci. Lett., 1 (2013), 47-52. 1
[20] Z. M. Fadail, A. G. B. Ahmad, S. Radenović, M. Rajović, On mixed g-monotone and w-compatible mappings in ordered cone b-metric spaces, Math. Sci., 9 (2015), 161-172. 1
[21] K. Fallahi, M. Abbas, G. S. Rad, Generalized c-distance on cone b-metric spaces endowed with a graph and fixed point results, Appl. Gen. Topol., 18 (2017), 391-400. 1
[22] A. A. Firozjah, H. Rahimi, M. De la Sen, G. S. Rad, Fixed Point Results under Generalized c-Distance in Cone b-Metric Spaces Over Banach Algebras, Axioms, 9 (2020), 9 pages. 1
[23] H. Huang, S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 2013 (2013), 10 pages. 1
[24] L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468-1476. 1
[25] S. Hussain, Fixed point and common fixed point theorems on ordered cone b-metric space over Banach algebra, J. Nonlinear Sci. Appl., 13 (2020), 22-33. 1
[26] N. Hussain, M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), 1677-1684. 1, 2.2, 2.3
[27] G. Jungck, S. Radenović, S. Radojević, V. Rakočević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., 2009 (2009), 13 pages. 2.4
[28] Z. Kadelburg, S. Radenović, Coupled fixed point results under tvs-cone metric and w-cone-distance, Adv. Fixed Point Theory, 2 (2012), 29-46. 1
[29] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70 (2009), 4341-4349. 2.6
[30] G. S. Rad, H. Rahimi, C. Vetro, Fixed point results under generalized c-distance with application to nonlinear fourth-order defferential equation, Fixed Point Theory, 20 (2019), 635-648. 1
[31] H. Rahimi, S. Radenović, G. S. Rad, P. Kumam, Quadrupled fixed point results in abstract metric spaces, Comput. Appl. Math., 33 (2014), 671-685. 1
[32] N. Saleem, J. Vujaković, W. U. Baloch, S. Radenović, Coincidence point results for multivalued Suzuki type mappings using θ-contraction in b-metric spaces, Mathematics, 7 (2019), 1-21. 1
[33] M. H. Shah, S. Simić, N. Hussain, A. Sretenović, S. Radenović, Common fixed points for occasionally weakly compatible pairs on cone metric type spaces, J. Comput. Anal. Appl., 14 (2012), 290-297. 1
[34] W. Shatanawi, E. Karapınar, H. Aydi, Coupled coincidence points in partially ordered cone metric spaces with c-distance, J. Appl. Math., 2012 (2012), 15 pages. 1
[35] W. Shatanawi, Z. D. Mitrović, N. Hussain, S. Radenović, On Generalized Hardy-Rogers Type α-Admissible Mappings in Cone b-Metric Spaces over Banach Algebras, Symmetry, 12 (2020), 12 pages. 1
[36] L. Shi, S. Xu, Common fixed point theorems for two weakly compatible self-mappings in cone b-metric spaces, Fixed Point Theory Appl., 2013 (2020), 11 pages.
[37] M. P. Stanić, A. S. Cvetković, S. Simić, S. Dimitrijević, Common fixed point under contractive condition of Ćirić's type on cone metric type spaces, Fixed Point Theory Appl., 2012 (2012), 7 pages. 1
[38] S. Wang, B. Guo, Distance in cone metric spaces and common fixed point theorems, Appl. Math. Lett., 24 (2011), 17351739. 1

[^0]: *Corresponding author
 Email addresses: saharabosalem@gmail.com (Sahar M Abusalim), zaid.fadail@tu.edu.ye (Zaid M Fadail)
 doi: 10.22436/jmcs.025.03.01
 Received: 2021-01-21 Revised: 2021-04-11 Accepted: 2021-05-06

