]>
2016
16
2
166
Applications of adaptive variable step-size algorithm in turbulence observation system
Applications of adaptive variable step-size algorithm in turbulence observation system
en
en
In turbulence observation system, noise signal is random and difficult to identify, which will
pollute the real signal and affect the quality of the data. To eliminate the noise signal, the article
puts forward a kind of adaptive variable step-size de-noising algorithm. Firstly, raw data is changed
into corresponding physical parameters, and spectral analysis is used to analyze the relationship
among these parameters, and then, according to the correlation to construct the variable step-size
de-noising algorithm, and through error to adjust shape of the step size factor to control the optimal
weight coefficient. Finally, simulation and observation data is used to verify the effectiveness of the
algorithm, and Goodman's filter algorithm is compared with the algorithm. The results show that
the algorithm has higher precision and the noise is effectively reduced.
218
226
Yongfang
Wang
Chengdong
Yang
Jianlong
Qiu
Variable step-size
spectral analysis
adaptive noise canceller
turbulence observation system.
Article.10.pdf
[
[1]
E. S. Bakunova, J. Harlim, Optimal filtering of complex turbulent systems with memory depth through consistency constraints, J. Comput. Phys., 237 (2013), 320-343
##[2]
G. A. Einicke, G. Falco, J. T. Malos, EM Algorithm State Matrix Estimation for Navigation, IEEE Signal Processing Letters, 17 (2010), 437-440
##[3]
L. Goodman, E. R. Levine, R. G. Lueck, On Measuring the terms of the turbulent kinetic energy budget from an AUV, J. Atmospheric Oceanic Tech., 23 (2006), 977-990
##[4]
B. Hassibi, A. H. Sayed, T. Kailath, \(H^{\infty}\) optimality of the LMS algorithm, IEEE Transactions on Signal Processing, 44 (1996), 267-280
##[5]
W. A. Kareem, T. Nabil, S. Izawa, Y. Fukunishi, Harmonic analysis filtering techniques for forced and decaying homogeneous isotropic turbulence, Comput. Math. Appl., 65 (2013), 1059-1085
##[6]
J. L. Kitchen, J. D. Moore, S. A. Palmer, R. G. Allaby, MCMC-ODPR: Primer design optimization using Markov Chain Monte Carlo sampling , BMC Bioinformatics , 2012 (2012 ), 1-10
##[7]
S. Lan, Y. Liu, Y. Wang, J. Liu, Z. Wang, Vibration source analysis and vibration reduction for a vertical microstructure turbulence profiler, J. Vib. Shock, 31 (2012), 5-9
##[8]
T. D. Mudge, R. G. Lueck, Digital signal processing to enhance oceanographic observations, J. Atmospheric Oceanic Tech., 11 (1994), 825-836
##[9]
T. Prestero, Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle, University of California, Davis (2001)
##[10]
A. Soloviev, R. Lukas, P. Hacker, A near-surface microstructure sensor system used during TOGA COARE. Part II: turbulence measurements, J. Atmospheric Oceanic Tech., 16 (1999), 1598-1618
##[11]
D. Song, J. Sun, B. Xue, C. Tian, The fixed-point ocean turbulence observation on submerged buoy, IEEE International Conference on Intelligent Control, Automatic Detection and High-End Equipment (ICADE), (2012), 72-77
##[12]
S. Wang, X. Xiao, Y. Wang, Z. Wang, B. Chen, Denoising method for shear probe signal based on wavelet thresholding , Transactions of Tianjin University, 18 (2012), 135-140
##[13]
T. L. Wilfong, E. M. Lau, B. L. Weber, D. A. Merritt, S. A. McLaughlin, Median filter effects on radar wind profiler spectral noise statistics, J. Atmospheric Oceanic Tech., 31 (2014), 2088-2093
##[14]
J. Xu, K. Tang, X. Zhang , Study on mechanism and reduction of hydro-acoustical noise induced by flow over an open cavity based on numerical simulation , Chinese J. Hydrodyn., 5 (2014), 618-629
##[15]
X. Zhong, A. B. Premkumar, W. Wang, Direction of arrival tracking of an underwater acoustic source using particle filtering: Real data experiments, TENCON Spring Conference, IEEE, (2013), 420-424
]