Numerical solution of mixed Volterra-Fredholm integral equations using different methods
Authors
S. M. Abusalim
- Department of Mathematics, College of Science, Jouf University, Sakaka, Saudi Arabia.
Abstract
This study discusses the existence and unique solution of the second-kind mixed Volterra-Fredholm integral equation (MV-FIE).
Using the projection approach, the best approximate solution can be found by providing two consecutive algorithms and primarily relying on the iterative projection process (P-IM). For every algorithm, we obtain the relative error and the approximate solution. Furthermore, we proved that the first algorithm's estimated P-IM error is better than the successive approximation method's (SAM) estimate. The error estimate was determined, and numerical results were calculated for each example.
Some numerical experiments are performed to show the simplicity and efficiency of the presented method, and all results are performed by using the program Wolfram Mathematica 10.
Share and Cite
ISRP Style
S. M. Abusalim, Numerical solution of mixed Volterra-Fredholm integral equations using different methods, Journal of Mathematics and Computer Science, 38 (2025), no. 1, 1--15
AMA Style
Abusalim S. M., Numerical solution of mixed Volterra-Fredholm integral equations using different methods. J Math Comput SCI-JM. (2025); 38(1):1--15
Chicago/Turabian Style
Abusalim, S. M.. "Numerical solution of mixed Volterra-Fredholm integral equations using different methods." Journal of Mathematics and Computer Science, 38, no. 1 (2025): 1--15
Keywords
- Mixed Volterra-Fredholm integral equation
- projection-iteration method
- Banach fixed point theorem
MSC
References
-
[1]
M. Abdel-Aty, M. Abdou, Analytical and Numerical Discussion for the Phase-Lag Volterra-Fredholm Integral Equation with Singular Kernel, J. Appl. Anal. Comput., 13 (2023), 3203–3220
-
[2]
M. A. Abdou, M. E. Nasr, M. A. Abdel-Aty, Study of the normality and continuity for the mixed integral equations with phase-lag term, Int. J. Math. Anal., 11 (2017), 787–799
-
[3]
M. A. Abdou, M. E. Nasr, M. A. Abdel-Aty, A study of normality and continuity for mixed integral equations, J. Fixed Point Theory Appl., 20 (2018), 19 pages
-
[4]
S. A. Abusalim, M. A. Abdou, M. A. Abdel-Aty, M. E. Nasr, Hybrid Functions Approach via Nonlinear Integral Equations with Symmetric and Nonsymmetrical Kernel in Two Dimensions, Symmetry, 15 (2023), 19 pages
-
[5]
A. M. Al-Bugami, Numerical treating of mixed integral equation two-dimensional in surface cracks in finite layers of materials, Adv. Math. Phys., 2022 (2022), 12 pages
-
[6]
S. E. A. Alhazmi, New model for solving mixed integral equation of the first kind with generalized potential kernel, J. Math. Res., 9 (2017), 18–29
-
[7]
V. M. Aleksandov, E. V. Kovalenko, Problems in continuum mechanics with mixed boundary conditions, Nauk, Moscow (1986)
-
[8]
K. E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge (1997)
-
[9]
M. Basseem, Degenerate method in mixed nonlinear three dimensions integral equation, Alex. Eng. J., 58 (2019), 387–392
-
[10]
H. Brunner, Collocation methods for Volterra integral and related functional differential equations, Cambridge University Press, Cambridge (2004)
-
[11]
M. V. C. Chari, S. J. Salon, Numerical methods in electromagnetism, Academic Press, San Diego (2000)
-
[12]
L. M. Delves, J. L. Mohamed, Computational methods for integral equations, Academic Press, Cambridge (1985)
-
[13]
J. Gao, M. Condon, A. Iserles, Spectral computation of highly oscillatory integral equations in laser theory, J. Compute. Phys., 395 (2019), 351–381
-
[14]
Z. Gouyandeh, T. Allahviranloo, A. Armand, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via tau-collocation method with convergence analysis, J. Comput. Appl. Math., 308 (2016), 435–446
-
[15]
L. Grammont, P. B. Vasconcelos, M. Ahues, A modified iterated projection method adapted to a nonlinear integral equations, Appl. Math. Comput., 276 (2016), 432–441
-
[16]
R. M. Hafez, Y. H. Youssri, Spectral Legendre-Chebyshev treatment of 2D linear and nonlinear mixed Volterra-Fredholm integral equation, Math. Sci. Lett., 9 (2020), 37–47
-
[17]
B. H. Hashemi, M. Khodabin, K. Maleknejad, Numerical method for solving linear stochastic Itô-Volterra integral equations driven by fractional Brownian motion using hat functions, Turkish J. Math., 41 (2017), 611–624
-
[18]
M. H. Heydari, M. R. Hooshmandasl, F. M. M. Ghaini, C. Cattani, A computational method for solving stochastic itô-volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., 270 (2014), 402–415
-
[19]
A. R. Jan, Solution of nonlinear mixed integral equation via collocation method basing on orthogonal polynomials, Heliyon, 8 (2022), 9 pages
-
[20]
M. Lienert, R. Tumulka, A new class of Volterra-type integral equations from relativistic quantum physics, J. Integral Equ. Appl., 31 (2019), 535–569
-
[21]
N. Madbouly, Solutions of Hammerstein integral equations arising from chemical reactor theory, University of Strathclyde, PhD. thesis, (1996)
-
[22]
A. M. S. Mahdy, M. A. Abdou, D. Sh. Mohamed, A computational technique for computing second-type mixed integral equations with singular kernels, J. Math. Comput. Sci., 32 (2024), 137–151
-
[23]
A. M. S. Mahdy, A. S. Nagdy, K. H. Hashem, D. S. Mohamed, A computational technique for solving three-dimensional mixed volterra-fredholm integral equations, Fractal Fract., 7 (2023), 14 pages
-
[24]
S. Micula, An iterative numerical method for Fredholm-Volterra integral equations of the second kind, Appl. Math. Comput., 270 (2015), 935–942
-
[25]
F. Mirzaee, Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials, Comput. Methods Differ. Equ., 5 (2017), 88–102
-
[26]
F. Mirzaee, E. Hadadiyan, Applying the modified block-pulse functions to solve the three-dimensional Volterra-Fredholm integral equations, Appl. Math. Comput., 265 (2015), 759–767
-
[27]
F. Mirzaee, E. Hadadiyan, Numerical solution of Volterra-Fredholm integral equations via modification of hat functions, Appl. Math. Comput., 280 (2016), 110–123
-
[28]
F. Mirzaee, E. Hadadiyan, Using operational matrix for solving nonlinear class of mixed volterra-fredholm integral equations, Math. Methods Appl. Sci., 40 (2017), 3433–3444
-
[29]
F. Mirzaee, S. F. Hoseini, Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations, Appl. Math. Comput., 273 (2016), 637–644
-
[30]
F. Mirzaee, N. Samadyar, Convergence of 2D-orthonormal Bernstein collocation method for solving 2D-mixed Volterra- Fredholm integral equations, Trans. A. Razmadze Math. Inst., 172 (2018), 631–641
-
[31]
M. E. Nasr, M. A. Abdel-Aty, Analytical discussion for the mixed integral equations, J. Fixed Point Theory Appl., 20 (2018), 19 pages
-
[32]
M. E. Nasr, M. A. Abdel-Aty, A new techniques applied to Volterra-Fredholm integral equations with discontinuous kernel, J. Comput. Anal. Appl., 29 (2021), 11–24
-
[33]
S. Noeiaghdam, S. Micula, A novel method for solving second kind Volterra integral equations with discontinuous kernel, Mathematics, 9 (2021), 12 pages
-
[34]
S. Paul, M. M. Panja, B. N. Mandal, Use of Legendre multiwavelets to solve Carleman type singular integral equations, Appl. Math. Model., 55 (2018), 522–535
-
[35]
G. Ya. Popov, Contact problems for a linearly deformable foundation, Vishcha Schola., Kyiv-Odesa (1982)
-
[36]
A. M. Rocha, J. S. Azevedo, S. P. Oliveira, M. R. Correa, Numerical analysis of a collocation method for functional integral equations, Appl. Numer. Math., 134 (2018), 31–45
-
[37]
N. H. Sweilam, A. M. Nagy, I. K. Youssef, M. M. Mokhtar, New spectral second kind Chebyshev wavelets scheme for solving systems of integro-differential equations, Int. J. Appl. Comput. Math., 3 (2017), 333–345
-
[38]
A. N. Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems, Wiley, Washington (1977)
-
[39]
K. Wang, Q. Wang, Taylor polynomial method and error estimation for a kind of mixed Volterra-Fredholm integral equations, Appl. Math. Comput., 229 (2014), 53–59
-
[40]
K. F. Warnick, Numerical analysis for electromagnetic integral equations, Artech House, Norwood (2008)
-
[41]
A.-M. Wazwaz, Linear and Nonlinear integral equations: Methods and Applications, Springer, Heidelberg (2011)