Some inner product inequalities with applications to numerical radius inequalities
Volume 38, Issue 1, pp 16--24
https://dx.doi.org/10.22436/jmcs.038.01.02
Publication Date: November 21, 2024
Submission Date: July 17, 2024
Revision Date: September 15, 2024
Accteptance Date: September 29, 2024
Authors
F. Alrimawi
- Department of Basic Sciences, Al-Ahliyya Amman University, Amman, Jordan.
Abstract
In this article, we introduce some inner product inequalities for operators
involving the Cartesian decomposition of the operator. We employ the
obtained results to get norm and numerical radius inequalities that extend
and improve some earlier inequalities.
Share and Cite
ISRP Style
F. Alrimawi, Some inner product inequalities with applications to numerical radius inequalities, Journal of Mathematics and Computer Science, 38 (2025), no. 1, 16--24
AMA Style
Alrimawi F., Some inner product inequalities with applications to numerical radius inequalities. J Math Comput SCI-JM. (2025); 38(1):16--24
Chicago/Turabian Style
Alrimawi, F.. "Some inner product inequalities with applications to numerical radius inequalities." Journal of Mathematics and Computer Science, 38, no. 1 (2025): 16--24
Keywords
- Numerical radius
- operator norm
- inner product
- Cartesian decomposition
MSC
- 15A60
- 47A12
- 47A30
- 47A50
- 47B15
References
-
[1]
A. Abu-Omar, F. Kittaneh, A generalization of the numerical radius, Linear Algebra Appl., 569 (2019), 323–334
-
[2]
M. W. Alomari, Numerical radius inequalities for Hilbert space operators, Complex Anal. Oper. Theory, 15 (2021), 19 pages
-
[3]
F. Alrimawi, O. Hirzallah, F. Kittaneh, Norm inequalities related to Clarkson inequalities, Electron. J. Linear Algebra, 34 (2018), 163–169
-
[4]
F. Alrimawi, O. Hirzallah, F. Kittaneh, Singular value inequalities involving convex and concave functions of positive semidefinite matrices, Ann. Funct. Anal., 11 (2020), 1257–1273
-
[5]
F. Alrimawi, O. Hirzallah, F. Kittaneh, Norm inequalities involving the weighted numerical radii of operators, Linear Algebra Appl., 657 (2023), 127–146
-
[6]
F. Alrimawi, H. Kawariq, F. A. Abushaheen, Generalized-weighted numerical radius inequalities for Schatten p-norms, Int. J. Math. Comput. Sci., 17 (2022), 1463–1473
-
[7]
P. Bhunia, Power numerical radius inequalities from an extension of Buzano’s inequality, arXiv:2305.17657v1, (2023), 11 pages
-
[8]
P. Bhunia, S. Bag, K. Paul, Bounds for zeros of a polynomial using numerical radius of Hilbert space operators, Ann. Funct. Anal., 12 (2021), 14 pages
-
[9]
P. Bhunia, S. S. Dragomir, M. S. Moslehian, K. Paul, Lectures on numerical radius inequalities, Springer, Cham (2022)
-
[10]
P. Bhunia, K. Paul, Some improvements of numerical radius inequalities of operators and operator matrices, Linear Multilinear Algebra, 70 (2020), 1995–2013
-
[11]
P. Bhunia, K. Paul, New upper bounds for the numerical radius of Hilbert space operators, Bull. Sci. Math., 167 (2021), 11 pages
-
[12]
P. Bhunia, K. Paul, Refinement of numerical radius inequalities of complex Hilbert space operators, Acta Sci. Math. (Szeged), 89 (2023), 427–436
-
[13]
M. L. Buzano, Generalizzazione della disuguaglianza di Cauchy-Schwarz, Rend. Semin. Mat. Univ. Politech. Torino, 31 (1974), 405–409
-
[14]
S. S. Dragomir, Some inequalities for the Euclidean operator radius of two operators in Hilbert spaces, Linear Algebra Appl., 419 (2006), 256–264
-
[15]
K. Feki, T. Yamazaki, Joint numerical radius of spherical Aluthge transforms of tuples of Hilbert space operators, Math. Inequal. Appl., 24 (2021), 405–420
-
[16]
T. Furuta, Invitation to Linear Operators, Taylor & Francis Group, London (2001)
-
[17]
Z. Heydarbeygi, M. Sababheh, H. R. Moradi, A convex treatment of numerical radius inequalities, Czechoslovak Math. J., 72 (2022), 601–614
-
[18]
F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math., 158 (2003), 11–17
-
[19]
F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math., 168 (2005), 73–80
-
[20]
F. Kittaneh, Numerical radius inequalities associated with the Cartesian decomposition, Math. Inequal. Appl., 18 (2015), 915–922
-
[21]
M. S. Moslehian, Q. Xu, A. Zamani, Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl., 591 (2020), 299–321
-
[22]
F. P. Najafabadi, H. R. Moradi, Advanced refinements of numerical radius inequalities, , 11 (2021), 1–10
-
[23]
S. Nourbakhsh, M. Hassani, M. E. Omidvar, H. R. Moradi, Inner product inequalities through Cartesian decomposition with applications to numerical radius inequalities, Oper. Matrices, 18 (2024), 69–81
-
[24]
M. E. Omidvar, H. R. Moradi, K. Shebrawi, Sharpening some classical numerical radius inequalities, Oper. Matrices, 12 (2018), 407–416
-
[25]
S. Sahoo, N. C. Rout, M. Sababheh, Some extended numerical radius inequalities, Linear Multilinear Algebra, 69 (2021), 907–920
-
[26]
M. Sattari, M. S. Moslehian, T. Yamazaki, Some generalized numerical radius inequalities for Hilbert space operators, Linear Algebra Appl., 470 (2015), 216–227
-
[27]
S. Tafazoli, H. R. Moradi, S. Furuichi, P. Harikrishnan, Further inequalities for the numerical radius of Hilbert space operators, J. Math. Inequal., 13 (2019), 955–967