Bipolar linear Diophantine fuzzy EDAS for multi-attribute group decision-making
Volume 38, Issue 1, pp 25--44
https://dx.doi.org/10.22436/jmcs.038.01.03
Publication Date: November 21, 2024
Submission Date: July 17, 2024
Revision Date: September 15, 2024
Accteptance Date: September 29, 2024
Authors
J. Vimala
- Department of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India.
S. Nithya Sri
- Department of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India.
N. Kausar
- Department of Mathematics, Faculty of Arts and Science, Yildiz Technical University, Esenler, 34220, Istanbul, Turkey.
B. Vrioni
- School of Arts and Sciences, American International University, Kuwait.
D. Pamucar
- Department of Operations Research and Statistics, Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia.
- Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan City, 320315, Taiwan.
- Department of Mechanics and Mathematics, Western Caspian University, Baku, Azerbaijan.
V. Simic
- University of Belgrade, Faculty of Transport and Traffic Engineering, Vojvode Stepe 305, Belgrade, 11010, Serbia.
- Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul, 02841, Republic of Korea.
Abstract
The formation of new properties for Bipolar Linear Diophantine Fuzzy Set (\( { {\mathcal{BLDFS}}}\)) enhances the evaluation procedure by including control parameters and meticulously accumulating positive as well as negative opinions. While previous approaches encounter difficulties in accurately grasping uncertainties, the design and development of a novel Bipolar Linear Diophantine Fuzzy Evaluation based on Distance from Average Solution (\( { {\mathcal{BLDFEDAS}}}\)) approach aim to bridge the gap in the existing research. An application of implementing this approach is presented by case analysis on choosing the best Forensic Decision Intelligence (\( { {\mathcal{FDI}}}\)) system, as the significance of forensic science in the court system has yet to be demonstrated. Further, a novel Bipolar Linear Diophantine Fuzzy Multi-Attributive Border Approximation Area Comparison (\( { {\mathcal{BLDFMABAC}}}\)) methodology is provided to uplift the effectiveness of results by \( { {\mathcal{BLDFEDAS}}}\). By rigorously incorporating control parameters and bipolarity, the field substantially progresses and establishes a robust framework for tackling ambiguity in decision support systems.
Share and Cite
ISRP Style
J. Vimala, S. Nithya Sri, N. Kausar, B. Vrioni, D. Pamucar, V. Simic, Bipolar linear Diophantine fuzzy EDAS for multi-attribute group decision-making, Journal of Mathematics and Computer Science, 38 (2025), no. 1, 25--44
AMA Style
Vimala J., Nithya Sri S., Kausar N., Vrioni B., Pamucar D., Simic V., Bipolar linear Diophantine fuzzy EDAS for multi-attribute group decision-making. J Math Comput SCI-JM. (2025); 38(1):25--44
Chicago/Turabian Style
Vimala, J., Nithya Sri, S., Kausar, N., Vrioni, B., Pamucar, D., Simic, V.. "Bipolar linear Diophantine fuzzy EDAS for multi-attribute group decision-making." Journal of Mathematics and Computer Science, 38, no. 1 (2025): 25--44
Keywords
- Bipolar linear Diophantine fuzzy set
- evaluation based on distance from average solution
- multi-attributive border approximation area comparison
- multi-attribute group decision-making
MSC
References
-
[1]
M. Akram, Bipolar pythagorean fuzzy sets and their application in multi-attribute decision making problems, Ann. Data Sci., (2021), 1–33
-
[2]
M. Akram, Shumaiza, A. N. Al-Kenani, Multi-criteria group decision-making for selection of green suppliers under bipolar fuzzy PROMETHEE process, Symmetry, 12 (2020), 25 pages
-
[3]
M. Akram, Shumaiza, M. Arshad, Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis, Comput. Appl. Math., 39 (2020), 21 pages
-
[4]
M. Akram, N. Waseem, P. Liu, Novel approach in decision making with m-polar fuzzy ELECTRE-I, Int. J. Fuzzy Syst., 21 (2019), 1117–1129
-
[5]
M. I. Ali, Another view on q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2018), 2139–2153
-
[6]
M. Asif, U. Ishtiaq, I. K. Argyros, Hamacher Aggregation Operators for Pythagorean Fuzzy Set and its Application in Multi-Attribute Decision-Making Problem, Spectr. Oper. Res., 2 (2022), 27–40
-
[7]
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87–96
-
[8]
K. T. Atanassov, S. Stoeva, Intuitionistic fuzzy sets, In: Polish Symp. on Interval & Fuzzy Mathematics, Poznan, (1983), 23–26
-
[9]
J. Chen, S. Li, S. Ma, X. Wang, m-Polar fuzzy sets: an extension of bipolar fuzzy sets, Sci. World J., 2014 (2014), 8 pages
-
[10]
P. A. Ejegwa, A. Sarkar, I. C. Onyeke, New methods of computing correlation coefficient based on Pythagorean fuzzy information and their applications in disaster control and diagnostic analysis, In: Fuzzy optimization, decision-making and operations research—theory and applications Springer, Cham, (2023), 473–498
-
[11]
P. A. Ejegwa, Y. Zhang, H. Li, Y. Feng, Novel measuring techniques with applications in pattern classification and diagnostic process under Pythagorean fuzzy environment, 2023 International Conference on New Trends in Computational Intelligence (NTCI), IEEE, 1 (2023), 28–35
-
[12]
H. Ero˘ glu, R. ¸Sahin, A neutrosophic VIKOR method-based decision-making with an improved distance measure and score function: case study of selection for renewable energy alternatives, Cogn. Comput., 12 (2020), 1338–1355
-
[13]
H. Garg, J. Vimala, S. Rajareega, D. Preethi, L. Perez-Dominguez, Complex intuitionistic fuzzy soft SWARA-COPRAS approach: An application of ERP software selection, AIMS Math., 7 (2022), 5895–5909
-
[14]
T. Gebrehiwet, H. Luo, Risk level evaluation on construction project lifecycle using fuzzy comprehensive evaluation and TOPSIS, Symmetry, 11 (2018), 15 pages
-
[15]
M. K. Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis, J. Antucheviciene, A comparative analysis of the rank reversal phenomenon in the EDAS and TOPSIS methods, Econ. Comput. Econ. Cybern. Stud. Res., 52 (2018), 121–134
-
[16]
M. K. Ghorabaee, E. K. Zavadskas, M. Amiri, Z. Turskis, Extended EDAS method for fuzzy multi-criteria decisionmaking: an application to supplier selection, Int. J. Comput. Commun. Control, 11 (2016), 358–371
-
[17]
A. Hussain, K. Ullah, An Intelligent Decision Support System for Spherical Fuzzy Sugeno-Weber Aggregation Operators and Real-Life Applications, Spec. Mech. Eng. Oper. Res., 1 (2024), 177–188
-
[18]
G. Ilieva, Group decision analysis algorithms with EDAS for interval fuzzy sets, Cybern. Inf. Technol., 18 (2018), 51–64
-
[19]
R. Imran, K. Ullah, Z. Ali, M. Akram, A Multi-Criteria Group Decision-Making Approach for Robot Selection Using Interval-Valued Intuitionistic Fuzzy Information and Aczel-Alsina Bonferroni Means, Spec. Decis. Mak. Appl., 1 (2024), 1–32
-
[20]
M. Jamil, F. Afzal, A. Akgül, S. Abdullah, A. Maqbool, A. Razzaque, M. B. Riaz, J. Awrejcewicz, Einstein Aggregation Operators under Bipolar Neutrosophic Environment with Applications in Multi-Criteria Decision-Making, Appl. Sci., 12 (2022), 19 pages
-
[21]
C. Jana, Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach, Comput. Appl. Math., 40 (2021), 17 pages
-
[22]
C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision making problem, Int. J. Fuzzy Syst. Appl., 7 (2018), 32–55
-
[23]
C. Jana, M. Pal, Extended bipolar fuzzy EDAS approach for multi-criteria group decision-making process, Comput. Appl. Math., 40 (2021), 15 pages
-
[24]
C. Jana, M. Pal, J.-Q. Wang, Bipolar fuzzy Dombi aggregation operators and its application in multiple attribute decisionmaking process, J. Ambient Intell. Humaniz. Comput., 10 (2019), 3533–3549
-
[25]
C. Jana, M. Pal, J.-Q. Wang, Bipolar fuzzy Dombi prioritized aggregation operators in multiple attribute decision-making, Soft Comput., 24 (2020), 3631–3646
-
[26]
V. Jayakumar, A. B. K. Mohideen, M. H. Saeed, H. Alsulami, A. Hussain, M. Saeed, Development of Complex Linear Diophantine Fuzzy Soft set in determining a suitable Agri-drone for spraying Fertilizers and Pesticides, IEEE Access, 11 (2023), 9031–9041
-
[27]
K. Jeevitha, H. Garg, J. Vimala, H. Aljuaid, A.-H. Abdel-Aty, Linear diophantine multi-fuzzy aggregation operators and its application in digital transformation, J. Intell. Fuzzy Syst., 45 (2023), 3097–3107
-
[28]
R. D. Julian, S. F. Kelty, C. Roux, P. Woodman, J. Robertson, A. Davey, R. Hayes, P. Margot, A. Ross, H. Sibly, R. White, What is the value of forensic science? An overview of the effectiveness of forensic science in the Australian criminal justice system project, Aust. J. Forensic Sci., 43 (2011), 217–229
-
[29]
J. Kannan, V. Jayakumar, M. Pethaperumal, Advanced Fuzzy-Based Decision-Making: The Linear Diophantine Fuzzy CODAS Method for Logistic Specialist Selection, Spec. Oper. Res., 2 (2024), 41–60
-
[30]
J. Kannan, V. Jayakumar, M. Pethaperumal, N. S. Shanmugam, Linear diophantine multi-fuzzy soft similarity measures: An analysis on alternative-fuel, J. Intell. Fuzzy Syst., Pre-press (2024), 1–13
-
[31]
A. B. Kather Mohideen, V. Jayakumar, M. Pethaperumal, J. Kannan, An Amalgamated Kruskal’s Algorithm to Ascertain the Shortest Route in the Futuristic Smart World, J. Intell. Fuzzy Syst., Pre-press (2024), 16 pages
-
[32]
S. Kousar, A. Ansar, N. Kausar, G. Freen, Multi-criteria decision-making for smog mitigation: a comprehensive analysis of health, economic, and ecological impacts, Spec. Oper. Res., 2 (2024), 53–67
-
[33]
K. M. Lee, Bipolar-valued fuzzy sets and their operations, In: Proceedings of the International Conference on Intelligent Technologies, Bangkok, Thailand, (2000), 307–312
-
[34]
R. Li, P. A. Ejegwa, K. Li, I. Agaji, Y. Feng, I. C. Onyeke, A new similarity function for Pythagorean fuzzy sets with application in football analysis, AIMS Math., 9 (2024), 4990–5014
-
[35]
Z. Li, G. W. Wei, R. Wang, J. Wu, C. Wei, Y. Wei, EDAS method for multiple attribute group decision making under q-rung orthopair fuzzy environment, Technol. Econ. Dev. Econ., 26 (2020), 86–102
-
[36]
P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decisionmaking, Int. J. Intell. Syst., 33 (1983), 259–280
-
[37]
P. Mahalakshmi, J. Vimala, K. Jeevitha, S. N. Sri, Advancing cybersecurity strategies for multinational corporations: Novel distance measures in q-rung orthopair multi-fuzzy systems, J. Oper. Strateg. Anal., 2 (2024), 49–55
-
[38]
R. Nagi, N. Rakesh, S. S. Reddy, K. Aravinda, R. S. Makkad, T. Vyas, , J. Dent. Orofac. Res., 16 (2020), 51–57
-
[39]
S. Nithya Sri, J. Vimala, N. Kausar, E. Ozbilge, E. Özbilge, D. Pamucar, An MCDM approach on Einstein aggregation operators under Bipolar Linear Diophantine Fuzzy Hypersoft Set, Heliyon, 10 (2024), 18 pages
-
[40]
M. Palanikumar, N. Kausar, D. Pamucar, V. Simic, F. T. Tolasaa, Various distance between generalized Diophantine fuzzy sets using multiple criteria decision making and their real life applications, Sci. Rep., 14 (2024), 17 pages
-
[41]
D. Pamucˇar, G. C´ irovic´,, The selection of transport and handling resources in logistics centers using multi-attributive border approximation area comparison (MABAC), Expert Syst. Appl., 42 (2015), 3016–3028
-
[42]
S. Pramanik, R. Mallick, VIKOR based MAGDM strategy with trapezoidal neutrosophic numbers, Neutrosophic Sets Syst., 22 (2018), 118–130
-
[43]
S. G. Quek, G. Selvachandran, F. Smarandache, J. Vimala, S. H. Le, Q.-T. Bui, V. C. Gerogiannis, Entropy Measures for Plithogenic Sets and Applications in Multi-Attribute Decision Making, Mathematics, 8 (2020), 17 pages
-
[44]
S. Rajareega, J. Vimala, Operations on complex intuitionistic fuzzy soft lattice ordered group and CIFS-COPRAS method for equipment selection process, J. Intell. Fuzzy Syst., 41 (2021), 5709–5718
-
[45]
M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439
-
[46]
S. P. Rokade, G. Shrivastava, An efficacy of forensic technology in crime investigation and administration of justice: Narco analysis and DNA mapping, Int. J. Health Sci., 6 (2022), 6312–6326
-
[47]
S. K. Sahoo, B. B. Choudhury, P. R. Dhal, A Bibliometric Analysis of Material Selection Using MCDM Methods: Trends and Insights, Spec. Mech. Eng. Oper. Res., 1 (2024), 189–205
-
[48]
S. S. Syed Ahmad, N. Kausar, M. Palanikumar, Finding new similarities measures for Type-II Diophantine neutrosophic interval valued soft sets and its basic operations, Int. J. Neutrosophic Sci., 25 (2025), 505–517
-
[49]
J. Vimala, H. Garg, K. Jeevitha, Prognostication of myocardial infarction using lattice ordered linear diophantine multifuzzy soft set, Int. J. Fuzzy Syst., 26 (2024), 44–59
-
[50]
J. Vimala, P. Mahalakshmi, A. U. Rahman, M. Saeed, A customized TOPSIS method to rank the best airlines to fly during COVID-19 pandemic with q-rung orthopair multi-fuzzy soft information, Soft Comput., 27 (2023), 14571–14584
-
[51]
J. Wang, G. Wei, C. Wei, Y. Wei, MABAC method for multiple attribute group decision-making under q-rung orthopair fuzzy environment, Def. Technol., 16 (2020), 208–216
-
[52]
L. Wang, H.-Y. Zhang, J.-Q. Wang, Frank Choquet Bonferroni mean operators of bipolar neutrosophic sets and their application to multi-criteria decision-making problems, Int. J. Fuzzy Sys., 20 (2018), 13–28
-
[53]
R. P. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE, Edmonton, AB, Canada, (2013), 57–61
-
[54]
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353
-
[55]
W.-R. Zhang, Bipolar fuzzy sets, In: 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEEWorld Congress on Computational Intelligence, Anchorage, AK, USA, (1998), 835–840
-
[56]
W.-R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, In: NAFIPS/IFIS/NASA ’94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, IEEE, (1994), 305–309