Qualitative analysis of a coupled system with nonlinear mixed fractional integro-differential equation involving Caputo fractional derivative
Volume 38, Issue 1, pp 56--79
https://dx.doi.org/10.22436/jmcs.038.01.05
Publication Date: November 21, 2024
Submission Date: September 05, 2024
Revision Date: September 22, 2024
Accteptance Date: September 29, 2024
Authors
M. Asif
- Department of Mathematics, University of Peshawar, 25000, Pakistan.
A. Zada
- Department of Mathematics, University of Peshawar, 25000, Pakistan.
A. Avram
- Department of Computing, Mathematics and Engineering, , Alba Iulia, 510 0 09, Romania.
Abstract
This paper introduces a novel model involving an integro-differential equation of fractional order characterized by multiple nonlinear terms with Caputo fractional derivatives. We derive conditions ensuring the existence, uniqueness, and stability of the mild solution. Furthermore, we explore a coupled system that includes the proposed equations and extend our analysis to an equation featuring three nonlinearities. The study utilizes Banach's, Krasnoselskii's, and Schaefer's fixed point theorems. Additionally, we investigate various forms of Hyers-Ulam stability for the equation and the coupled system. To demonstrate the practical implications of our findings, illustrative examples are provided.
Share and Cite
ISRP Style
M. Asif, A. Zada, A. Avram, Qualitative analysis of a coupled system with nonlinear mixed fractional integro-differential equation involving Caputo fractional derivative, Journal of Mathematics and Computer Science, 38 (2025), no. 1, 56--79
AMA Style
Asif M., Zada A., Avram A., Qualitative analysis of a coupled system with nonlinear mixed fractional integro-differential equation involving Caputo fractional derivative. J Math Comput SCI-JM. (2025); 38(1):56--79
Chicago/Turabian Style
Asif, M., Zada, A., Avram, A.. "Qualitative analysis of a coupled system with nonlinear mixed fractional integro-differential equation involving Caputo fractional derivative." Journal of Mathematics and Computer Science, 38, no. 1 (2025): 56--79
Keywords
- Caputo derivative
- Riemann-Liouville fractional integral
- existence
- fixed point
- Ulam stability
MSC
References
-
[1]
M. I. Abbas, M. Ghaderi, Sh. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, J. Funct. Spaces, 2022 (2022), 10 pages
-
[2]
B. Ahmad, R. P. Agarwal, M. Alblewi, A. Alsaedi, On Nonlinear multi-term fractional integro-differential equations with anti-periodic boundary conditions, Prog. Fract. Differ. Appl., 8 (2020), 349–356
-
[3]
B. Ahmad, Y. Alruwaily, A. Alsaedi, J. J. Nieto, Fractional integro-differential equations with dual anti-periodic boundary conditions, Differential Integral Equations, 33 (2020), 181–206
-
[4]
A. Alsaedi, B. Ahmad, M. Alghanmi, Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions, Appl. Math. Lett., 91 (2019), 113–120
-
[5]
S. Arora, T. Mathur, S. Agarwal, K. Tiwari, P. Gupta, Applications of fractional calculus in computer vision: A survey, , 489 (2022), 407–428
-
[6]
A. Atangana, J. F. G. Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer. Methods Partial Differential Equations, 34 (2018), 1502–1523
-
[7]
A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour, J. Tariboon, A mathematical theoretical study of a coupled fully hybrid (k, F)-fractional order system of BVPs in generalized Banach spaces, Symmetry, 15 (2023), 17 pages
-
[8]
M. Cicho´ n, H. A. H. Salem, On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, J. Pseudo-Differ. Oper. Appl., 11 (2020), 1869–1895
-
[9]
D. Delbosco, L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204 (1996), 609–625
-
[10]
E. Flores, T. Osler, The tautochrone under arbitrary potentials using fractional derivatives, Am. J. Phys., 67 (1999), 718–722
-
[11]
G.-A. J. Francisco, R.-G. Juan, G.-C. Manuel, R.-H. J. Roberto, Fractional RC and LC Electrical Circuits, Ingenier´ia, investigaci ´ on y tecnolog´ia, 15 (2014), 311–319
-
[12]
Y. Y. Gambo, R. Ameen, F. Jarad, T. Abdeljawad, Existence and uniqueness of solutions to fractional differential equations in the frame of generalized Caputo fractional derivatives, Adv. Difference Equ., 2018 (2018), 13 pages
-
[13]
Z. Gao, T. Hu, H. Pang, Existence and uniqueness theorems for a fractional differential equation with impulsive effect under Band-Like integral boundary conditions, Adv. Math. Phys., 2020 (2020), 8 pages
-
[14]
R. W. Ibrahim, S. Momani, On the existence and uniqueness of solutions of a class of fractional differential equations, J. Math. Anal. Appl., 334 (2007), 1–10
-
[15]
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam (2006)
-
[16]
M. A. Krasnosel’ski˘ı, Two remarks on the method of successive approximations, Uspehi Mat. Nauk (N.S.), 10 (1995), 123–127
-
[17]
C. Li, D. Qian, Y. Chen, On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., 2011 (2011), 15 pages
-
[18]
C. Li, C. Tao, On the fractional Adams method, Comput. Math. Appl., 58 (2009), 1573–1588
-
[19]
C. Li, F. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifur. Chaos, 22 (2012), 28 pages
-
[20]
S. Liang, R. Wu, L. Chen, Laplace transform of fractional order differential equations, Electron. J. Differ. Equ., 2015 (2015), 15 pages
-
[21]
R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107–125
-
[22]
N. N. Phung, B. Q. Ta, V. Ho, Ulam-Hyers stability and Ulam-Hyers-Rassias stability for fuzzy integrodifferential equation, Complexity, 2019 (2019), 10 pages
-
[23]
A. S. Rafeeq, S. T. M. Thabet, M. O. Mohammed, I. Kedim, M. Vivas-Cortez, On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions, Alex. Eng. J., 86 (2024), 386–398
-
[24]
S. Rezapour, S. T. M. Thabet, A. S. Rafeeq, I. Kedim, M. Vivas-Cortez, N. Aghazadeh, Topology degree results on a G-ABC implicit fractional differential equation under three-point boundary conditions, PLoS ONE, 19 (2024), 19 pages
-
[25]
R. Rizwan, A. Zada, X. Wang, Stability analysis of nonlinear implicit fractional Langevin equation with noninstantaneous impulses, Adv. Difference Equ., 2019 (2019), 31 pages
-
[26]
H. A. H. Salem, M. Cicho´ n, Analysis of tempered fractional calculus in Hölder and Orlicz spaces, Symmetry, 14 (2022), 25 pages
-
[27]
A. Salim, S. T. M. Thabet, I. Kedim, M. Vivas-Cortez, On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation, AIMS Math., 9 (2024), 22859–22882
-
[28]
N. Sebaa, Z. E. A. Fellah, W. Lauriks, C. Depollier, Application of fractional calculus to ultrasonic wave propagation in human cancellous bone, Signal Process., 86 (2006), 2668–2677
-
[29]
J. A. Tenreiro Machado, F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, A. F. Galhano, Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 34 pages
-
[30]
S. T. M. Thabet, S. Al-Sa’di, I. Kedim, A. Sh. Rafeeq, S. Rezapour, Analysis study on multi-order ρ-Hilfer fractional pantograph implicit differential equation on unbounded domains, AIMS Math., 8 (2023), 18455–18473
-
[31]
S. T. M. Thabet, M. Vivas-Cortez, I. Kedim, M. E. Samei, M. I. Ayari, Solvability of a ρ-Hilfer fractional snap dynamic system on unbounded domains, Fractal Fract., 7 (2023), 24 pages
-
[32]
J. Wang, A. Zada, W. Li, Ulam’s-type stability of first-order impulsive differential equations with variable delay in quasi- Banach spaces, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 553–560
-
[33]
J.Wang, A. Zada, H.Waheed, Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem, Math. Methods Appl. Sci., 42 (2019), 6706–6732
-
[34]
A. Zada, S. Ali, Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 763–774
-
[35]
A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Difference Equ., 2017 (2017), 26 pages
-
[36]
A. Zada, W. Ali, S. Farina, Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses, Math. Methods Appl. Sci., 40 (2017), 5502–5514
-
[37]
A. Zada, S. Ali, Y. Li, Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition, Adv. Differ. Equ., 2017 (2017), 26 pages